
Probabilistic Verifiers: Evaluating Constrained
Nearest-Neighbor Queries over Uncertain Data

Reynold Chengt, Jinchuan Chent, Mohamed Mokbel+, Chi-Yin Chow+
tDeptartment of Computing, Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
{csckcheng,csjcchen}@comp.polyu.edu.hk

tDepartment of Computer Science and Engineering, University of Minnesota-Twin Cities
200 Union Stree SE, Minneapolis, MN 55455

{mokbel, cchow}@cs .umn. edu

Abstract- In applications like location-based services, sensor
monitoring and biological databases, the values of the database
items are inherently uncertain in nature. An important query
for uncertain objects is the Probabilistic Nearest-Neighbor Query
(PNN), which computes the probability of each object for being
the nearest neighbor of a query point. Evaluating this query
is computationally expensive, since it needs to consider the
relationship among uncertain objects, and requires the use of
numerical integration or Monte-Carlo methods. Sometimes, a
query user may not be concerned about the exact probability
values. For example, he may only need answers that have
sufficiently high confidence. We thus propose the Constrained
Nearest-Neighbor Query (C-PNN), which returns the IDs of
objects whose probabilities are higher than some threshold,
with a given error bound in the answers. The C-PNN can
be answered efficiently with probabilistic verifiers. These are
methods that derive the lower and upper bounds of answer
probabilities, so that an object can be quickly decided on whether
it should be included in the answer. We have developed three
probabilistic verifiers, which can be used on uncertain data with
arbitrary probability density functions. Extensive experiments
were performed to examine the effectiveness of these approaches.

I. INTRODUCTION

Data uncertainty is an inherent property in various emerging
applications. Consider a habitat monitoring system where
data like temperature, humidity, and wind speed are acquired
from sensors. Due to the imperfection of the sensing devices,
the data obtained are often contaminated with noises [1].
In the Global-Positioning System (GPS), the location values
collected have some measurement error [2], [3]. In biometric
databases, the attribute values of the feature vectors stored are
also not exact [4]. These errors should be captured and treated
carefully, in order to provide high-quality query answers.

Sometimes, uncertainty is introduced by the system. In
Location-Based Services (LBS), it is expensive to monitor ev-
ery change in location. Instead, the "dead-reckoning" approach
is used, where each mobile device only sends an update to the
system when its value has changed significantly. The location
is modeled in the database as a range of possible values [2],
[5]. Recently, the idea of injecting location uncertainty to a
user's location in an LBS has been proposed [6], [7], in order
to protect a user's location privacy.

pdf
pdf (histogram)

distance (Gaussian)
threshold

temp.

location uncertainty 1O0C uncertainty 20°C
(in database) region region

(a) (b)

Fig. 1. Location and sensor uncertainty.

A well-studied uncertainty model is to assume that the
actual data value is located within a closed region, called
the uncertainty region. In this region, a non-zero probability
density function (pdf) of the value is defined, where the
integration of pdf inside the region is equal to one. In an
LBS where the dead-reckoning approach is used, a normalized
Gaussian distribution is used to model the measurement error
of a location stored in a database [2], [3] (Figure 1(a)).
Gaussian distributions are also used to model values of a
feature vector in biometric databases [4]. Figure l(b) shows
the histogram of temperature values in a geographical area
observed in a week. The pdf, represented as a histogram, is an
arbitrary distribution between 10°C and 200C. In this paper,
we focus on uncertain objects in the one-dimensional space
(i.e., a pdf defined inside a closed interval).

q

D (29%)

| C (1o%)
B (41%)

A (20%) l

Fig. 2. Probabilistic NN Query (PNN).

An important query for uncertain objects is the Probabilistic
Nearest Neighbor Query (PNN in short) [5]. This query returns

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 973 ICDE 2008

the non-zero probability (called qualification probability) of
each object for being the nearest neighbor of a given point
q. The qualification probability augmented with each object
allows us to place confidence onto the answers. Figure 2
illustrates an example of PNN on four uncertain objects
(A, B, C and D). The query point q and the qualification
probability of each object are also shown. A PNN could be
used in a scientific application, where sensors are deployed to
collect the temperature values in a natural habitat. For data
analysis and clustering purposes, a PNN can be executed to
find out the district(s) whose temperature values is (are) the
closest to a given centroid. Another example is to find the IDs
of sensor(s) that yield the minimum or maximum wind-speed
from a given set of sensors [5], [1]. A minimum (maximum)
query is essentially a special case of PNN, since it can be
characterized as a PNN by setting q to a value of- oc (oc).

Although PNN is useful, evaluating it is not an easy task.
In particular, since the exact value of a data item is not
known, one needs to consider the item's possible values
in its uncertainty region. Moreover, an object's qualification
probability depends not just on its own value, but also on
the relative values of other objects. If the uncertainty regions
of the objects overlap, then their pdfs must be considered in
order to derive their corresponding probabilities. In Figure 2,
for instance, evaluating A's qualification probability (20%)
requires us to consider the pdfs of the other three objects,
since each of them has some chance of overtaking A as the
nearest neighbor of q.

To our best knowledge, there are two major techniques
for computing qualification probabilities. The first method is
to derive the pdf and cumulative density function (cdf) of
each object's distance from q. The probability of an object
is then computed by integrating over a function of distance
pdfs and cdfs [5], [8], [1]. A recent solution proposes to
use the Monte-Carlo method, where the pdf of each object
is represented as a set of points. The qualification probability
is evaluated by considering the portion of points that could be
the nearest neighbor [9]. The cost of these solutions can be
quite high, since they either require numerical integration over
some aggregate functions of arbitrary pdfs, or the handling of
samples which are acquired from the object. Moreover, the
accuracy of the answer probabilities depends on the precision
of the integration or number of samples used. It is worth
notice that an indexing solution for pruning objects with
zero qualification probabilities have been proposed in [8].
This technique can remove a large fraction of objects from
consideration. However, the evaluation time for the remaining
objects, as shown in their experiments, still consumes a lot of
CPU resources.

