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Gauge-invariant linear response theory of relativistic Bardeen-Cooper-Schrieffer superfluids
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We develop a gauge-invariant linear response theory for relativistic Bardeen-Cooper-Schrieffer (BCS)
superfluids based on a consistent fluctuation of the order-parameter (CFOP) approach. The response
functions from the CFOP approach satisfy important generalized Ward identities. The gauge invariance of
the CFOP theory is a consequence of treating the gauge transformation and the fluctuations of the order
parameter on equal footing so collective-mode effects are properly included. We demonstrate that the pole
of the response functions is associated with the massless Goldstone boson. Important physical quantities
such as the compressibility and superfluid density of relativistic BCS superfluids can also be inferred from
our approach. We argue that the contribution from the massless Goldstone boson is crucial in obtaining a

consistent expression for the compressibility.
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I. INTRODUCTION

The Bardeen-Cooper-Schrieffer theory of fermionic
superfluids (see [1] for a review on its application to
conventional superconductors) has provided not only an
explanation for conventional superconductors and other
fermionic superfluids but also a paradigm for studying
macroscopic quantum coherence due to interactions.
Soon after its discovery, the challenge of how to cast its
formalism in a gauge-invariant form when a charged sys-
tem is interacting with an electromagnetic (EM) field has
drawn broad interest. At the linear-response-theory level,
there have been two major approaches. Nambu in his
seminal paper [2] formulated this challenge in terms of
generalized Ward identities (GWIs) and proposed an ap-
proach based on a set of integral equations for finding a
gauge-invariant EM vertex which governs the kernels of
response functions. This approach has been reviewed in
Schrieffer’s book on superconductivity [1] and also finds
applications in other branches of physics such as nuclear
matter interacting with neutrinos [3].

There is another approach based on consistent fluctua-
tions of the order parameter (CFOP), which is the main
theme of this paper. In this approach, the effects of gauge
transformation from the gauge field are balanced by the
fluctuations of the order parameter in a consistent fashion.
This is made possible by treating the terms induced by the
gauge field as well as the fluctuations of the order parame-
ter equally in the perturbative Hamiltonian. Although the
kernels of response functions from this approach are not a
solution of Nambu’s integral equations, the CFOP formal-
ism is manifestly gauge invariant and we will show that
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GWIs are satisfied. This is because being a solution of
Nambu’s integral equations is only a sufficient condition
for satisfying the GWIs, but not a necessary condition.
Importantly, this approach reproduces the compressibility
correctly as that from the equations of state and this
demonstrates self-consistency of the CFOP approach.

The theory of CFOP has an interesting history. Kadanoff
and Martin [4] first proposed this approach in a less com-
plete form by considering only the phase fluctuations of the
order parameter. Their idea is to decompose the three-
particle Green’s function in a way that can respect gauge
invariance. Betbeder Matibet and Nozieres [5] and Kulik
et al. [6] independently formulated this approach in more
complete forms with both phase and amplitude fluctuations
later on. This approach has also been formulated by the
Keldysh formalism with time-ordered Green’s functions in
Ref. [7]. After its successful application to conventional
superconductors, a generalization of this approach to non-
relativistic fermionic superfluids satisfies important sum
rules and has been applied to ultracold atomic systems
[8—10]. It has also been discussed in the physics of neutron
stars [11]. Here we base on our formalism of a relativistic
version of the BCS theory [12] with Kulik’s approach to
CFOP and develop a gauge-invariant linear response the-
ory of relativistic fermionic BCS superfluids. To demon-
strate the versatility of this approach, we will address the
collective mode associated with the massless Goldstone
boson in the symmetry-broken phase, the density suscep-
tibility which governs the compressibility, and the super-
fluid density.

To further contrast these two approaches, we also
present the relativistic version of Nambu’s integral equa-
tions for the EM vertex. There have been attempts to find
an iterated solution based on the random phase approxi-
mation (RPA) [3]. In nonrelativistic BCS superfluids it is
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possible to argue that the RPA-based theory satisfies the
corresponding GWI. To our knowledge, neither a relativ-
istic version of Nambu’s integral equations nor a complete
proof of the gauge invariance of the RPA-based linear
response theory for relativistic BCS superfluids has been
explicitly presented. Since a major goal of this paper is to
advocate the CFOP theory of relativistic Fermi superfluids,
we will limit our discussions on Nambu’s integral-equation
approach.

This paper is organized as the following. Section II
briefly reviews a microscopic theory for relativistic BCS
superfluids that will be the foundation of this work.
Section III presents the CFOP formalism and we explain
in more detail how our theory respects gauge invariance in
Sec. IV. Section V gives the explicit expressions of the
response functions from our CFOP approach. Sections VI,
VII, and VIII show some applications of the CFOP theory
to the collective modes, compressibility, and the Meissner
effect for a relativistic BCS superfluid. We briefly discuss a
relativistic version of Nambu’s integral-equation approach
and its associated GWIs in Sec. IX. Section X concludes
our work. Some details and conventions are given in the
Appendix.

II. MICROSCOPIC THEORY OF RELATIVISTIC
FERMI SUPERFLUIDS

Several relativistic models of two-component BCS
superfluids have been formulated in Refs. [12-17] and
we briefly review the model following the BCS-Leggett
mean-field theory [12,15] without any external gauge field
here. The Lagrangian density is

Lx)= > §,liy*a, —m+ uy), + L(x), (1)
o=l

where i, i are Dirac spinors which denote the fermion
fields with mass m and chemical potential p. The repre-
sentation of the y matrix and some useful properties are
given in Appendix A. Throughout this paper, we take the
convention e = ¢ = h = 1 and use o to denote the pseu-
dospin T and | with = — | and & = —o. The pseudospin
may refer to some internal degrees of freedom such as the
color indices in quantum chromodynamics. £; describes
the attractive pairing interactions between particles with
different pseudospins and it takes the form [13]

L (x) = g(] Ciysip)(iysCh]), )

where g is the attractive coupling constant, and the charge
conjugation matrix C is defined as C = iy,7y,. The gap
function that is also the order parameter is given by A(x) =

g ¢/TT Ciys ). The standard BCS approximation then gives
LBCS(X) = Z 'Ztr(l'yﬂa,u —m+ Iu"yo)wo'
o=1l
+ A*(@] Ciysgp) + A(iysCyl). (3)
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The corresponding form of the Hamiltonian density is then
given by

Hpes(xX) = Y (=7 -V +m— py),
o=l

— A*(Y] Ciysgp) — A iysCyl). ()

In the broken-symmetry phase the order parameter may be
chosen to be real. Here we present our theory in Matsubara
formalism, which is applicable to both zero and finite
temperature 7. We will focus on 7 = 0 results and a gen-
eralization to finite 7 within the BCS approximation is
straightforward. To simplify the notation, we group the
imaginary time 7 = ir and x as a four-vector x = (7, X)
and define

O (x) = effeesTO(x) e HecsT, 5)

where Hgcs = [ d*xH geg(x). The single particle Green’s
function and anomalous Green’s function are given by

Glx, x) = —(T,[¢1(0) g (:N]),

F(x,x') = —(T, [ ()T () C), (©6)
where T, denotes the 7 order of operators. When Hpycg is
time independent, G and F depend only on the difference

7— 1. Let x* = (7 + 0%, x). The gap function can be
expressed as

A(x) = g TrliysF(x, x™)]. @)

The number density for each species is defined by n,(x) =

(07" - (x)) = (5P ,(x)). Tt can be also calcu-
lated from the single particle Green’s function 7n,(x) =
Ti{y°G(x, x*)]. Therefore, the total fermion number is
given by

n= fd3x(n1(x) + ny(x)) = 2fd3x Ti{y°G(x, x7)].
(3)

It can be shown that the Green’s function and anomalous

Green’s function satisfy the following equations of motion:

[=9°0, + iy -V = (m — py")G(x, x) + iAysF(x, x)
= 6()( - x/)14><4, (9)

[—900, + iy -V = (m — uy")F(x, x') + iAysG(x, x)
—0, (10)

where G(x, x') = CGT(x, x)C, F(x,x') = y'FT(x/, x)»°,
144 is the four-dimensional identity matrix, and 8(x —
x') = 8(r — 7)8(x — x/). Here we define the fermion
four-momentum at finite temperature as P = (iw,, p),
where w,, is the fermionic Matsubara frequency given by
w, = (2n + 1)akyzT, where kg is the Boltzmann constant.

The quasiparticle energies are given by E, = ,/ p -t A2
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with £ = €, = u and €, = 4/p> + m?. With the help of
the energy projectors

M) = 51 = TR

1D

the solution of G and F in momentum space are

up2A L (p) N vy 2 AL (p) N ug A_(p)
iw, —E, iw,tE, iw,+E,

G(P, u) = [

+2
+ M]YO’ (12)

iw, — Ey

F(P. ) — [u;v;A+(p) _up vy Ay (p) N uy vy A_(p)
’ iw, — E, iw, + E, iw, — Ey
uy vy A_(p)
e e .

