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Engineered bacteria in which motility is reduced by local cell density generate periodic stripes of high

and low density when spotted on agar plates. We study theoretically the origin and mechanism of this

process in a kinetic model that includes growth and density-suppressed motility of the cells. The spreading

of a region of immotile cells into an initially cell-free region is analyzed. From the calculated front profile

we provide an analytic ansatz to determine the phase boundary between the stripe and the no-stripe

phases. The influence of various parameters on the phase boundary is discussed.
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Biological systems exhibit a wide variety of exquisite
spatial and temporal patterns. These patterns often play
vital roles in embryogenesis and development [1,2]. In
addition, colonies of bacteria and simple eukaryotes also
generate complex shapes and patterns [3–8]. Typically,
these patterns are the outcome of coordinated cell growth,
movement, and differentiation that involve the detection
and processing of extracellular cues [3].

These experimental observations have triggered exten-
sive mathematical modeling. A large body of theoretical
work is devoted to pattern formation by chemotactic bac-
teria. On the mean-field level, these phenomena can be
described by Keller-Segel type reaction-diffusion models
[9–11]. In many instances, the models invoke nonlinear
diffusion of the cells where the diffusion coefficient in-
creases with the local cell density [3,12].

Recently, it was theoretically proposed that the opposite
case of density suppressing motility could also lead to
patterns via a ‘‘self-trapping’’ mechanism [13,14]. In par-
allel, we have explored such a system experimentally,
using a synthetic biology approach [15]. The density-
suppressed motility was introduced into the bacterium
E. coli by having it excrete a small (and rapidly degraded)
signaling molecule acyl-homoserine lactone (AHL), such
that at low AHL levels, these cells perform random walks
via their swim-and-tumble motion [16] and are ‘‘motile,’’
while at high AHL levels, these cells tumble incessantly,
resulting in a vanishing macroscopic motility and becom-
ing ‘‘immotile’’ [Fig. 1(a)].

On agar plates, these engineered bacteria form highly
regular and stable stripe patterns consisting of periodically
alternating regions of high and low cellular densities
[Fig. 1(b)]. A thorough characterization of these spatial
patterns gave rise to the following key experimental

observations [15]: (i) regulation of cell motility by AHL
is essential for pattern formation; (ii) cells are motile at low
densities and immotile at high densities; (iii) bacteria
form stripes sequentially in one- and two-dimensional
geometries when expanding into an initially cell-free re-
gion; (iv) random initial conditions do not give rise to
stripes; (v) chemotaxis is not required for pattern forma-
tion; (vi) the stripe patterns depend on the magnitude of the
unrepressed cellular motility in the low-density limit: upon
decreasing this magnitude the system makes a transition
from a phase with spatially periodic stripes (the stripe
phase) to the no-stripe phase, through a region with a finite
number of stripes.
As demonstrated in [15], all the experimental observa-

tions can be reproduced by a three-component model that
(i) describes the cellular motion as random walk with an
abrupt AHL-dependent motility coefficient, (ii) takes into
account the synthesis, diffusion, and turnover of AHL, and

FIG. 1 (color online). (a) The engineered bacterium cells exe-
cute ‘‘random walks’’ at low densities but become immotile at
high densities. (b) This coupling between density and motility
leads to the formation of stripes with periodic density variations
on agar plates [15]. Initial cell seeding was done (at the position
indicated by the arrow) 30 h before the picture was taken. Bar
corresponds to a length of 5 mm.
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(iii) implements the consumption and diffusion of the
nutrient due to cell growth and the limitation of growth
in the absence of nutrient.

Despite the success of this model, the origin and mecha-
nism of the pattern formation process remain unclear. In
this Letter, we describe a simplified two-component model
to study the essential features of stripe formation analyti-
cally. In terms of the concentration hðx; tÞ of AHL and the
cell density �ðx; tÞ at position x and time t, the dynamical
equations are given by

@h

@t
¼ Dh

@2h

@x2
þ ��� �h; (1)
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�
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The first equation describes production (with rate �),
diffusion (with diffusion coefficient Dh) and turnover
(with rate �) of AHL. It is clear that in spatially homoge-
neous situations, h / � in the steady state, hence the name
‘‘quorum sensor’’ for AHL. The second term on the right-
hand side of Eq. (2) describes logistic bacterial growth at
rate � and with a saturation density �s. The reduced growth
rate at high densities approximates the nutrient depletion
effect in the experiments. The stochastic swim-and-tumble
motion of the bacteria is modeled as a diffusionlike term on
the right-hand side of Eq. (2). The experimentally mea-
sured values of all parameters can be found in Ref. [15].