A. Solution Overview

Although calculating qualification probabilities is expensive,
a query user may not always be interested in the precise
probability values. A user may only require answers with
confidence that are higher than some fixed value. In Figure 2,
for instance, if an answer with probability higher than 30%

Filtering X
[-l

Prune objects with zero
qualification probabilities

X (marked <)

Verification 3 verifiers for deciding
I

X which objects satisfy (1)
123ET or fail (Rx) the C-PNN

q

Refinement V/ 0.4 [---

|-0.10.1
q'

Compute qualification
probabilities of
remaining objects

Fig. 3. Solution Framework of C-PNN.

is required, then object B (41%) would be the only answer.
If a user can tolerate with some approximation in the result
(e.g., he allows an object's actual probability to be 2% less
than the 30% threshold), then object D (29%) can be another
answer. Here the threshold (30%) and tolerance (2%) are
requirements or constraints imposed on a PNN. We denote this
variant of PNN as the Constrained Probabilistic Nearest-
Neighbor Query (or C-PNN in short). A C-PNN allows the
user to control the desired confidence and quality in the query.
The answers returned, which consists of less information than
PNN, may also be easier to understand. In Figure 2, the C-
PNN only includes objects (B,D) in its result, as opposed to
the PNN which returns the probabilities of all the four objects.

The C-PNN has another advantage: its answers can be
more efficiently evaluated. In particular, we have developed
probabilistic verifiers (or verifiers in short), which can make
decisions on whether an object is included in the final answer,
without computing the exact probability values. The verifiers
derive a bound of qualification probabilities with algebraic
operations, and test the bound with the threshold and tolerance
constraints specified in the C-PNN. For example, a verifier
may use the objects' uncertainty regions to deduce that the
probability of object A in Figure 2 is less than 25%. If the
threshold is 30% and the tolerance is 2%, we can immediately
conclude that A must not be the answer, even though we may
not know A's exact probability is 20%.

Figure 3 shows the role of verifiers in our solution, which
consists of three phases. The first step is to prune or filter
objects that must not be the nearest neighbor of q, using an R-
tree based solution [8]. The objects with non-zero qualification
probabilities (shaded) are then passed to the verification phase,
where verifiers are used to decide if an object satisfies the C-
PNN. In this figure, two objects have been determined in this
stage. Objects that still cannot be determined are passed to
the refinement phase, where the exact probability values are
computed. We can see that the object with 0.4 probability is

974

retained in the answer, while the other object (with 0.1 chance)
is excluded.

In this paper, we focus on verification and refinement. We
present three verifiers, which utilize an object's uncertainty
information, as well as its relationship with other objects, in
order to derive the lower and upper bounds of qualification
probabilities. These verifiers can handle arbitrary pdfs. We also
propose a paradigm to string these verifiers together in order
to provide an efficient solution. Even if an object cannot be
decided by the verifiers, the knowledge accumulated by the
verifiers about the object can still be useful, and we show
how this can facilitate the refinement process. As shown in the
experiments, the price paid for using verifiers is justified by
the lower cost of refinement. In some cases, the performance
of the C-PNN has an order of magnitude of improvement in
terms of execution time.

The rest of this paper is organized as follows. We discuss
the related work in Section II. In Section III, we present the
formal semantics of the C-PNN, and our solution framework.
We discuss the details of verifiers in Section IV. Experimental
results are described in Section V. We conclude the paper in
Section VI. Appendix I describes the correctness proof for
U-SR, one of the verifiers used in our solution.

II. RELATED WORK

Recently, database systems for managing uncertainty have
been proposed [10], [11], [12], [1]. Two major types of
uncertainty are assumed in these works: tuple- and attribute-
uncertainty. Tuple-uncertainty refers to the probability that a
given tuple is part of a relation [10]. Attribute-uncertainty
generally represents the inexactness in the attribute value as a
range of possible values and a pdf bounded in the range [2],
[3], [5], [13], [4]. Recently, a formal database model for
attribute uncertainty has been proposed [14]. The imprecise
data model studied here belongs to the attribute uncertainty.
An R-tree-based solution for PNN over attribute uncertainty

has been presented in [8]. The main idea is to prune tuples
with zero probabilities, using the fact that these tuples' un-
certainty regions must not overlap with that of a tuple whose
maximum distance from the query point is the minimum in
the database. [5], [8] discuss the evaluation of qualification
probabilities by transforming each uncertainty region into two
functions: pdf and cdf of an object's distance from the query
point. They show how this conversion can be done for ID
uncertainty (intervals) and 2D uncertainty (circle and line).
The probabilities are then derived by evaluating an integral of
an expression involving distance pdfs and cdfs from multiple
objects. While our solution also uses distance pdfs and cdfs,
its avoids a significant number of integration operations with
the aid of verifiers.

Another method for evaluating a PNN is proposed in [9],
where each object is represented as a set of points (sampled
from the object's pdf). Compared with that work, our solution
is tailored for a constrained version of PNN, where threshold
and tolerance conditions are used to avoid computation of
exact probabilities. Also, we do not need the additional work

of sampling the pdf into points. Notice that this sampling
process may introduce another source of error if there are
not enough samples. In [15], a method for evaluating the
probability that an object (represented as a histogram) is before
another object in the time domain is presented. Their result
could be adapted to answer a PNN that involves two objects,
by viewing the time domain as the space domain. Our solution,
on the other hand, addresses the PNN problem involving two
or more objects.