P 2 P 2

projectors A, (p) and A _(p) project out the contributions
from the fermion and antifermion, respectively. In the
nonrelativistic limit where |p| < m, |u — m| < m, and
A < m,one gets A (p) = 1 and A_(p) = 0 so our expres-
sions reduce to the well-known nonrelativistic results. By
taking the Fourier transform of Eq. (8), the fermion number
is given by n = 23 ,Ti{y°G(P, w)], which is the number
difference between the fermions and antifermions,

where u;2 =1(1 + g—‘i) and vy =1(1 — g—‘i). The energy
P P

n=n, —n_

= 4> [upf(Ep) + vy f(—Ep)]
P
— 4> [(up?f(Ey) + vp2f(=Ep))],  (14)
P

where n. denotes the density of fermion and antifermion.
The Fermi momentum k. is defined by n = 2k3./(372), and
the Fermi energy is €, = 4/k + m?. The Fourier transform
of Eq. (7) gives A = g3, Tr[iysF(P, w)], which leads to

the gap equation,
_ Z(l —2f(Ey) 1 2f(E;>)
— + .
p EP EP

5)

N u;z v;z
= + +
(P p) [(mn —E, o, + E;>A+(p) (

2 2 u
+[( E__ P +)A+(p)+<. P+
iw, —Ey  iw, +E} iw, T+ E,

A_(p)A

[ Ay (p)A

' -
(iw,)" = Ey°  (iw,) — EJQ]WS“* [(iwn)2 ~E”
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In the nonrelativistic limit, the number equation (14) and
gap equation (15) reduce to the well-known nonrelativistic
results except a factor of 2 on both right-hand sides.
This factor of 2 comes from the fact that we have introduced
the pseudospin, which brings 2 times more degrees of
freedom.

Since the model is not renormalizable in 3 + 1 dimen-
sions, a regularization or a momentum cutoff A is needed.
The relativistic limit of the BCS state depends on the
Compton wavelength A, = m™~! [15]. If kp > 1/A, =
m, the system evolves into the relativistic regime. It has
been shown that this model can be generalized to describe
the BCS-Bose-Einstein condensation (BEC)-relativistic
BEC crossover [15] of Fermi gases.

To further compactify our expressions, we reformulate
the relativistic BCS theory in the Nambu formalism [1,2].
This is more convenient for the discussions on the linear
response to an external electromagnetic field. We introduce
the Nambu-Gorkov spinors

i) = ( ) =G vwo

Moreover, we define

o =30 +ioy), o =30, — i),

(16)

74 = 5(og + 03), o- =500 = 03)

in Nambu space. One can show that A = g(Wiyso_W)
and its Fourier transform is Ay = g3 (Wpiyso_ V. q).
Similarly one can show that

Lyes = W(iy*d, —m + uy,o;)¥

+ W(Aiyso, + Atiyso_ )W. (17)

The Lagrangian density can be written as Lpcg =
WG, where the inverse propagator in momentum
space is given by

G _1(P’ M) = _<T7[\I’pq,p]>
= (iw, + po3)y’ —y-p —m+ Aiyso,.
(18)

After evaluating the inverse of the right-hand side, one
gets the expression of the propagator (see Appendix B),

ut? o2
: + - >A_ ] 'o
iw, +Ey v, — E; ®) |y’
-2 o2
— _)Af(p)]yo&f
iw, — E,

Ay(p)A A_(p)A

(iw,)* — Ep?

]i75a',. (19)
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From Egs. (12) and (13), one finds that
A G(P,pu)  F(P,p) )
GP, u) = . 20
® = (o 2 Gt tm) @0

Moreover, the number equation (14) and gap equation (7)
can also be rewritten in Nambu space as

n="3 Tilosy"G(P, w)]
P
A =33 TioyiysG(P, w) 1)
P

The expression (19) of the propagator in Nambu space can
be further simplified to a more instructive form. We define
the operator £, = y°(y - p + m) — po3 — Ayliyso in
Nambu space and also introduce the projectors,

A (p) 0 ]

Ai(p) = [ 0 A_(p)

A(p O } )
0 A (p)

Then the propagator becomes (see Appendix C)

A =1-Ai(p) =[

) a2 )
T T L . .
) . _ — . — . +
iw, - E; iw,TE, iw,tTE
ﬁ+2
+—L O 23
o, — E;]v (23)

where the coefficients are given by
_ B FEA®

p 2E, ’

_ (B = B)A )

P 2E,

i

(24)
Those coefficients are the counterparts (in Nambu space)
of the coefficients u, and vy, .

III. GAUGE-INVARIANT LINEAR RESPONSE
THEORY

We consider fermions and antifermions coupled to a
weak external EM field A, (x). The derivative 9, in the
Lagrangian density (1) should be replaced by the covariant
derivative D, = d,, + iA,(x), which results in the inter-
acting term L,(x) = =Y 1 ¥, v* A, = —J*A,. In
Nambu space, one can show that £, = —Wy# g, WA w

The corresponding Hamiltonian density is FH 4(x) =
— L ,(x). Gauge invariance of a microscopic linear re-
sponse theory with respect to an external EM field is
made possible by considering the perturbations due to the
fluctuations of the order parameter in a consistent fashion.
The nonrelativistic version of the CFOP method has been
extensively studied [6,18,19] and here we will develop a
relativistic version of this method.

In equilibrium, the order parameter is given by A. We
assume that the deviation of the order parameter from its
equilibrium is small and denote the small perturbation by

PHYSICAL REVIEW D 85, 074025 (2012)
A’(x). Therefore, A in Eq. (17) is replaced by A — A +
A’. Then the Hamiltonian density splits into two parts: the
equilibrium expression and the part containing the devia-

tion. EXpllCltly, HBCS = HBCSO + g‘[/ where

Hpeso = V(=i -V +m— pyoy — Aiyso)¥
(25)
and

'=T(Aiyso) + Dyiysoy + Aoy) W (26)

Here A’ = —(A, — iA,) and A” = — (A, + iA,). A, and
A, are the negative real and imaginary parts of the fluctua-
tions of the order parameter. The Hamiltonian Hpcg
becomes

Hpycs = Hpeso + H'

=YV, (7-p+m— puyo; — Aiyso))¥,
P

+ Zq}p+q(AlquSUl + AquYSUQ + Aqa-:’))q,p-
Pq

27)

The interaction term may be considered as a scalar product
(I’qT -3, where

Dy = (A1g, Ao Aug)”,
3 = (0yiys, 0aiys, o3y*)" (28)

are the generalized external potential and the generalized
vertex function. To calculate the linear response of a
relativistic Fermi superfluid to the perturbation H', we
introduce the response-function vector 7:

(7 q) = (W (NEW, (1), (29)
P

where m% = J# corresponds to the current due to the
external field and 7, , denote the perturbations due to the
fluctuations of the gap function. The covariant index u
should not be confused with the chemical potential. The
linear response theory is then written in a matrix form

7(1,q) = O(7, q) - D,

Ou(r,.q) QOnlr,q) 0Oh(rq) Aig
=\| Ou(r,q) On(r.q 0%i(7.q) ) Arg
Q;(T: ‘l) Qng(T: (I) 531/(7-’ q) Avq

(30)
The response functions Q;; are
Qij(T - ’T/, Q) = _Z<T7[qu(T)iiqu-%—q(T)\pp’-%—q(Tl)
pp’
X 3 W, (). (31)

Using a Fourier transform and making use of Wick’s
theorem, we obtain

074025-4



GAUGE-INVARIANT LINEAR RESPONSE THEORY OF ...

0;;(iQ;, q) = TTTZ Z iiGAp+q,p’+q(i‘”n

iw, pp’
+iQ)3,6, p(iw,)
=TTy Y 5,6(P + 0, wE,G(P, ),

iw, P
(32)
where Q = (iQ)}, q), ), is the boson Matsubara frequency,
(A}p,p/(iwn) = (A}p(ia)n)ép,pr, and Gp(iwn) =GP, p) =

L__ 0. Inserting the above relations into Eq. (32), the

iwnfﬁp
linear response matrix is given by
o 1
Q,i(iQ;,q) =T Tr<zi : ; —°
! %% iw, +iQ; — Epiq
2 1
X2 s 0). 33
liw, — E, ’ 69

SKHY =

0110505 + 0220501 — 01204105 — 0510501

PHYSICAL REVIEW D 85, 074025 (2012)

Next we show that if the fluctuations of the order pa-
rameter are formulated as shown in Eq. (26), our micro-
scopic linear response theory is explicitly gauge invariant.
Applying the condition 7,, = — %Al,z consistent with the

gap equation to Egs. (30), we find
01305 - Q53Q12A

Al == = = — v

QIIQQZ Q12Q21 (34)
s, Q01040

QHQZZ - QIZQZI

where Qll = % + Qll and Q~22 = % + Q22. After substitut-
ing the results into

JE=m3 = 05 A + 0HA, + 0FA,, (35)

we get JH = KF'A, = (K§" + 6K*")A,. Here K" =

&y and

Qll QZZ - Q12Q21

(36)