The motility function �ðhÞ explicitly depends on h. It
takes into account the repressive effect of AHL concentra-
tion (and hence cell density) on cell motility. The interac-
tion term in Eq. (2) can be obtained by either generalizing
the coarse-graining procedure of Ref. [13] or adopting the
master equation approach of Ref. [18] to an h-dependent
motility. In fact, such an analysis yields a mixture of
two terms @xð�ðhÞ@x�Þ and @xð�@x�ðhÞÞ (for details see
the Supplemental Material [17]). For simplicity we focus
on the above coupling, but our main conclusions are
not affected by this (for details see the Supplemental
Material [17]).

Measurements of bacterial diffusion at the population
level show that � drops abruptly from a value D� to

D�;0 � D� as h increases beyond a threshold h0. As

simulation results of Ref. [15] did not depend sensitively
on the valueD�;0, we shall setD�;0 ¼ 0. Thus, we consider

the form �ðhÞ ¼ D� for h � h0 � w and �ðhÞ ¼ 0 for

h > h0 with a linear decrease of � for the transition region
h0 � w< h< h0 with h0 � w ! 0.

As demonstrated in Ref. [15], this two-component
model is able to initiate stripe patterns in a growing bac-
teria colony and maintain them for a while, but the stripes
are eventually lost after long times when cell densities
reach �s throughout the system. The latter behavior devi-
ates from the experimental system where stripes are frozen
in upon nutrient exhaustion. Nevertheless, the model

correctly captures the dynamics at the propagating front
where new stripes are formed. The simplicity gained en-
ables analytic treatment that clarifies conditions for spon-
taneous stripe formation in the system.
Consider a one-dimensional bacterial colony develop-

ment as depicted in Fig. 1(b). Initially, cell density is low
on the plate and all cells grow and freely diffuse. As growth
proceeds cells at the center aggregate. The increased cell
population boosts the local AHL concentration, driving it
eventually above h0 so that cells inside the aggregate
become immotile. At the same time, this high-density
region expands outward by absorbing cells moving from
surrounding low-density regions into the aggregate.
Depending on the parameter values of the system, the
high-density region expands either stably as a front or
exhibits instability that results in stripes [15].
We now take a closer look at the low-density region that

precedes the advancing aggregate, whose cell density pro-
file is calculated later (see Fig. 2). The size of this motile
cell population is maintained by a dynamic balance be-
tween cell growth within and loss to the aggregate in the
contact zone. Because of absorption by the aggregate, cell
number is low in the contact region. By virtue of Eq. (2),
the maximum density �m of motile cells is found at a

distance L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D�=�

q
from the aggregate, while the cell

diffusion flux into the aggregate is given by J ’ D��m=L�.

Meanwhile, the expansion speed c of the aggregate satis-
fies J ¼ c�c where �c is the density drop across the
aggregate boundary. Hence quite generally �m ’ �c; i.e.,
the cell density profile in the motile region scales with the
density at the edge of the aggregate where the AHL con-
centration is at the threshold value h0. A quantitative
calculation is then required to determine whether the
AHL concentration rises to the threshold again at �m. As
we shall see below, the answer depends on how the diffu-

sion length Lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dh=�

p
of AHL molecules (i.e., the

typical distance traveled by an AHL molecule before
degradation) compares to L�.
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FIG. 2 (color online). Profiles of scaled cell density �̂ðẑÞ
(black) and AHL concentration ĥðẑÞ (red) around the edge of
the advancing aggregate at ẑ ¼ 0. Shown here are the analytical
solution to the zeroth order (thin solid lines) and first order
(dashed lines) in " ¼ �̂c=�̂s, and the numerically exact solution
to the steady traveling-wave equations (thick solid lines). Here
D̂h ¼ Dh=D� ¼ 1, �̂ ¼ �=� ¼ 4, and �̂s ¼ ��s=�h0 ¼ 4.
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We will analyze a rescaled version of the model
(1) and (2) that only depends on dimensionless quantities.
We measure length in units of L�, time in units of 1=�, � in

units of �h0=� and h in units of h0. All dimensionless
quantities are denoted by a hat (e.g., t̂ � t�, etc.). For a
steadily propagating front at speed ĉ, the density profiles �̂

and ĥ become functions of ẑ ¼ x̂� ĉ t̂ . We set the front
position at ẑ ¼ 0 such that cells are immotile for ẑ < 0
(region I) and motile for ẑ > 0 (region II).

The cell density profile in region I is easily obtained
by integrating Eq. (2) with the boundary condition
�̂Ið�1Þ ¼ �̂s � ��s=ð�h0Þ,

�̂IðẑÞ ¼ �̂s�̂c

�̂c þ ð�̂s � �̂cÞeẑ=ĉ
; (3)

where �̂c � �̂Ið0�Þ is the scaled cell density at the edge of
the aggregate. The experimental system of Ref. [15] has a
�̂s ’ 4.