Besides the PNN, the evaluation and indexing methods for
other probabilistic queries have been studied. This includes
range queries [16] and location-dependent queries [6]. The
issues of uncertainty have also been considered in similarity
matching in biometric databases [4].

III. AN EVALUATION FRAMEWORK FOR C-PNN

Let us now present the semantics of the C-PNN (Section III-
A). We then outline our solution in Section III-B.

(a) (b) (c) (d)
0.96Ff1

0.16

0.LL:LT0185 *_0.85 __
.1Q

0.1

0.75''' 0.78 0.2
. 0.08

:0.7 W:

:0.65I

Fig. 4. C-PNN with P =0.8 and = 0.15.

A. Definition of C-PNN
Let X be a set of uncertain objects in ID space (i.e., an

arbitrary pdf defined inside a closed interval), and Xi be the ith
object of X (where i = 1, 2,. . ., X). We also suppose that
q e X is the query point, and pi e [0, 1] is the probability that
Xi is the nearest neighbor of q (i.e., qualification probability).
We call pi.l C [0,1] and pi.u C [0,1] the lower and upper
probability bound of pi respectively, such that pi.l < pi.u,
and pi C [pil:,pi u]. In essence, [pi.l,pi.u] is the range of
possible values of pi, and pi.u -pi.l is the error in estimating
the actual value of pi. We denote the range [pi.l,pi.u] as a
probability bound of pi.

Definition 1: A Constrained Probabilistic Nearest Neigh-
bor Query (C-PNN) returns a set {Xi i = 1, 2,..., X } such
that pi satisfies both of the following conditions:

* pi.u> P
* pi.1 > P, or Piuu-pi1 < i\

where P C (0,1] and A C [0,1].
Here P is called the threshold parameter. An object is

allowed to be returned as an answer if its qualification proba-
bility is not less than P. Another parameter, called tolerance

975

(A), limits the amount of error allowed in the estimation of
qualification probability pi. Figure 4 illustrates the semantics
of C-PNN. The probability bound [pj.l,pj.u] of some object
Xj (shaded) is shown in four scenarios. Let us assume that
the C-PNN has a threshold P = 0.8 and tolerance A = 0.15.
Case (a) shows that the actual qualification probability pj
of some object Xj (i.e., pj) is within a closed bound of
[pj.l,pj.u]=[0.8,0.96]. Since pj must not be smaller than P,
according to Definition 1, Xj is the answer to this C-PNN.
In (b), Xj is also a valid answer since the upper bound of pj
(i.e., pj.u) is equal to 0.85 and is larger than P. Moreover,
the error of estimating pj (i.e., 0.85-0.75), being 0.1, is less
than A = 0.15. Thus the two conditions of Definition 1 are
satisfied. For case (c), Xj cannot be the answer, since the upper
bound of pj (i.e., 0.78) is less than P, and so the first condition
of Definition 1 is violated. In (d), although object Xj satisfies
the first requirement (pj.u = 0.85 > P), the second condition
is not met. According to Definition 1, it is not an answer to
the C-PNN. However, if the probability bounds could later
be "reduced" (e.g., by verifiers), then the conditions can be
checked again. For instance, if pj.1 is later updated to 0.81,
then Xj will be the answer. Table I summarizes the symbols
used in the definition of C-PNN.

Symbol Meaning
Xi Uncertain object i of a set X (i = 1, 2, ..., X)
q Query point
Pi Prob. that Xi is the NN of q (qualification prob.

[Pi. 1, pi .U] Lower & upper probability bounds
P Threshold
ATolerance

TABLE I
SYMBOLS FOR C PNN.

B. The Verification Framework
As shown in Figure 3, uncertain objects that cannot be

filtered (shaded in Figure 3) require further processing. This
set of unpruned objects, called the candidate set (or C in
short), are passed to a probabilistic verifier, which reports
a list of probability bounds of these objects. This list is
sent to the classifier, which labels an object by checking its
probability bounds against the definition of the C-PNN. In
particular, an object is marked satisfy if it qualifies as an
answer (e.g., Figures 4(a), (b)). It is labeled fail if it cannot
satisfy the C-PNN (Figure 4(c)). Otherwise, the object is
marked unknown (Figure 4(d)). This labeling process can be
done easily by checking an object's probability bounds against
the two conditions stated in Definition 1.

Figure 5 shows the three verifiers (namely RS, L-SR and
U-SR, in shaded boxes), as well as the classifier. During ini-
tialization, all objects in the candidate set are labeled unknown,
and their probability bounds are set to [0, 1]. Other information
like the distance pdf and cdf is also precomputed for the
candidate set objects. The candidate set is then passed to the
first verifier (RS) for processing. The RS produces the newly

Candidate set (from filtering)

Fig. 5. The Verification Framework.

computed probability bounds for the objects in the candidate
sets, and sends this list to the classifier to label the objects.
Any objects with the label unknown are transferred to the next
verifier (L-SR) for another round of verification. The process
goes on (with U-SR) until all the objects are either labeled
satisfy or fail. When this happens, all the objects marked
satisfy are returned to the user, and the query is finished. Thus,
it is not always necessary for all verifiers to be executed.