The gauge-invariance condition ¢, J* = 0leads to ¢, K*”(Q) = 0, where g, = Q = (i{),, q) is the covariant form of the
four-momentum. This condition is explicitly satisfied if the response functions satisfy the generalized Ward identities:
un§L1 = —2iAQ,,

4, 0% = —2iA0y, q,0% = —2iAQ%;. (37)

The derivations of these GWIs will be given in a moment. First, we show that the response functions indeed satisfy those

GWIs. We observe that

Q~11Q~22Q53 + Q~22Q2]Q1V3 B Q]ZQZIQZ’J’ - QQIQNZZQE —

q, K" = —2iAQ%, + 2iA

The proof of the GWIs (37) is sketched here. Our starting
point is the expression (32). In what follows we will use the
covariant form of the four-momentum p,, = P = (iw,, p)
and P interchangeably. Moreover, > p = T3, 3, . If we
apply the4 analytical continuation iw, —  + id, then
Sp= (371;. By using the notation p = yoia.),l - y-p
we can express the bare and full propagators in Nambu
space as

Go'(Pp) = p—m+ a3py’,
G\ o) =Gl (P ) - 3, (39)
where the self-energy in Nambu space is S = —Aoiys

and should not be confused with the effective vertex func-
tion 3. Those expressions give

0'3@71(P + Q, [.L) - GAil(P, ,LL)0'3 = 40'3 + 2lAU'2V)/5
(40)

QIIQZZ - Q12Q21

—2iAQY, +2iAQ% = 0. (38)

Equation (40) will lead to the GWI (37). One can show that
0% +2iM0y = TrY [o3(G™H(P + O, u)
P
=GP, woy)G(P
+Q, woiysG(P, )]
= —2Try [02ysG(P, w)] = 0, (41)
P

where Eq. (E1) has been used. Similarly, for the second
GWI we can show that

qu0% + 2iA0y = TrY [o305iysG(P, p)]
P

- TIZ[G(P + 0, w)iyso,05]
P

) 4i
= 2Ty [oiysG(P, w)] = —EIA,
P

(42)
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where in the last line we have used Eq. (21). Therefore we
get the second GWI ¢, 0% = —2iA(Qp +2 A)
—2iAQ,,. For the last GWI of Eq. (37), we have

4,04 +2iAQ% = TrY [y"G(P, w)]
P

—Try [G(P + 0, n)y"]
>

= 0. (43)

This completes the proof.

IV. MORE ABOUT GAUGE INVARIANCE

We have seen how the gauge-invariance condition is
satisfied by our response functions. Here we will clarify
some subtleties from a generalized interaction picture. In
our linear response theory, the Lagrangian density after the
BCS approximation is given by

= Lgcso + L
= ‘If(iyf‘aM
—W(A iysoy + Ayiysoy + Aos) V. (44)

L BCS —

—m+ uylos + Aiyso)¥

One can show that it is invariant under the generalized
infinitesimal gauge transformation

V- (1+io3))Y,
A— A, Ay, — A, — X
Az — AZ + ZAX

Y — V(1 —ioyx),
A] d A], (45)

Under this transformation the two parts of the Lagrangian
density transform as

- @038)(\1’ + lX\ifAl')/5[(Tl, 0'3]\If
— Voy0xV + 2y VAiyso, W,

£BCSO - £BCSO

= LBCSO
L — [ —

Therefore Lycg is invariant under the generalized infini-
tesimal gauge transformation (45). Here we emphasize that
the transformation (45) only keeps terms linear in y in the
linear response theory.

The original mean-field Lagrangian density (17) with a
real A is not gauge invariant if the order parameter A is not
perturbed by the gauge transformation. To circumvent this
we assume that the effects are absorbed into the fluctua-
tions of the order parameter A’ while the equilibrium value
of A is unchanged. From A(x) = g(sz Ciysiy)and A, =

ImA’ we see that only the imaginary part of the order

PHYSICAL REVIEW D 85, 074025 (2012)

parameter is perturbed by ¢ — (1 + ix)yy while the
(negative) real part is not, Therefore the perturbations
from the gauge transformation are §A; = 0 and §A, =
2ixA. Tt is the gauge transformation of A, that cancels the
term associated with A in the generalized gauge trans-
formation and leads to the gauge invariance of the
Lagrangian density.

As shown in Sec. III, the perturbatlve Lagranglan den-
sity can be written as \I’(I’T 3W, where ® and 3 are
defined by Eq. (28). In fact L) may be viewed as the

generalized external gauge field and 3 may be viewed as
the generalized vertex function. In our theory, there are
three different spaces: (i) the two-dimensional Nambu
space where the Pauli matrices live, (ii) the four-
dimensional representation space of the Clifford Algebra
in which the y matrices live, and (iii) a three-dimensional
space which we will define as the generalized gauge space,
where the generalized external potential & and generalized

vertex function i are defined. Thus, the transformation
(45) is the corresponding generalized gauge transformation
of the generalized external gauge field. Explicitly,

0
20y | (47)
_a’u/\,

- P+

In momentum space —d, x becomes —ig, xy. We define
the generalized external momentum as § = (0, 2iA, ¢,,)"
in the generalized gauge space. Then the generalized gauge
transformation (47) can be written as

N

®—d—iqy. (48)

We saw that the Lagrangian density is invariant under the
generalized gauge transformation (45) and now we want to
find the corresponding GWI. By using the form of gener-
alized external momentum, Eq. (40) becomes

03671(P + Q, ,LL) - Gil(P, ,LL)O'3 = 40’3 + 21A0’21’)’5

q’ - 3. (49)

This is the GWI associated with the generalized gauge
symmetry.

Next we address what the conserved generalized current
associated with this gauge transformation should be. Using
the self-consistent condition 1, = —%ALZ, Eq. (30) can

be written as

0 On Qn Oh\/[/A
0 =10y Oxn QEgV A, ) (50)
JH 05 0% 0% ) \A,
We then define the generalized current J=(0,07"T7 and

three generalized response-function vectors

074025-6
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A o R On
Qi =10y | Q=102 |
05, 0%

Then the generalized current (50) becomes

J=10Q,Q,0Q%) ¥, (52)
The GWIs (37) for the response functions can also be
written as

N

q7-Q,=0 fori=123. (53)

Thus, the GWIs directly lead to the conservation of the
generalized current

/\

7 J=@ Q.4 Qrq"-QY)-d=0 (54

This gives

quJ* = 0. (55)

Vi Lo - Q H
gg (lQl: q) = { Q33 ggl;/(l_ l\[(l(ll)q)

Fori =1, j =2 we have

012(i), q) = —Q12(—i€y, q). (60)
Fori =1, j = 3 we have
B : _
Mo — 015(—iQ;, q) ifu=0
ot ={Z5e ity =i o
Fori =2, j = 3 we have
I . -
(s _ _Q23(_ler Q) if u=20
ot ={ i o sy @

After sorting out the parities, the expressions of the
response functions can be derived. After summing the
Matsubara frequencies, Eq. (33) becomes

fdelfde Tr (2(5_1)62 F(€) ¢ ste,

Qij(in: q = iQ,

~ Epe?'S8(e: ~ £)") (63)

PHYSICAL REVIEW D 85, 074025 (2012)

Therefore J is indeed the conserved current associated with
the generalized gauge transformation. We see that the
generalized gauge transformation leads to the usual
U(1) gauge invariance of our linear response theory.
Importantly, the GWI (49) for the generalized vertex func-
tion is exact since there are no high order corrections to the
vertex in the linear response theory. Thus, we have proved
that our CFOP theory is indeed gauge invariant.

V. EXPRESSIONS OF THE RESPONSE FUNCTIONS

It will greatly simplify our expressions of the response
functions from the CFOP approach if we sort out the
parities of them first. Here we list the main results and
leave the details in Appendix E. The parity of the
response functions about the four-momentum Q =

(iQI, q) is

0ij(i, @) = (=1 Q, (=i, —q).  (56)
The parity about the gauge indices i, j is given by
Qi @) = (=) 0,(iQ, q).  (57)

The parity about the boson Matsubara frequency i€}, is
relatively complicated. For i = j = 1,2 we have

Qii(iQy, q) = Q;;(—iQ;, q). (58)
For i = j = 3 we have
ifu=v=0oru=i,v=j (59)

ifu=0v=ioru=iv=0.