In region II, the marginal stability criterion [19] yields
�̂IIðẑÞ � e�ẑ for ẑ � 1 with the selected wave speed
ĉ ¼ 2. With this choice, Eq. (2) takes on the following
form (except within a distance w from the interface),

�̂ 00
II þ 2�̂0

II þ �̂IIð1� �̂II=�̂sÞ ¼ 0; (4)

where the prime denotes d=dẑ. For the form of �ðhÞ
described, one finds �̂IIð0þÞ ¼ 0 as w ! 0 (see the
Supplemental Material [17]). Matching the diffusional
flux from the motile side with the speed of the immotile
front yields the second condition at the interface:
�̂0
IIðẑ ¼ 0þÞ ¼ 2�̂c. Thus, �̂IIðẑÞ is a nonmonotonic func-

tion, rising for small ẑ before decaying exponentially for
large ẑ.

The AHL profile is determined from the cell density
profile as

ĥðẑÞ ¼ �̂
Z 1

�1
dẑ1�̂ðẑ1ÞGhðẑ� ẑ1Þ; (5)

with the Green’s function,

GhðẑÞ ¼ �ð1þ D̂h�Þe�ẑ=D̂heð1þD̂h�Þjẑj=D̂h=2; (6)

and � � �½1þ ð1þ D̂h�̂Þ1=2�=D̂h.
Because of the nonlinearity in Eq. (4), an exact solution

for �̂II is not possible and we shall analyze the problem in
an expansion in " � �̂c=�̂s ¼ �c=�s. We shall first con-
sider the limit " ! 0. The solution (3) is then approxi-

mated by �̂IðẑÞ ’ �̂lin
I ðẑÞ ¼ �̂ce

�ẑ=2. The linear form of
Eq. (4) together with the matching conditions at ẑ ¼ 0
yields �̂lin

II ðzÞ ¼ 2�̂cẑe
�ẑ. Inserting �̂linðẑÞ into (5), we

obtain the AHL profile to the zeroth order in ",

ĥlinII ðẑÞ ¼ �̂�̂c

�
4� 4D̂h

v2
e�ẑ þ 2

v
ẑe�ẑ þ �2

w
e�ẑ

�
; (7)

with v � 2� D̂h þ �̂ and w � ð1þ �Þ2ð1þ 2�Þ�
ð1þ D̂h�Þ. The value of �̂c is determined by the definition

of the front at ẑ ¼ 0, i.e., ĥlinII ð0Þ ¼ 1.
Higher order corrections to the analytical profiles given

above can be computed systematically by rewriting Eq. (4)
in the form,

�̂IIðẑÞ ¼ �̂lin
II ðẑÞ þ

1

�̂s

Z 1

0
dẑ1�̂

2
IIðẑ1ÞGlin

� ðẑ� ẑ1Þ; (8)

where Glin
� ðẑÞ ¼ ẑe�ẑ�ðẑÞ (with �ðxÞ denoting the

Heaviside function) is the Green’s function for the linear
part of Eq. (4). Iteration of Eq. (8) yields �̂IIðẑÞ as a power
series in ". The result, together with �̂IðẑÞ given by Eq. (3),
can then be fed into Eq. (5) to give ĥðẑÞ.
We have carried out the above procedure to the first

order in ". Figure 2 shows typical ĥ and �̂ profiles as
obtained from our zeroth order (thin solid lines) and first
order (dashed lines) analytical solution for �̂s ¼ 4. As
anticipated earlier, the �̂ profiles (black) for the motile
population have the shape of a bulge with a depletion
zone right ahead of the front at ẑ ¼ 0. In the zeroth order
approximation, the bulge is located at ẑ ¼ 1 with a peak

value �̂lin
m ¼ 2�̂c=e ’ 0:736�̂c. For the values of D̂h and �̂

shown, the AHL profiles (red) also develop a dip in the
contact zone. Nonetheless, the traveling-wave solutions are

self-consistent as ĥ never cross the threshold (dotted hori-
zontal line) on the motile side.
To test our analytical solution we have calculated the

steady traveling profiles by integrating Eqs. (1) and (2)
numerically in the moving frame for the above boundary
conditions (thick solid lines). As is evident from Fig. 2, the
zeroth order solution already captures the key features of
the solution while the first order solution shows quantita-
tively excellent agreement even at �̂s ¼ 4.
Given this good agreement, we can now use the analyti-

cal expressions to find the stability limit of the traveling-
wave solution, i.e., parameter values for which the peak

height ĥm of ĥIIðẑÞ reaches the threshold value ĥ0 ¼ 1. Let

us first consider D̂h ¼ Dh=D� ’ 1 as in the experiments.