Notice that a verifier only adjusts the probability bound
of an unknown object if this new bound is smaller than the
one previously computed. Also, the verifiers are arranged
in the order of their running times, so that if a low-cost
verifier (e.g., the RS verifier) can successfully determine all
the objects, there is no need to execute a more costly verifier
(e.g., the L-SR verifier). In the end of verification, objects that
are still labeled unknown are passed to the refinement stage
for computing their exact probabilities. We discuss a faster
technique based on the information obtained by the verifiers
to improve this process in Section IV-D. Now let us examine
the details of the verifiers.

IV. SUBREGION-BASED VERIFIERS

The verifiers presented here are collectively known as
subregion-based verifiers, since the information of subregions
is used to compute the probability bounds. A subregion is
essentially a partition of the space derived from the uncertainty
regions of the candidate set objects. Section IV-A discusses
how subregions are produced. We then present the RS-verifier
in Section IV-B, followed by the L-SR and U-SR verifiers in
Section IV-C. In Section IV-D, we describe the "incremental
refinement" method, which uses subregions to improve the
refinement process.

976

A pdf

u lI

0 I
q2 q1

(a) Uncertain object (uniform pdf)

di(r)j'
2E

u-l

x

D1(r)
1

A D1(r)

U-

3(~~~~~~~r
I

nl 0= q1-l f1 =u-q1

F
- Ui -

(b) q=q1

r

q

f1 =u-q2

Ui >

(c) q=q2

Fig. 6. Distance pdf and cdf

A. Computing Subregion Probabilities
The initialization phase in Figure 5 performs two tasks:

(1) computes the distance pdf and cdf for each object in the
candidate set, and (2) computes subregion probabilities.
We start with the derivation of distance pdf and cdf. Let

Ri C X be the absolute distance of an uncertain object Xi
from q. That is, Ri = qXi-ql. We assume that Ri takes on a
value r C R. Then, the distance pdf and cdf of Xi are defined
as follows [5], [8]:

Definition 2: Given an uncertain object Xi, its distance
pdf, denoted by di(r), is a pdf of Ri; its distance cdf, denoted
by Di(r), is a cdf of Ri.

Figure 6(a) illustrates an uncertain object X1, which has
a uniform pdf with a value of ul1 in an uncertainty region
[1, u]. Two query points (qi and q2) are also shown. Figure 6(b)
shows the corresponding distance pdf (shaded) of R1 = |Xi-
q, 1, with q, as the query point. Essentially, we derive the pdf
of Xl's distance from ql, which ranges from 0 to u -ql. In
[0, q -1], the distance pdf is obtained by summing up the pdf
on both sides of ql, which equals to X2 The distance pdf
in the range [q -1, u -ql] is simply 1l Figure 6(c) shows
the distance pdf for query point q2. For both queries, we draw
the distance cdf in solid lines. Notice that the distance cdf
can be found by integrating the corresponding distance pdf.
From Figure 6, we observe that the distance pdf and cdf for
the same uncertain object vary, and depend on the position of
the query point. If the uncertainty pdf of Xi is in the form
of a histogram (e.g., Figure 1(b)), its distance pdf/cdf can be
found by first decomposing the histogram into a number of
"histogram bars", where the pdf in the range of each bar is the
same. We can then compute the distance pdf/cdf of each bar
using the methods described in this paragraph, and combine
the results to yield the distance pdf/cdf for the histogram.
We represent a distance pdf of each object as a histogram.

The corresponding distance cdf is then a piecewise linear
function. Note that although we focus on ID uncertainty, our
solution only needs distance pdfs and cdfs. Thus, our solution

can be extended to 2D space, by computing the distance pdf
and cdf from the 2D uncertainty regions, using the formulae
discussed in [8].
Now, let us describe the definitions of near and far points

of Ri, as defined in [5], [8]:
Definition 3: A near point of Ri, denoted by ni, is the

minimum value of Ri. A far point of Ri, denoted by fi, is
the maximum value of Ri.
We use Ui to denote the interval [ni, fi]. Figure 6(b) shows

that when q, is the query point, n1 = 0, f = u -ql, and U1 =

[0, u -ql]. When q2 is the query point, Ui = [I- q2, U -q2]
(Figure 6(c)). We also let fmin and fmnax be the minimum and
maximum values of all the far points defined for the candidate
set objects. We assume that the distance pdf of Xi has a non-
zero value at any point in Ui.
Subregion Probabilities. Upon generating the distance
pdfs and cdfs of the candidate set objects, the next step is
to generate subregions. Let us first sort these objects in the
ascending order of their near points. We also rename the
objects as X1, X2,. .,XcI, where ni < nj iff i < j.
Figure 7(a) illustrates three distance pdfs with respect to a
query point q, presented in the ascending order of their near
points. The number above each range indicates the probability
that an uncertain object has that range of distance from the
query point.

In Figure 7(a), the circled values are called end-points. They
include all the near points (e.g., el, e2 and e3), the minimum
and maximum of far points (e.g., e5 and e6), and the point
at which the distance pdf changes (e.g., e4). No end points
are defined between (ei, e2) and (e5, ee6). We use ej to denote
the j-th end-point, where j > 1 and ej < ej+l. Moreover,
el =nl.
The adjacent pairs of end-points form the boundaries of a

subregion. We label each subregion as Sj, where Sj is the
interval [ej, ej+±]. Figure 7(a) shows five subregions, where
Sl = [el, e2], S2 = [e2, e3], and so on. The probability that Ri
is located in Sj is called the subregion probability, denoted by
sij. Figure 7(a) shows that s22 = 0.3, sll = 0.1 + 0.2 = 0.3,
and s31 = 0

For each subregion Sj of an object Xi, we evaluate the
subregion probability sij, as well as the distance cdf of Sj's
lower end-point (i.e., Di(ej)). Figure 7(b) illustrates these
pairs of values extracted from the example in (a). For example,
for R3 in S5, the pairs s35 = 0.3 and D3(e5) = 0.7 are shown.
These number pairs help the verifiers to develop the probability
bounds. Table II presents the symbols used in our solution. Let
us now examine how the verifiers work.