The o-function operator can be decomposed as (see
Appendix C)

8(e — E,) = i, 8(e — E,) + D, 8(e + E,)

+ i, 6(e + Ey) +0,6(e — Ey). (64)
We define the coherence coefficients as
(ui”i)ij = Tr[i p+q7 i ﬁ;?’o],
(u™u*); = Tr[i-u qY 03, ity YY1,
(u™v); = Tr[z up+ v 03, AEVO],
U™ v*); = T[Sy, g v°2 05 9°) ©5)
(v u®); = Tr[E vp+qy 03 ﬁ;f'y ],
(v u®); = Tr[z flp+qy02ju;y ]
(Uivi)i/’ = Tr[ziﬁlﬂq?’ozjﬁﬁ Y°l
¥ v%); = Ti{207,47°2,95 v°)

The response functions can be explicitly written down as

074025-7



HAO GUO, CHIH-CHUN CHIEN, AND YAN HE

PHYSICAL REVIEW D 85, 074025 (2012)

. o[ Eprg) = FENwu)y; (1= f(Egg) = FIEE N v); (1= fEpg) = FIE) u™)y;
0ij(ih q) = %[ ?:;W E, —iQ, E§+: T E, —iQ, E§+: T E; —iQ,
N (f(Epiq) — f(E,f))(ufv*),-j (= fEyyg) — fIEEYNW u)y N (f(Epig) — FIE) v V)
Eyeq — Ep — iy Epiq  Ep +iY Eyiq— Ep + i)
n (f(Epig) — f(E;))(U7”+)ij B (1 = f(Eprq) — FER) W vT); B (1 = f(Egiq) = fEZ(uTu™);;
Eyiq — Ey +i8Y Eyiq + Ep +iQ Eyiq+ Ep +iQ
LGB = FEN v )y | (B = FED )y (1= f(Eug) = FE v,
Eyiq — Ey +iQ Eyiq — Ey +i8Y Ey g+ Ey +iQ
(f(Ep+q — fEN u); (1= fEy g — fFEN vy (1= f(Eg.y) — f(E)) T u);,
Ej .y~ Ep —iQ Efiq+ Ep — i Ef g+ Ey —iQ
(f(Ep+q) — f(ER)) v vT);
E;+q - E Ql ] (66)
If Q;; is an even function of i{);, the expression reduces to
. [ (Eprg) = FENES g —Ey) ,, _ _ oy (U= fEpg) = f(EGNE, g + Ep)
0;;(iQ, q) = %I: (Eyvq — E, P — (i) (u™u);+ @ v7)) (Eyrq + Ep)? — (100
- ( _f(E_+ )_f(E+))( + +E+) _ _
Xy a0y = e S (i 4 (7))
(f(E€+:+q fg;z)(ElE+5 7 )(( “vh); + (v u');;) + terms with superindices(+ < —):I. (67)
If Q;; is an odd function of i€}, the expression reduces to
f(E+q) f(E;) S Zp _ _f(E;+)_f(E;) B A
0,10 a) = 0,3 s e () () s (e~ ()
U= By =S (o g = S
- Eore _}_2]?)2 iQ,)? (" u™); — (W vh)) + Eyrq — L qE;)z i) (™ v"); — (W ub);)
— terms with superindices(+ « —)]. (68)

The coherence coefficients are listed in Appendix F.

VI. COLLECTIVE-MODE CONTRIBUTION TO
RESPONSE FUNCTIONS

In Sec. III one saw that the conservation of the induced
current g, J* = 0 requires ¢, K'*”(Q)A;, = 0, where A},
and K'#¥(Q) are an external field and its corresponding
response kernel. In general, if one applies a gauge trans-
formation A, = A}, —iq, x. the response kernel trans-
forms as K'*"(Q) — K*”(Q) and the gauge-invariant
condition requires ¢g,K*"(Q)A, = 0. From the gauge-

invariance condition ¢ MK'” "(Q)A!, = 0, one obtains iy =

q#K YA,
4a Km;s
one obtams

. Using the gauge-invariance condition again

(69)

This is the general expression of how the response kernel
transforms under gauge transformations. Clearly, the zeros
of q,K'""q, = 0, if they exist, indicate the presence of
collective excitations. In the following we will show that
the massless Nambu-Goldstone boson indeed contributes.
We simplify the expression of K#” by the response func-
tions we obtained so far. Following the discussions in
Ref. [18], we rewrite K*” in a more compact form:

K* = K" + SK'm (70)
with
v /
K(/)MV — Qé’v’;’ _ Q%Qli‘;’ 6K/,U,V — 3’; (71)
) 11 5
where
0 ~ ~ 01,0
H=0%~ £Q31’ 0% = 0y — 220 (72)
0Oy O
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By using the GWI (37) and the symmetry (E9), one can
show that

K(I)MCI/\%K(/)S”

81{/,1“/ = —
9.K5" qp

(73)

This implies that K#” can be thought of as a functional of
K}"” and the denominator of the second term is expressed
as qlLK(')“Vq,, = 4A%Q),. This expression is useful in the
analysis of the dispersion of collective modes because an
expansion around a small four-momentum around the pole
of K*” gives the dispersion of the Goldstone boson. We
suggest that it is the contribution of the Goldstone boson
that leads the kernel to respect the gauge-invariance con-
dition. After making the analytical continuation i{}; —
) + i8, the dispersion of the collective mode at 7 = 0 is
evaluated with () — 0 and q — 0. Note that ¢ — 0 does
not imply that the system is in the nonrelativistic limit. One
necessary condition for that limit is kr << m.

sz(w, q) =

w

PHYSICAL REVIEW D 85, 074025 (2012)

A. Nonrelativistic limit

In this limit, all contributions from the negative energy
states vanish since A _(p) = 0. Therefore, we have

~ wz—(fl _‘57)2
sz(w,Q):z PP
P EpiqEp
E1;+q +tEy B(p.q) (74)
— (Epiq T Ep)’ 265146
where  B(p,q) = €p1q€p + €5 + P-q is defined in

Appendix F and we have omitted the term proportional
to A(p,q) since limg (A(p,q) =0. Because of the
particle-hole symmetry, 0., vanishes identically.
Therefore 05, = 0,, so we only need to find a solution
0 0y =0. As q—0, &, :P —(M—m)—m—ﬂ ,
where u ™ plays the role of the conventlonal nonrelativistic
chemical potential.

At zero temperature, we keep the lowest order terms of
w and q of O, and it becomes

(g*p*cos?8/m?) 1

N(0) [+ 7/1 w? —
- ,[700 dé, B dcosf E;2 o

N(0) oo 1¢*p* 1
= -7 d e
2 f_w & (E‘ 3 m? E;3)

__NO (wz

A? 3 m
where we have used p> = =2m(&, + p) and N(0) is the
densu;{ of states near the Fermi surface. Note that u= =
€r = 5= in BCS theory so we found

) N(0) 1 ¢%k3
Oxto =" (e -3 07
- N(O)( 2= clg?), (76)
= 1 kF 1

where ¢, HUF is the sound speed of a BCS su-
perfluid. Thus Q22(0 6) = ( indeed and the expansion shows
the dispersion w = c,q of the massless Goldstone boson.

sz(w q) =

where p? = €} — m? has been used. The second term

in the big bracket is at most of the leading order of Z‘—:
Since m < kp=pu, it can be ignored. Therefore
0,,(0, 0) = 0 and the expansion of O, (w, q) leads to w =

_2¢n

(75)

I
B. Relativistic limit

Next we consider an ultrarelativistic BCS superfluid
which is characterized by kr > m and A K u ~ €y =

k& + m? = kp. Again the antifermion contribution can

be safely ignored and due to the particle-hole symmetry we
have Q;, =0. Note that &, =& +q-V& =

&, + L2 Therefore we have
€p

E,? 2E,

2 2.2
2_q) 1 g°m 1)
w — )+ = —), 77)
( 3 3 ¢ E,°

q so the contribution from the massless Goldstone boson
1s clearly demonstrated. The dispersion also implies c;
3 which is a well-known result for ultrarelativistic BCS
theory.
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VII. COMPRESSIBILITY FROM RESPONSE
FUNCTION

The isothermal compressibility is given by « =
n~2(dn/ow). Here the density susceptibility can be in-
ferred from the response functions by [20]

5
2~ K =0,q— 0). (78)
o

At T = 0, the number equation (14) and the gap equation
(15) are

n—zz(+—éﬂ, (79)

P

1 11
—=S(=+—=) 80
g p(E; Ef;) (80)

The density susceptibility can be obtained from these two
equations. We treat A as a function A(u) of wu.
Differentiating the gap equation with respect to w, one
obtains

s T

— = 81
ey AZ(F F) ®D
) P P

Differentiating the number equation with respect to p and
using the above result, one gets

AS (e~ £F
P

on 1 1
=2A? ( ) + 82
I 5 Ee) Ty 0
p P P

Next we check if K%(0,q — 0) can give the same
density susceptibility. When @ = 0, 0%, = 0%, = 0, =

05 = 0. Therefore from Eq. (36) we have

v.(0 ()

K0, q) = 00, ) - 220 WL0D g

Qll(O, qQ)

In the limit q — 0, one gets B(p, 0) = 2 and A(p, 0) = 0.
Then at T = 0 one has

1
— = — 2 -
0%(0,q — 0) = —2A Z( B +EH)
0.00.d—0) = 0° (0. q — _ » _ &p
0%,(0,q — 0) = 03,0, q — 0) = 2AZ(E% E;3),

_ 2
Qll(o’q_’0)=§+Qll(qu_’0)
_ Lo (6 &
‘ZZ<F*F) 2%%*@)

1 1
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After comparing this with Eq. (82), one finds that Eq. (78)
is indeed satisfied. This consistency implies that the ap-
proximation of the fermion propagator is compatible with
that of the response functions. Thus, we emphasize that the
collective-mode contribution is important in maintaining
the integrity of the CFOP formalism.