The Green’s function (6) decays at a rate of order one in
scaled units when the scaled AHL diffusion length

L̂h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D̂h=�̂

q
� 1 ¼ L̂�, but much faster when L̂h � 1.

In the latter case, the AHL profile follows closely the cell
density profile, reaching its peak value at the tip of the
bulge. A straightforward exercise based on Eq. (7) of

the linear case shows ĥm ¼ �̂m ¼ 2�̂c=e while ĥð0Þ ¼
�̂c=2 ¼ 1. Hence ĥm ¼ 4=e ’ 1:47> ĥ0. In this case the
traveling-wave solution is not self-consistent. An increase

of L̂h allows immotile cells to contribute more to the AHL

level in the motile region. Consequently ĥIIðẑÞ flattens

while �̂c decreases at the same time. Eventually ĥm drops
to a value below 1 to restore self-consistency of the
traveling-wave solution.
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The actual stability limit can be obtained by numerically

solving the equations ĥIIðẑmÞ � ĥm ¼ 1 and @ẑhIIðẑmÞ ¼ 0,
where ẑm is the peak position of the AHL profile. Using the
respective analytical profiles, we obtain the zeroth order

�̂ ¼ �linðD̂hÞ (thin solid line) and first order �̂ ¼ �ð1ÞðD̂hÞ
(dashed line) phase boundaries as shown in Fig. 3. In the
latter case, the first order AHL profile allows us to com-

pute the shift 	�̂ ¼ �"c ðD̂hÞ�linðD̂hÞ in �̂ that satisfies

these equations to order " at a given D̂h. The modified

boundary is then obtained from �ð1ÞðD̂hÞ ¼ �linðD̂hÞ�
exp½�"c ðD̂hÞ�. The function c ðD̂hÞ is given by the dotted
line in the inset of Fig. 3. As a comparison, we have also

computed the phase boundary �̂ ¼ �ðD̂hÞ where ĥm ¼ 1
using the numerically exact traveling-wave solution (thick
solid line in Fig. 3). The agreement with the first order

phase boundary �ð1ÞðD̂hÞ is very good.
As a confirmation that our ansatz indeed captures the

dynamic instability behind the stripe formation process, we
also show in Fig. 3 (red dots) the actual onset of stripes
observed from a numerical simulation of Eqs. (1) and (2).
Because of the time it takes for transient stripes to dissipate
close to the transition with the setup of Fig. 1(b), the
simulation tends to underestimate the no-stripe region.
Thus the true phase boundary in the long-time limit is
expected to be somewhat above the red line.

This study has led to the following picture of the stripe
formation process: the growth and lateral expansion of the
colony into an initially cell-free region is described by a

traveling-wave solution. In the steadily propagating case,
the density-coupled cell motility control breaks the colony
into an immotile region behind a moving boundary and a
density bulge of motile cells ahead of it. Maximum cell
density in the motile region is reached at a distance

L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D�=�

q
from the boundary. In the experiments of

Ref. [15], the density coupling is implemented via a small
molecule AHL which provides information on cell density

within a distance Lh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dh=�

p
. We have shown that the

steadily propagating wave is stable when Lh is greater than
or comparable to L�. In the opposite case Lh � L�, in-

stability develops as the maximum AHL concentration in
the motile region would exceed the threshold h0 for mo-
tility suppression. Instead, the colony expands with peri-
odic nucleation of new immotile regions within the motile
bulge ahead of the previously formed high-density strip.
Cell density behind the moving front continue to grow until
nutrient exhaustion, where the density modulation be-
comes frozen. From the inset of Fig. 3 we see that the ratio
Lh=L� generally lies around 0.5 on the phase boundary

between the two regimes.
In our system the propagating front thus drives sequen-

tial stripe formation in an open geometry. This is very
different from the classical Swift-Hohenberg [20] mecha-
nism where finite-wavelength symmetry breaking instabil-
ity develops in the bulk. The highly nonlinear and localized
process in the nucleation of new stripes also makes our
mechanism different from that of pattern formation driven
by fronts propagating into a bistable system where modu-
lations arise during the linear instability development at the
front [21]. In this respect, there are some similarities
between our system and the nonperiodic Liesegang pat-
terns since in both cases new ‘‘phase’’ precipitates when
certain critical density is reached [22]. On the other hand,
in the chemical systems that exhibit Liesegang patterns,
reactant density increases via transport instead of growth.
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