B. The Rightmost-Subregion Verifier
The Rightmost-Subregion (or RS) verifier uses the infor-

mation in the "rightmost" subregion. In Figure 7(b), S5 is
the rightmost subregion. If we let M > 2 be the number
of subregions for a given candidate set, then the following
specifies an object's upper probability bound:
Lemma 1: The upper probability bound, pi.u, is at most

1 -siM, where SiM is the probability that Ri is in SM.

977

aR1

S1 2 3 4 5

l I3l f31
3 :04 0.2

2 033 0h4 01I ~ ~~I 2

In] f"

I ~~I \
7

0.2 0.2 042

0.1 o2> 3 103 0I2

ls~~~~~~~22 1s31s4ll..I~~~~~ ~~| l-||fi
In1 \o2 02 I 02 fi0/O1 0|n1 L i. 02 X

W.,I I I

I lB

S35, D3(e5)

Rihmost
Subregion

0

(a) (b)

Fig. 7. Illustrating the distance pdfs and subregion probabilities.

Symbol Meaning
C {Xi C X pi > 0} (candidate set)
Ri IXi- ql

di (r) pdf of Ri (distance pdf)
Di(r) cdf of Ri (distance cdf)
ni, fi Near and far points of distance pdf
Ui The interval Eni, fi]

fmin, fmax min. and max. of far points
ek The k-th end point
Si The j-th subregion, where Sj = [ej,ej+i]
M Total no. of subregions
ci No. of objects with distance pdf in Sj
8ij Pr(Ri C Sj)
qij Qualification prob. of Xi, given Ri C Sj

[qij .1, qi.u] Lower & upper bounds of qij
TABLE II

SYMBOLS USED BY VERIFIERS.

The subregion SM is the rightmost subregion. In Fig-
ure 7(b), M = 5. The upper bound of the qualification
probability of object X1, according to Lemma 1, is at most
1 -s15, or 1 -0.2 = 0.8.
To understand this lemma, notice that any object with

distance larger than fmin cannot be the nearest neighbor of q.
This is because fmin is the minimum of the far points of the
candidate set objects. Thus, there exists an object Xk such that
Xk'S far point is equal to fmin, and that Xk is closer to q than
any objects whose distances are larger than fmin. If we also
know the probability of an object located beyond a distance of
fmin from q, then its upper probability bound can be deduced.
For example, Figure 7(a) shows that the distance of X1 from
q (i.e., R1) has a 0.2 chance of being more than fmin. Thus,
X1 is not the nearest neighbor of q with a probability of at
least 0.2. Equivalently, the upper probability bound of X1, i.e.,
pl.u, is 1 -0.2 = 0.8. Note that 0.2 is exactly the probability
that R1 lies in the rightmost subregion S5, i.e., 815, and thus
pl.u is equal to 1 -S15. This result can be generalized for any
object in the candidate set, as shown in Lemma 1.

Notice that the RS verifier only handles the objects' upper
probability bounds. To improve the lower probability bound,
we need the L-SR verifier, as described next.

C. The Lower-Subregion and Upper-Subregion Verifiers
The second type of verifiers, namely the Lower-Subregion

(L-SR) and Upper-Subregion (U-SR) Verifiers, uses subregion
probabilities to derive the objects' probability bounds. For
each subregion the L-SR (U-SR) verifier computes the lower
(upper) probability bound of each object.
We define the term subregion qualification probability (qij

in short), which is the chance that Xi is the nearest neighbor of
q, given that its distance from q, i.e., Ri, is inside subregion Sj.
We also denote the lower bound of the subregion qualification
probability as qij .1. Our goal is to derive qij .1 for object Xi in
subregion Sj. Then, the lower probability bound of Xi, i.e.,
pi., is evaluated. Suppose there are cj(cj > 1) objects with
non-zero subregion probabilities in Sj. For example, C3 = 3 in
Figure 7(a), where all three objects have non-zero subregion
probabilities S3. The following lemma is used by the L-SR
verifier to compute qij .1.
Lemma 2: Given an object Xi C C, if ej < Ri < ej+l

(j=1,2,...,M- 1),then
j Dk(ej)) if cj > 1

q otherwise
In words, Lemma 2 calculates qij .1 for object Xi by

multiplying the expressions of distance cdfs for all objects
with non-zero subregion probabilities in Sj. We will prove this
lemma in Section IV-C. 1. To illustrate the lemma, Figure 7(a)
shows that q11.1 (for X1 in subregion Si) is equal to 1, since
cl = 1. On the other hand, q23 .1 (for X2 in S3) is (1 o.5) (1 0)3
or 0.167.

Next, we define a real constant Yj, where

Y f I (1- Dk(e))
UkfnlSj3 0

Then, Equation 1 can be rewritten as:

cjc (1-Di(e-j)Y)

(2)

(3)

978

q Rk

.4 RE

-*----- IE -

ej+i
-/

t objects I

Fig. 8. Correctness proof of L-SR.

By computing Yj first, the L-SR can use Equation 3 to
compute qij.1 easily for each object in the same subregion
Si].