VIII. MEISSNER EFFECT AND SUPERFLUID
DENSITY

The Meissner effect can be demonstrated by examining
the behavior of the response kernel K”/(0, q) as q — 0. 1In
the previous section, we have learned that K" =

K{ + 6K", where K = 0%, and
N 011Q5,Q); + 0,Q4,Q1; — 201,Q4,Q);
01192 — 01202

(85)

denoting the contribution from collective modes. However,
in our model we found that collective-mode effects do not
contribute to the transverse components of the response
functions in this limit and should not affect the Meissner
effect. This is verified as the following. A tensor P/ can
always be decomposed into the longitudinal and the trans-
verse parts P, and Py, where P, = - P and P; =
(3P — P;)/2. Assuming that q is parallel to the z axis,
in the limit ¢ — 0 among all components of the response
functions only Qf; and Qf3, do not vanish to the first order
of g. From this we conclude that limg_¢Q3; - Q3; =
limg_q - Q3;Qj; - 4. This means that the transverse com-
ponent of the tensor Q3;Q3; vanishes in the limit q — 0.
Therefore the transverse part of K receives no contribution
from the collective modes so we only need to consider

K = 0% in the study of the Meissner effect.

Deﬁmng p = p/€p, the longitudinal and transverse
parts of the response functions are given by

d’p bipi (L) If (Ep)
2mp P (aEp BT )

th(l)’L(O q = 4[(
(86)

s Bl — ij "l"]
lim 0.0 =4 [ 5 )3<a )[(

é‘:pfp _Az)f(E )+f(E+)_1

E+E_ E, +E+
+ (1 . fp ‘fp __Az)f(Ep_) - f(E;)]
Ey Ey E, —Ey
(87)

Now we focus on the nonrelativistic BCS limit where f;; ~
E, =~2m (since u = m), €, ~mand u~, A < m. Here a
suitable regularization is needed to give physical results.
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This is done by subtracting the vacuum contribution from
KU, ie.. K9(Q)— K(Q) = K(Q)lr—s—q - Finally,
we have

o Pp pip Af(Ey 1
limK{, (0, q) =4f p PP AL, 0(—3),
q—b

Q2m)? m* OE, m
(88)
o S PP 5, _ _
lim k50,0 =4 [ B2y + vy
1
+ 0($)
Y 1
— %y 0(7), (89)
m m
where n™R is the fermion number in the nonrelativistic

limit. Therefore, from J' = KYA; we get the well-known
London equation

__2 NR 4 2 d*p ] af(E;))
J(q) m<A(q)n + (27T)3p(p A(q))TE;
__2 NR 1 e 4 8f(E;)>
mA(q)n (1 * 3mmn™\R [0 dpp 0k,
2
= ——A(q)n,, (90)
m
where
_ NR _ 1 Heo 4(_ af(EI:))
s = 0 372mn\R ,/:) dpp aE; b

is the nonrelativistic superfluid density. Again the extra
factor 2 in the London equation comes from the fact that
we introduce the pseudospin o =T, | so there are 2 times
more degrees of freedom.

IX. NAMBU’S INTEGRAL EQUATION FOR
RELATIVISTIC BCS SUPERFLUIDS

Before closing our discussions on the CFOP theory of
relativistic BCS superfluids, we present a generalization of
Nambu’s integral-equation approach. For nonrelativistic
BCS superfluids, the spontaneously broken U(1) symmetry
can be restored in the linear response theory by Nambu’s
approach [2]. In conventional BCS theory, the self-energy
of the fermion is approximated by an integral equation
which consists of a ladder approximation for the
electron-phonon interaction. Nambu proposed that the
EM vertex in the linear response theory should be cor-
rected in the same way as the self-energy. Hence, the EM
vertex function also follows the integral equation,

[TRP +0,P) = $R(P + 0, P) — g™ 03, G (K
K

+ OIMR(K + 0, KGR (K)as,  (92)

where the superscript “NR” denotes the corresponding
nonrelativistic quantities. Explicitly, the solution to this

PHYSICAL REVIEW D 85, 074025 (2012)

equation should be an EM vertex that respects the GWIs.
For the relativistic BCS model, following similar argu-
ments we will derive the corresponding integral equation
for the EM vertex.

In Sec. III, we found that the bare polarization function
K" = 04 does not satisfy the gauge-invariance condi-
tion ¢, Ky" = 0. This is because the collective modes
which correspond to the fluctuations of the order parameter
also contribute to response functions. The EM vertex with-
out collective-mode effects in Nambu space is given by

0
_yn ) (93)
Then the bare polarization function [see Eq. (33)] can be
written as

K§"(Q) = TrY (#G(P + Q, )9 G(P, p)). (94
P

N y¥
M= T
Y g3y (0

The violation of the conservation law can be traced back to
the use of the full fermion propagator and the bare EM
vertex simultaneously [1,3] so the approximations of the
fermion propagator and EM vertex are not treated on equal
footing. In quantum electrodynamics, the gauge invari-
ance, or equivalently the Ward identity, can be maintained
order by order. However, the generalized Ward identity is
not respected even at the tree level for both relativistic and
nonrelativistic BCS models if the approximations for the
vertex and the self-energy are different.

For the bare EM vertex y* in the relativistic BCS theory,
one has

q,u’?M(Q) = 40-3 = U3éal(P + Qr /'L) - GA(;I(P: Iu‘)0-3
(95)

Note that the bare propagator appears in the identity. Thus,
a gauge-invariant EM vertex must satisfy

g, LM(0) = 0367 (P + 0, ) — G (P, w)as.  (96)

If we define the correction of the EM vertex as ['#(Q) —

PH(Q) = ST(Q), then from the two equations above and
Eq. (39), one can get the GWI which is associated with the
self-energy:

4,0T"(Q) = 303 — 033 = 2ihoyiys.  (97)

One possible method to respect the GWI (96) or (97), as
pointed out by Nambu [2], is to treat the full EM vertex [~
in the same way as how the self-energy is approximated.
That is, the full EM vertex of relativistic BCS superfluids
should satisfy the integral equation

[#(0) = 9(Q) — 28 o5 [G(P, WIH(Q)G(P + Q, )
P

+ G(P, — W™ (Q)G(P + Q, — )]s
= 74(0) — 28> > 03G(P, o) (Q)

P o=*1

X G(P+ Q,on)os. (98)
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To prove the gauge invariance of the above vertex I~ (0),
we substitute Eq. (98) into the GWI (96). After rearranging
both sides, we only need to prove that

2ihasiys = =2g). Y. 03G(P,op)q, [*(Q)G(P

P o==*=1

+ Q,o1)0;. (99)

Details of the proof of this equation are in Appendix D.
Therefore, the vertex given by the integral equation (98)
respects the GWI, or in other words, the theory is gauge
invariant. Moreover, from the proof in Appendix D we
conclude that any truncation of the integral equation can-
not produce a gauge-invariant vertex since terms of differ-
ent orders of g in Eq. (D4) cancel each other.

Interestingly, as pointed out also by Nambu [2], for the
nonrelativistic BCS theory, the integral equation is not only
consistent with the generalized Ward identity associated
with the EM vertex but also consist with the GWIs asso-
ciated with three other interaction vertices [as shown in
Eq. (4.4) of Ref. [2] ]. Moreover, the integral equation of
the EM vertex is a vector equation while the GWI is a
scalar equation, they have different degrees of freedom so
there is no strict one-to-one correspondence between the
solutions to the integral equation and the EM vertex re-
specting the GWL

For the relativistic BCS theory, those conclusions should
remain the same. Hence, the integral equation (98) is not
equivalent to the GWI associated with the EM interaction.
What is equivalent to the GWI is the contracted integral
equation given by

7,1%(0) = q,9*(0) - 2g§ > o36(Pow)g,

o=*1

X I*(Q)G(P + 0, o). (100)
Since Eq. (98) satisfies the GWI, we can also derive the
GWI from Eq. (100). Thus, any vertex obeying the GWI
(96) must satisfy Eq. (100) but not necessarily Eq. (98).
Substituting Eq. (96) into Eq. (100), the right-hand side
becomes

dos =23 S 6P, op)osG (P + Q. op)

P o==*1
~G'(P,op)o3)G(P + Q, op)oy
=dos — 28> D (03G(P,opn) — G(P, op)os)

P o==*1

= ¢,1"(Q)(left-hand side). (101)
Therefore it is the contracted integral equation (100) that is
equivalent to the GWI but not the integral equation (98). A
comparison with the vertex [ determined by the latter
shows that the vertex I"* determined by Eq. (100) may
differ by a gauge transformation I"* = ['* + §#, where
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X" satisfies the Lorentz equation ¢, ¥* = 0. Such gauge
transfozmatlons correspond to, for example, ¥, = d,f,
where f is a matrix of harmonic functions in Nambu space.

In Sec. IV, we derived the generalized vertex function X,
in the generalized gauge space. In Nambu space we would

like to investigate the vertex ["* and show that the GWI
(49) will reduce to Eq. (96). Equation (34) can be written as

Q}/} le
A =195 Onl A, = —1I%A,,
O le

Q21 Q22
ﬁ QH

Qgé QZ]

O le
Q21 Q22

(102)

w

where I1{, satisfy ¢,I1{" =0 and ¢,II5 = —2iA by
noting Eq. (37). Therefore the gauge-invariant vertex NG
is given by

[ =90 — Mfoiys — I osiys, (103)
which obviously obeys the GWI
qﬂfw = 40'3 —2A0,ys
=G (P+ 0. )~ G H(P pas. (104)

As we have discussed previously, since ["* satisfies the
GWI, it should obey Eq. (100). Hence, it can differ from
g given by Eq. (98) by a matrix function }y* at most.
Moreover, the EM response kernel is now expressed as

k#(Q) = Try (M G(P + 0, w3 G(P, ), (105)
P

where Eq. (36) has been used. Compare to the bare
response kernel (94), the GWI (104) leads to the gauge-
invariance condition of the full response kernel
q,K"(Q) = 0.

Although a solution to the integral equation gives a
gauge-invariant vertex, it is a great challenge to find a
solution. We emphasize that the integral equation (98)
for the relativistic BCS theory should be implemented
when one seeks gauge-invariant response functions.
Previous work based on RPA approximations [3] imple-
mented an iterative method without explicitly showing the
complete integral equation for the relativistic BCS model.
Further investigations of Nambu’s integral-equation ap-
proach are needed for a better comparison between the
results from the two approaches.
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X. CONCLUSION

The CFOP approach to the linear response functions of
relativistic BCS superfluids restores the gauge invariance
of the response functions of an external EM field. The
manageable computability of this theory allows one to
explore several interesting phenomena including collective
modes, compressibility, and Meissner effect. Importantly,
this approach leads to a consistent expression for the
compressibility. When the pairing interaction is tunable,
a BCS superfluid may exhibit a BCS—Bose-Einstein con-
densation (BEC)—relativistic BEC crossover [12].
Interesting issues may be raised in the linear response
theory of a relativistic BCS superfluid in the crossover.
Our CFOP approach could provide some useful tools for
investigating those issues.
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APPENDIX A: SPINOR CONVENTIONS

Here we use the Weyl or chiral representation of the y
matrices,

y0=<o 1)) yi=_y:<0 0',»)
I 0 ' —o; 0)
(-1 0
75—<0 I)'
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The metric is chosen as 7, = diag(1, —1, —1, —1). The
charge conjugation matrix C is defined as C = iy%y?,
which satisfies C2 = —I, CT = €T = —C, and [y5, C] =
0. The y matrices satisfy y** = y0y#Ty% and Cy*TC =
v#. The energy projectors satisfies

Y'AL(p) = As(—p)y°

iysA+(p) = A=(—p)iys,
YiysA+(p) = A (p)ylivs, (A2)
and

g A (p)+a- A (p)+ao Ay(p)+a A (p)=1
(A3)

APPENDIX B: THE FERMION PROPAGATOR IN
NAMBU SPACE

From Eq. (18), the Fermion propagator in Nambu space
is
G(P, ) = [Y(iw, + pos =7 p —my°
+ Aiylyso)] ™!
=[(iw,)? — (K* + m* + A> + u?)

+2uy°(m + ¥ - p)o3] iw, — po;y

+ 97 p +my’ = Aiylyso1)y’. (B1)
(AT)
This can be written in a more compact form as
|
_ i) — & = A7 = p? ~ 2y m + 7 - plosllio, — pos + Y m+ 7 op) - Ailysonly”

G(P, p)

Note that y°(m + ¥ - p) = €,(A;(p) — A_(p)) and 03 =
4+ — &_. The first part of the numerator can be evaluated
as

(iw,)* — € = A% = pu? = 2uy°(m + 7 - p)os
= ((iw,)* = E3*)(G+ Ay (p) + - A_(p))
+ ((iw,)* = Eg2) (G- A+ (p) + 74 A_(p)).

The second part of the numerator can be evaluated as

(B3)

iw, — poy +y'(m+7y-p)— Aiyyso,
= (iw, + f;)a_'+A+(p) + (iw, + f;)a_-—A‘F(p)
+ (iwn - f;)U_UrA—(P) + (iwn - f;)a'—A—(P)

Note that £, = (up? — vp?)E, and uy? + vy? = 1. One
has

(i0,) — € — AT = 2 — 4]

iw, = poy +Y(m+5-p)— Aiy’yso
= [up(iw, + Ey) + vy (iw, — E;)1o+ A (p)
+ [ug2(iw, + Ep) + vy 2(iw, = E;)]o A (p)
+ [ug(iw, — Ef) + vy 2iow, + Ej)]G A_(p)

+ [up*(iw, — Ey) + vy (iw, + E;)]o_A_(p).

(B4)
The denominator becomes
(iw,)* — €5 — A — u?)? —4p’ep
= ((iw,)* — Ey)((iw,)* — E5?). (B5)

éfter substituting Egs. (B3)-(B5) into the expression of
G(P, w) andusing 6,0, = o, and &_o| = o_, we have
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+2 +2

60,0~ [ i 0 (A w e
> iw, = E, iw,+E, +P iw, + E; i, — E§ -(p) |vo+
u+2 U+2 u_z U_2
+ . P )A +( P p )A, ] 05
[(iwn - E; iw,+E} +(P) i, + By i, — Ey (p) Yo
A (p)A A_(p)A ] [ A (p)A A_(p)A ]
i + . B6
[(i“’n)2 —E? (0 - B2l T 0, — B2 Ge, P —E,2 177 (50

A

APPENDIX C:6-FUNCTION OPERATOR AND GENERAL PROPERTIES OF FUNCTIONS OF € — E,

We would like to evaluate an arbitrary function with the argument € — Ep, where Ep =Yy -p+m)— poy —
A9yCiyso. Following the derivation of Eq. (B4) [u — —p = Ej < E, and Y'(y-p+m)— —y’(y-p+m) =
Ay (p) < A_(p)], we have
€ — Ep = (e + f;)a_-+A—(p) + (e + fl;)a'—A—(P) + (e — fﬁ)&+A+(P) + (e — f;)a_'—AJr(P) + Ayliyso

= [ug*(e + Ey) + vy2(e — Eg)|o+ A_(p) + [up*(e + E;) + vy2(e — Ep)|o_A_(p) + [u,*(e — Ey)
+v,2(e+ E)a A (p) + [ug(e — Ey) + vg2(e + E)]o-A(p) + ugvy (e + Ej) — (e — EJ))

X (a4 A-(p) + T AL (P)Yivsoy + upvp (€ + Ep) — (6 — Ep))(@ 4 Av(p) + 0-A_(p)yiysoy.  (Cl)
Explicitly, the four components of € — Ep in Nambu space are
e—E,=10,(e —E,)+0,(e + E)) +iij(e +Ej)+ 0y (e — Ep), (C2)
where
up A+ (p) —up vy Ay (p)y iy
iy =|__® . PR >l C3
P [ —up vy A_(p)Y0ivs vy *A_(p) ©
vp A (p) up vy As(p)yliy
b = B 7p + . P p7 + 5 ) C4
P [ up vy A_(p)Y iys up*A_(p) )
At _ ug*A_(p) ug vy A_(p)yliys ()
P ug vy AL (p)yliys vy ?A L (p) ’
ot vg?A_(p) —uy vy A_(p)ylivs (C6)
P —uy vy Ay (p)yivs uy* A (p) '
The four components of Ep in Nambu space explicitly are
P (vy? —+u;+2)€;/\, + (,u;i - v;z)Eol;.AJr —+22(E; ugzv;i\, + E, Lg v, Ajz)yofy5 . ©7)
p —2Eyupyvy Ay + Eyuy vy A)Yliys  (up” —vp)Ep Ay + (vp° —up )E; A

[

It can be verified that the operators i and v also satisfy the
following properties:

We have omitted the argument p of A .. After comparing
those expressions, one finds that

a- — (E, + E,)A L (p) o _ (E, — E,)AL(p) Azt =az, 022 = b, (C10)
P 2E, ’ P 2E, '
(C8) A+ oAt At A At AT At AT A+ AT A+ AT 0
N N N N Mﬁvﬁzvﬁl/ti:uﬁup:l/lﬁvp:vﬁup='U6'Up= .
P T . P ¥
2E] 2E]
(C9)  After multiplying € — E,, by itself, one gets
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(€ — Ep)" =i, (e — Ey)" + D, (e + Ep )"
+ g (e + Ef)" + 05 (e — Ep)",  (C12)

where n is a positive integer. One can find that Eq. (C12)
holds for n = 0, too. Interestingly, from Eq. (B6) one can
see that the case n = —1 is also valid by inspecting the
expression of G(P, u)y":

(e—E) ' =d,(e—E) ' +0,(e+E,)"!
+ag(e+ Ef)' + 95 (e — Ef)~!. (C13)

Following the same argument,

(e—E) " =1i,(e—Ey) " +0,(e+E,)™"
+ig(e+ Ey) "+ 0y(e — Ey)~" (Cl4)