After the values of qij.1 have been obtained, the lower
probability bound (pi.l) of object Xi can be evaluated by:

M-1

Pi l SE sij * qij. (4)
J=1

The product sij qij . is the minimum qualification probability
of Xi in subregion sij, and Equation 4 is the sum of this
product over the subregions. Note that the rightmost subregion
(SM) is not included, since the probability of any object SM
must be zero.
We also state the main result about U-SR, which evaluates

the upper subregion probability bound:

qij.u 2I (1 (1- Dk(ej+l))+ 17 (1-Dk(eJ))) (5)
Uknsi+1,0Ak i UknSj 0Ak i

The upper probability bound (pi.u) can be computed by
replacing qij.1 with qij.u in Equation 4. The proof of Equa-
tion 5 can be found in Appendix 1. Next, we present the proof
of Lemma 2 for L-SR.

1) Correctness Proof of the L-SR Verifier: We first state a
claim about subregions: if there exists a set K of objects whose
distances from q (i.e., Ri) are certainly inside a subregion Sj,
and all other objects (C -K)'s distances are in subregions j+I
or above, then the qualification probability of each objects in
K is equal to 7< This is because all objects in C -K cannot
be the nearest neighbor of q, and all objects in K must have
the same qualification probability. In Figure 7(a), for example,
if the distances R1 and R2 are inside S2 = [e2, e3], then
P1 = P2 1, and p3 = 0. The following lemma states this
formally.
Lemma 3: Suppose there exists a nonempty set K(K C C)

of objects such that VXi C K, ej < Ri < ej+l. If VXm C
C -K, Rm > ej+l, then for any Xi C K, pi 1 where
Kl is the number of objects in K.
The formal proof of Lemma 3 can be found in the technical

report [17]. This lemma by itself can be used to obtain the
qualification probabilities for the scenario when there is only
one subregion (i.e., M = 1). Here, the distances of all the
objects in the candidate set C from q are located in one
subregion, Si. Using Lemma 3, we obtain pi = VXi C C.
We can now prove Lemma 2. Let us examine when cj,

the number of objects with non-zero subregion probabilities

in subregion Sj, is equal to 1. In fact, this scenario happens
to subregion Sl, i.e., j 1, since only this region can
accommodate a single distance pdf (e.g., d1(r) in Figure 7).
If we also know that distance Ri is in subregion Sj, then
Xi must be the nearest neighbor. Thus, the lower subregion
qualification probability bound qij.1 is equal to 1, as stated in
the lemma.

For the case cj > 1, we derive the subregion qualification
probability, qij. Let E denote the event that "all objects in the
candidate set have their actual distances from q not smaller
than ej". Also, let E be the complement of event E, i.e.,
"there exists an object whose distance from q is less than cj".
Figure 8 illustrates these two events. If Pr(E) denotes the
probability that event E is true, then Pr(E) = 1-Pr(E).
Let N be the event "Object Xi is the nearest neighbor of q".
Then, using the law of total probability, we have:

qij = Pr(N E) FPr(E) + Pr(N E) FPr(E) (6)
If E is true, there is at least one object Xk whose distance
Rk is not larger than ej (Figure 8). Since Rk < Ri, object Xk
must be closer to q than object Xi. Consequently, Pr(NE)
0, and Equation 6 becomes:

qij = Pr(N E) Pr(E) (7)
If E is true, the distances of all objects from q are beyond
ej. Suppose there are t objects (including Xi) such that their
distances are in Sj (Figure 8). Using Lemma 3, we obtain
Pr(N E) = . Since t < cj (where cj is the number of
objects with non-zero subregion probabilities in Sj), we have

Pr(NIE) > -cJ (8)
To obtain Pr(E), note that the probability that an object Xk's
distance is ej or more is simply 1-Dk (ej) . We then multiply
all these probabilities, as
HRk>ejAkAi(- Dk(ej)). This can be simplified to:

Pr(E) fI (- Dk(ej))
Uk nSjfl 0A k 7 i

(9)

since any object whose subregion probability is zero in Sj
must have the distance cdf at ej, i.e.,Dk(ej) equal to zero.
Combining Equations 7, 8 and 9, we can obtain the lower
bound of qij, i.e., qij.1, as stated in Lemma 2.

D. Incremental Refinement
As discussed in Section III-B, some objects may still be

unclassified after all verifiers have been applied. The exact
probabilities of these objects must then be computed or "re-
fined'. This can be expensive, since numerical integration has
to be performed over the object's distance pdf [5]. This process
can be performed faster by using the information provided
by the verifiers. Particularly, the probability bounds of each
object in each subregion (i.e., [qij .1, qij .u]) have already been
computed by the verifiers. Therefore, we can decompose the
refinement of qualification probability into a series of proba-
bility calculations inside subregions. Once we have computed
the probability qij for subregion Sj, we collapse [qij.1, qij.u]
into a single value qij, update the probability bound [pi.1, pi. u],
and test this new bound with classifier. We repeat this process
with another subregion until we can classify the object. This
"incremental refinement" scheme is usually faster than directly

979

II Algorithm
RS
L-SR
U-SR

Qualitication Prob. Bound
Upper
Lower
Upper

TABLE III
COMPLEXITY OF VERIFIERS.

Cost II

°(ICD)
O(ICIM)
O(ICIM)

computing qualification probabilities, since checking with a
classifier is cheap, and performing numerical integration on a
subregion is faster than on the whole uncertainty region, which
has a larger integration area than a subregion. The formulae
of this method can be found in [17].
We complete this section with a discussion on the imple-

mentation issues. We store the subregion probabilities (sij)
and the distance cdf values (Di (ej)) for all objects in the same
subregion as a list. These lists are indexed by a hash table, so
that the information of each subregion can be accessed easily.
The space complexity of this structure is O(C M). It can
be extended to a disk-based structure by partitioning the lists
into disk pages. The complexities of the verifiers are shown
in Table III. The three verifiers, as shown in Figure 5, are
arranged in the ascending order of these running costs. The
complexity of verification (including initialization and sorting
of candidate set objects) is O(lC (log C + M)), and is lower
than the evaluation of exact probabilities (O(C 2M)). The
derivation of these costs can be found in [17].