That means that Eq. (C12) holds for any integer n. For any

PHYSICAL REVIEW D 85, 074025 (2012)

e—i(e—ép)t _ ﬁ;efi(efE;)z + ﬁ;e—i(ew;)z + ﬁ;e—i(ﬁlsg)z
+oye e b (C16)
By Fourier transform we get
S(e — E,) =i, 8(e — E;) + 0, 8(e + E)
+ iy 8(e + Ey) + 0y 8(e — Ef). (C17)

APPENDIX D: INTEGRAL EQUATION OF EM
VERTEX AND GWI

Before proving that a vertex determined by the integral
equation (98) must obey the Ward identity (41), or equiv-
alently, verifying Eq. (99), we prove the following identity:

function F(e — E,), we have the expansion 2g§ 0;1(03G(P’ op) = G(P, op)os) = —2ihasiys
F(e — E,) = 0, F(e — E;) + 0, F(e + Ej) =303 — 033,
+ iy, F(e + Ey) + 0y F(e — Ey).  (C15) (D1)
Thus, The left-hand side of (D1) is
|
0 %(F(P, w) + F(P, —p))
—>.(F(P, u) + F(P, — ) 0
P
1-2f(E;) | 1-2f(E}
0 Z( zéf; o) + 2% p))7’5
X b — —2iAa,iys, (D2)
1-2f(E;) | 1-2f(E}
_Z< 225; 2 + 2£§ l)))7’5 0
P
where the gap equation (15) has been used. From S = Go'(P, w) — G~ (P, w), one concludes that
G(P, WGy (P, ) = 1+ G(P, )3, Gy (P, w)G(P, ) = 1+ S G(P, ). (D3)

Now we turn to the proof of Eq. (99) by considering the right-hand side. By substituting Eq. (98) into the right-hand side
and repeating the process, we get an iterative equation rhs of Eq. (99):

ths of Eq (99) = _2gZU3GU(P)qM7M(Q)GAa'(P + Q)a-3 + (2g)2 Z U3GU(P1)0-3GA(T(P2)q,M’yM(Q)GA(T(Pz
Po

+Q)03G,(Py + Q)as + -

P Pro

=>(=28) > 036G, (P)) 036G, (P)q,v"Gy(P; + Qo+ G,(P) + Q)oy
i=1 P

1..Pio

M:

i=1 Py..Pio k=1

(<20 3 [TLosCoPlanr @ [0 (Prsr_s])
k=1

(D4)

where we have defined G, (P) = G(P, o) to shorten the expression. After inserting the Ward identity (95) for the bare

EM vertex and using Eq. (D3), we get
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rhs of Eq. (99) = D (=2¢)" > 03G,(P)) - -+ 03G,(P)03Go} (P + Q)G (P; + Q)as - - - G,(Py + Q)os
i=1 P

1..Pio

=3 (=20)" 3 03G,(P) - 03G,(P)Go, (P3G (P; + Q)as - Go(Py + Q)as
i=1 P

1..Pio

= —22Y (536G, (P) = G,(P)o3) + Y (—2g)’
Po i=1

+Q)os + Y (—2g)
i=1

=D (=2
i=1

P,..P;o

P,..P;o

=3 (=29 Y 03G,(P) - 573G, (P)S03G (P, + Q)3 -+ G, (P, + Q).
i=1 P

1...Pio

> 3G, (P) 053G, (P)G (P + Q)oy - G (P
P,..Pioc

> 036,(P) - 036,(P)033G, (P, + Q)as - - G, (P + Q)os

> 03G,(P)) -+ 036G, (P )G, (P; + Q) -+~ G, (P + Q)os

(D5)

By changing the dummy index i — i + 1 for the second and fourth summations, we get

rhs of Eq. (99) = 2iAoiys — D (—2g)" >
=1

P,..Piok=

+ Y (—2g)
i=1 P.Pio k=1
= 2iA0,iys = left-hand side of Eq. (99),

where Eq. (D1) has been used. Therefore we have proved
that any vertex that satisfies the integral equation must also
satisfy the Ward identity and hence must be gauge invariant.

APPENDIX E: THE PARITIES AND SYMMETRIES
OF THE RESPONSE FUNCTIONS

Since the energy projectors satisfy ysA.(p) =
A= (—p)ys, we have [see Egs. (12) and (13)]

'}/5G(P, _/J’) = G(_P’ /-L)’}/S’
ysF(P, —u) = F(—P, p)ys.

The energy projectors also satisfy yoA~(p) = A~(—p)vyo
so we can conclude that

Y'G(P, n) = G(P, n)y",

(E1)

YOF(P, ) = —F(P, u)y",

(E2)
where P = (iw,, —p). The propagator in Nambu space
(B6) can be written as

G(P, n) = G(P, p)a, + G(P, —pn)o_ + F(P, p)o,

+ F(P, —u)o_. (E3)

Using Eq. (El), 00+ = —0:0,, and 0,0+ = 005,
one can show that

02y5G(P, p) = 03G(=P, wosorys. (B4

Similarly, using Eq. (E2), 030+ = —0+03, and 035+ =
0+ 03, we have

[5G0 (P28 3 [03G o (Prir) = GoPri ) [TIGu (Prvr 0]
1

Pi+1 k=1

S [le:6oPloss — S [TIG o (Prsr )]
k=1

(D6)

o3Y°G(P, u) = G(P, w)a3y". (E5)

Thus, we can analyze the parity of the response functions
of the four-momentum. Explicitly,

Qij(in q = ZTI‘[(O'z’)’s)ziiGA(P + 0, M)ijGA(P, M)]
P
= (_1)(261'+251./+52f+52i)ZTr[iié(_P
P

— 0, w3,6(-P, W]
= (— D)@+ TS, G(—P
P

— 0, wW2,6(=P, )] (E6)
Changing variables by P — — P, one gets
Q;;(iQ, q) = (—1)(52i+52j)ZTr[iiG(P
P
- 0. w)3,6(P, w)] (E7)
Therefore,
0i(i, q) = 0;(Q) = (=11 Q,,(~ Q)
= (=)0, (=i, —q). (E8)
Using the relation (E7), one can show that
Q;i(iQ;, @) = (=101, q).  (E9)
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Next we analyze the parity of the response functions about
the spatial components of the momentum. Using Eq. (ES),
for i, j # 3, one has

(i @) = Y Trl(03y"?2G(P + 0, w2,G(P, w)]
P
= Y TGP + 0, wi,G(P, w]
P
= Y T26(P + 0, w2,G(P, p)]
P
= 0;;(iQ, —q), (E10)
where in the third line we have changed variables by P —
P. Fori=1,2; j =3, with the help of Eq. (E9), we only

need to consider the case with i = j. Thus,
|

V. i ——‘(1,
§L3 (iQ), q) = {Q33 é{(l_ilﬂ(l])q)

Fori =1, j =2 we have

012(iQ;, q) = —Q0,(—i), q). (E15)
Fori =1, j = 3 we have
my . . -
Y i) — Q13 (V_ZQZ’ q) lf M= 0 El6
13 (i€2.4) { (=i, q) if p=i (E16)
Fori =2, j = 3 we have
nv . . _
124 10) — Q23 (V_ZQZ’ q) lf M= 0 El17
23 ( b a0 { 53 (—in Q) if =1 ( )

APPENDIX F: EXPRESSIONS OF THE
COHERENCE COEFFICIENTS

For convenience, we introduce k* = (Ep, p) and * =
k,, = (ep, —Pp) so the energy projectors can be rewritten as

K+ m k+m
Avlp) = Qe P= e, ’
P P
¥ K D
—m —m
A_(p) = Y0 =90 :
2€p Zep

which also satisfy

(W u )y +w v )y =

PHYSICAL REVIEW D 85, 074025 (2012)

04(iQ, @) = (= 1) 04(iQ), —q). (E11)
For i = j = 3, we get
B, q) = (- 1)1 08 (i, —q).  (E12)

From the parities of the response functions about the four-
momentum [see Eq. (E8)] and the spatial momentum [see
Egs. (E10)—(E12)], we derive the parity of the
response functions about the boson Matsubara frequency
as follows. For i = j = 1, 2 we have

0::(iQ), q) = Q;;(—iQ,, q). (E13)
For i = j = 3 we have
fu=v=0oru=iv=j
if u=0v=ioru=iv=N0. (E14)
|
K- ¥—m
A@)ys =757 =757 = ysA_(—p),
€p Zep
K+ m K+ m
AP)ys =75 Y0 = ysv° = ysA,(—p).
€p 26p
(F2)

We define A(p, q) = €ptq€p — 612) —p-qand B(p,q) =
€p+q€p T € T P - q, Which satisfy A(p, q) = A(—p, —q)
and B(p, q) = B(—p, —q). By using the above relations
and the identity

Te[(K + m)y (K + m)y"] = 4[K"Hk" + K"k

F3
—g"(k- kK —m?)], )

we can show that

— = _ A2
(wu)yy=@ov) = l(1 - §p+q_§p _A )B(p, q)’
2 EpiqEp €p+q€p

(F4)

W = v = 4 (1 - e LAY P00
2 EyiqEp €p+q€p

(F5)

Ifu=v=0o0ru=1i v=j the 33-component is given

if u=rv=20
(Fo6)

(1 + E"fl;“!’cl;ﬂz)(P+q)"pf+(p+q)fp’+6"fA(p»q)

if u=1iand v =

€p+q€p
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If w=0,v=ioru=1i v=0,the 33-component is
given by

[(f ) P00

(bfuf)é%y - (Uivi)_%y =3 E; E-

2 p+a/ €p+q€p

A, t €54 Bp.q)

Ey Eyrq

wu)+ @ v) =
13 13 o€y

(F8)

) . 1 1
W)y — (v =—A< ! +—,)
13 13 Ep+q Ep

% Ep+qp[ + Ep(p + Q)’

€p+q€p

. (F9)

1 _L)B(p,q)

E_ E;

(wu))y—@wv))= iA(
p+q P

€p+q€p
(F10)

PHYSICAL REVIEW D 85, 074025 (2012)

A&y — &piq)

EyEpeq

(u_u_)é3 + (v_v_)é3 =

(p + q)ifp + pi6p+q
€p+q€p

X

(F11)

épralp — AZ)B(p, Q)

E _E,

1
(wv)y=wu) = §<1 +
pP+tq—PpP

€p+q€p

(F12)

1 cran T ANB
W v )py=0u)y= —(1 + f‘”“?" _ ) (P, q)'
2 EpiqEp €p+q€p

(F13)

If wu=v=0o0ru=1i v=jthe 33-component is given
by

if u=v=0

(v )iy +w u )iy = o (F14)
_ Eeabn TA%\ (pra)p/+ (p+q)p +87ADG) _ . _
(1 R et if w=1iandv=.
If u=0,v=ioru=1i v=0,the 33-component is given by _ '
v ) — (v u ) = (—5“‘1 - g_;> €raP TGP+ O (F15)
Eprq  Ep €p+q€p
i (&n b- B
W v =@ u)p= —i<§—"_ + @)M. (F16)
2\Ep  Epiq/ €piq€p
A&, + &5
v ), + (a2, = 26 T &) BR.@) (F17)
EpEpiq  €ptqp
. . 1\e€ "+ e,(p+q)
(W v Yy — wu )y = —A( - ——7) praPf * &P ) (F18)
Eprq Ep €p+q€p
1 1\ B(p,
o) — (v u) = iA( -+ —,) ®.q) (F19)
Eyrq  Ep/€piqyp
‘ ‘ IA(E, — & +q)'e, +p’
(M,U,),23 + (U,M,)l23 _ (f[i 7§p+q) (P q) Ep P Ep+q' (on)
EpEpiq €p+q€p
1 prafp — A%\ B(p, q)
T T O T e ) : (F21)
p+qp €p+q€p
! §;+q‘§; +A° B(p,q)
(W ut)y =W v )y = S\ T T e BT )quep- (F22)

If u=v=0o0ru=1i v=j the 33-component is given by

ptq—p
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gt A2 .
(1 +fenfe 2 )—B@vq) ifu=v=0

(wrut)iy + o)y = Friafe )

£ EF A2 ini i+ il . . .
1+ eete 2 ) pra)p t(pra)p ARG i = jand v = .
EjqEp €p+q€p

If u=v=0o0r u=1i v=j the 33-component is given by

(uut )y = o)y = —( pra f_p) €pral T &P+ Q)

33
El., Ei

p+q €p+q€p

; + +
B(p,
W)y = =W v, = 1(5_3 _ éﬂfq) (P.a)
2 EP Ep+q €p+q€p

A(éy + ép+q) B(p. Q)

Tt ’
EpEprq  €piq€p

(urut)l + (ot =

, : 1 1 P+ +q)
)y = 0 Ny = A+ e ) 20 Pt a
€p+q€p

1 1\B
W = @ = —ib( - ) P,
Eyrq  Ep/€piqyp

iAEp — €prg) P+ Q) €y T PEpig

Tt
EpEpiq €p+q€p

(uru®)iy + (vrvh)i, =

1
(v = @rub), = —<1 +

£prafp — Az)B(p, q
. .

El JEs

p+qLp €p+q€p

§;+q‘f; + Az) B(p, Q)'

El EY

1
(U v )y =W u")y = —(1 +
p+qlp

2 €p+q€p

If u=v=0o0r u=1i v=j the 33-component is given by
++ §+_A2 ) .
(1 — pE—+ )—B(p 9 if u=»r=0

(o) + wru)y = et S

(1 — §;+q‘f3+A2) (p+q)'p/ +(p+q)'p +57A(p.q)

+ T
EpioEp €p+q€p

if u=1iand v =

Ifu=0,v=ioru=1i r=0,the 33-component is given by

+ i i
(utv ™) — wrut)iy = —<§p+q - i) eprgP' + (P +q) .

Egrq Ep €p+q€p
et +
B(p,
(v =—@w"u"),= —i<§_p+ + glf‘l) (p Q)‘
2 Ep Ep+q Ep+q6p

A(¢p + &pvq) B(p, Q)

wrvh)l + (wrut)), =

EyEpiq  €prq€p
. . 1 1\e€pqP' + €,(p +q)
R o
pta  Ep p+q€p
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1 1 \ B(p,
(u+v+)(2)3 — (vtut (2)3 _ —iA( -+ _+> (p (I),
Epiq  Ep/ €piqSp

A — &5 (P Q)'e T P6 g

Tt
EpEpig €p+q€p

(urvh)h, + (wruh), =

Now we evaluate the “mixed’ terms:

CrgEd + A2 )
W u)y =@ v = 1(1 - fp;_fp — )A(p q)

2 p+q=p €p+q€p

(U uT)p =W vh)y=z -
2 Ep+qE;

1(1 _ §;+q§; B Az) A(p’ ‘I)
€p+q€p

If u=v=0o0ru=1i v=j the 33-component is given by

prabe TA%Y A(pg) o=y =
(1+ T Ei ) e ifu=v=0

(uuh)y + W vy =

_(1 + §;+,,§;—A2) (p+q)'p/ +(p+q)'p'— 57 B(p.q)
T

EpqEp €p+a€p

if u=1iand v =j.
Ifu=0v=ioru=1i r=0,the 33-component is given by

(u ut)sy — (v vy = (

§1;+q + i) (P + Q)ifp - piEerq )

= +
Eprq Ep €p+q€p

s -\ A,
(U uM)p =@ v )p = i(g—ll - §p+q)ﬂ.
2\Ep  Epiq/ €pq€p

A(§piq — &3) Alp, @)

— + E
EpiqEp €p+q€p

(uut)y+ @ vl =

fo

- )i — A( 1 1 )(p + q)iep - piep+q
3=~ 5 :
p+q EP

€p+q€p

1 1\ A(p,
a0 - (e LY
Eprq  Ep/ €piq€p

(w ut)is + (v vty = iAM&pig + &) P+ d)e — p"epﬂl.

EyioEp €p+q€p
1 Cal A% A(p,

W vy =@ u)y = —<1 + §p+q—§p + ) (b q)'
2 E . .E €p+q€p

ptq—p

1 ol — A%\ A(p,
(uiv+)22 = (U7M+)22 = —(1 + §P+q7§p - ) (p (I)
2 Ep+qu €pq€p

If u=v=0o0ru=1i v=j the 33-component is given by

— + AZ .
(1 - 76"];‘15"; )—A(P’q) if u=r=20

+qp €p+q€p
(w v+ wuh)y = o

_(1 _ fﬁﬂif;‘fz)(p+q)"p"'+(p+q)'/’p"—5f./3(p,q) if w=iandv=]

p+aEp €p+qa€p
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Ifu=0,v=ioru=1i v=0,the 33-component is given by

@ - 5) (P+a)e —Pepig

- +
E E,

(v —(wu)iy = (
p+aq

€p+q€p

W v =~ u)n = —i<§—P + @)M

+ .
2\Ep  Epiq/ €praSp

(w v + w uh), = A(f;{ — érl:+q) A(p, q)
13 13 EYE- . <
p “p+q p+q€p

! + L) (P +a)e, ~P'epeg

- +
E E,

(u vt —(wut)i, = —A(
p+q

€p+q€p

1 1\A(p,
(W™ v*)9 = (v u")yy = iA( S _+) (P q))

(u vh)y + (v ut)y = — iAEp gt &) P+ a)e — p"epﬂl‘

EI;'HIE; Ep+q6p
1 toEy A%\ A(p,
wru )y =@rv ), ==(1- p+abp _ (p q)‘
2 El JE €y4q€
pP+q—pP ptq€p

1 toE — AN\ A
(u+1/l_)22 = (v+v_)22 =_(1—- §p+q§p _ (p» ‘l)
2 ElE €10 €
p+q—p p+q€p

Ifu=v=0o0r u=1i v=j the 33-component is given by

épradn TA%) A(a) o
(1 * EpiqEp €p+q€p lf,u v 0

(wru )iy + (v )y =

_(1 + f,fﬂif;*}z) (p+q)'p/+p+ap'=0"B0.9) i ;) — j and py = |.

EpiqFo €p+q€p
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