V. EXPERIMENTAL RESULTS
We have performed experiments to examine our solution.

We present the simulation setup in Section V-A, followed by
the results in Section V-B.

A. Experimental Setup
We use the Long Beach dataset', where the 53,144 intervals,

distributed in the x-dimension of 10K units, are treated as
uncertainty regions with uniform pdfs. For each C-PNN, the
default values of threshold (P) and tolerance (A) are 0.3 and
0.01 respectively. We suppose a user of the C-PNN is not
interested in small probabilities, by assuming P > 0.1. The
query points are randomly generated. Each point in the graph
is an average of the results for 100 queries.
We compare three strategies of evaluating a C-PNN. The

first method, called Basic, evaluates the exact qualification
probabilities using the formula in [5]. The second one, termed
VR, uses probabilistic verifiers and incremental refinement.
The last method (Refine) skips verification and performs
incremental refinement directly. All these strategies assume the
candidate set is ready i.e., filtering has already been applied
to the original dataset. On average, the candidate set has 96
objects.
The experiments, written in Java, are executed on a PC with

an Intel T2400 1.83GHz CPU and 1024MB of main memory.
We have also implemented the filtering phase by using the
R-tree library in [18].

1Available at http://www.census.gov/geo/www/tiger/.

B. Results

1. Cost of the Basic Method. We first compare the
time spent on the Basic with filtering. Figure 9 shows that the
fraction of total time spent in these two operations on synthetic
data sets with different data set sizes. As the total table size
lTl increases, the time spent on the Basic solution increases
more than filtering, and so its running time starts to dominate
the filtering time when the data set size is larger than 5000. As
we will show next, other methods can alleviate this problem.

2. Effectiveness of Verification. In Figure 10, we compare
the time required by the three evaluation strategies under a
wide range of values of P. Both Refine and VR perform better
than Basic. At P = 0.3, for instance, the costs for Refine
and VR are 80% and 16% of Basic respectively. The reason
is that both techniques allow query processing to be finished
once all objects have been determined, without waiting for
the exact qualification probabilities to be computed. For large
values of P, most objects can be classified as fail quickly
when their upper probability bounds are detected to be lower
than P. Moreover, VR is consistently better than Refine; it is
five times faster than Refine at P = 0.3, and 40 times faster at
P = 0.7. This can be explained by Figure 11, which shows the
execution time of filtering, verification and refinement for VR.
While the filtering time is fixed, the refinement time decreases
with P. The verification takes only Ims on average, and it
significantly reduces the number of objects to be refined. In
fact, when P > 0.3, no more qualification probabilities need
to be computed. Thus, VR produces a better performance than
Refine.
3. Comparison of Verifiers. Figure 12 shows the fraction of
objects labeled unknown after the execution of verifiers in the
order: {RS, L-SR, U-SR}. This fraction reflects the amount
of work needed to finish the query. At P = 0.1, about 75%
of unknown objects remain after the RS is finished; 7% more
objects are removed by L-SR; 15% unknown objects are left
after the U-SR is executed. When P is large, RS and U-SR
perform better, since they reduce upper probability bounds,
so that the objects have a higher chance of being labeled as
fail. L-SR works better for small P (as seen from the gap
between the RS and L-SR curves). L-SR increases the lower
probability bound, so that an object is easier to be classified as
satisfy at small P. In this experiment, U-SR performs better
than L-SR. This is because the candidate set size is large
(about 96 objects), so that the probabilities of the objects
are generally quite small. Since U-SR reduces their upper
probability bounds, they are relatively easy to be verified as
fail, compared with L-SR, which attempts to raise their lower
probability bounds.
4. Effect of Tolerance. Next, we measure the fraction
of queries finished after verification under different tolerance.
Figure 13 shows that as A increases from 0 to 0.2, more
queries are completed. When A = 0.16, about 10% more
queries will be completed than when A = 0. Thus, the use of
tolerance can improve query performance.
5. Gaussian pdf. Finally, we examine the effect of using

980

I . - . - - . - . - -. -

-L

120-

-Filtering

e Basic
0
C)0
a,
E
00

0

(u
U-

Total Set Size
Fig. 9. Basic vs. Filtering.

W 0.8

Q0.0

006

¢05

04_: 0 35

0

c

O 02
0

01

Fig. 12.

r r T 0.85

-RS
1< ~~~~~~~a)0.8-L-SR a I

-+-U-SR
7 0.75

- 0.6
E
o 0.65

o 0.6

0
0.55

0.2 0.25 0.3 0.35 IL °0&,
Threshold

RS, L-SR,and U-SR.

Basic
Refine
VR

100

-_ 80
cn
E
w 60

E 40
H- 40-

90

80

70

-_60
cn
E 50

a
40

30

20

10

n1

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

Fig. 10. Time vs. P.

EFiltering
Verification

*Refinement

0 0.1 0.3 0.5 0 0.9 1
Threshold

Fig. 11. Analysis of VR.

1 n0e5

1_l0e3C
E
aD 1.0e2

E
F e1.0el

Basic
Refine

1lOeO VR

0.05 0.1 0.15
Tolerance

Fig. 13. Effect of A.

1.0e-610.2 d.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

Fig. 14. Gaussian pdf.

a Gaussian distribution as the uncertainty pdf for each object.
Each Gaussian pdf, approximated by a 300-bar histogram, has
a mean at the center of its range, and a standard deviation of
1/6 of the width of the uncertainty region. Figure 14 shows the
time drawn in log scale. VR again outperforms the other two
methods. The saving is more significant than when uniform pdf
is used. This is because the probability evaluation of Gaussian
pdf is expensive, but this operation can be effectively avoided
by the verifiers. This experiment shows that our method also
works well with Gaussian pdf. The little time cost for both
Refine and VR at threshold P = 1 is due to the fact that
only one candidate, if any, can satisfy the query at P = 1. By
checking against these conditions, both methods can accept or
reject candidate objects with ease.

VI. CONCLUSIONS
Uncertainty management has recently attracted a lot of

research interest. In this paper, we studied the evaluation
of a C-PNN query on uncertain data. By using threshold
and tolerance constraints, a C-PNN provides users with more
flexibility in controlling the confidence and quality of their
answers. Moreover, by evaluating C-PNN with the help of
probabilistic verifiers, the problem of high costs for computing
exact probabilities can be alleviated. These verifiers allow
answers to be quickly determined, by using the different
properties of subregions to compute the probability bounds.
For future work, we will investigate other kinds of verifiers,
and study the evaluation of k-NN queries.

ACKNOWLEDGEMENTS

The work described in this paper was supported by the Re-
search Grants Council of the Hong Kong SAR, China (Project

No. PolyU 5138/06E). We would like to thank the anonymous
reviewers for their insightful comments and suggestions.

REFERENCES

[1] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
"Model-driven data acquisition in sensor networks," in Proc. VLDB,
2004.

[2] P. A. Sistla, 0. Wolfson, S. Chamberlain, and S. Dao, "Querying the
uncertain position of moving objects," in Temporal Databases: Research
and Practice, 1998.

[3] D.Pfoser and C. Jensen, "Capturing the uncertainty of moving-objects
representations," in Proc. SSDBM, 1999.

[4] C. Bohm, A. Pryakhin, and M. Schubert, "The gauss-tree: Efficient
object identification in databases of probabilistic feature vectors," in
Proc. ICDE, 2006.

[5] R. Cheng, D. Kalashnikov, and S. Prabhakar, "Evaluating probabilistic
queries over imprecise data," in Proc. ACM SIGMOD, 2003.

[6] J. Chen and R. Cheng, "Efficient evaluation of imprecise location-
dependent queries," in Proc. ICDE, 2007.

[7] M. Mokbel, C. Chow, and W. G. Aref, "The new casper: Query
processing for location services without compromising privacy," in
VLDB, 2006.

[8] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, "Querying imprecise
data in moving object environments," IEEE TKDE, vol. 16, no. 9, Sept.
2004.

[9] H. Kriegel, P. Kunath, and M. Renz, "Probabilistic nearest-neighbor
query on uncertain objects," in DASFAA, 2007.

[10] N. Dalvi and D. Suciu, "Efficient query evaluation on probabilistic
databases," in Proc. VLDB, 2004.

[11] 0. Mar, A. Sarma, A. Halevy, and J. Widom, "ULDBs: databases with
uncertainty and lineage," in VLDB, 2006.

[12] C. Mayfield, S. Singh, R. Cheng, and S. Prabhakar, "Orion:
A database system for managing uncertain data, ver. 0.1
(http:Horion.cs.purdue.edu)," 2006.

[13] V. Ljosa and A. K. Singh, "APLA: Indexing arbitrary probability
distributions," in Proc. ICDE, 2007.

[14] Singh et al, "Database support for pdf attributes," in Proc. ICDE, 2008.
[15] C. Dyreson and R. Snodgrass, "Supporting valid-time indeterminacy,"

ACM Trans. Database Syst., vol. 23, no. 1, 1998.

981

I I E

0 1

ei

Si
the L-SR, their values can then be reused by U-SR. We thus

vi 8xobtain pi.u in O(C M) times. The detailed derivation of this
.Xk OX cost can be found in [17].
L - ~~~E---- ---------

EnF=E- n-

Fig. 15. Correctness proof of U-SR.

[16] Y Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
"Indexing multi-dimensional uncertain data with arbitrary probability
density functions," in Proc. VLDB, 2005.

[17] R. Cheng, J. Chen, M. Mokbel, and C. Chow, "Efficient processing
of probabilistic nearest-neighbor queries over uncertain data (technical
report)," 2007. [Online]. Available: http://www.comp.polyu.edu.hk/
csckcheng/tech/pnnq.pdf

[18] M.Hadjieleftheriou, "Spatial index library version 0.44.2b." [Online].
Available: http://u-foria.org/marioh/spatialindex/index.html

APPENDIX I
CORRECTNESS OF THE U-SR VERIFIER

We now prove that Equation 5 is correct.
Proof: First, let F be the event "VTk C C, where k ti,

Xk > ej+l'", and F be the event "3Tk C C s.t. k :4 i A Xk <
ej+±". Again, we let N be the event "Ti is NN of q". Since
F and F are mutually exclusive, Pr(F) = 1-Pr(F). Using
the definition of E defined in Section IV-C, we can rewrite
Equation 7 as:

qij = Pr(NIEnF) .Pr(EnF)+Pr(NIEnF) .Pr(EnF) (10)

Figure 15 illustrates the relationship between the events E,
E, F and F. Each dotted line associated with each event
represents the possible values of Xk's if that event happens.

If E n F is true, then all tuples except Ti have their Xi's
values not smaller than ej+l. Since Xi < ej+l, it must be the
nearest neighbor. Thus, Pr(N E n F) = 1.

Next, suppose EnF is true. Then, in addition to Ti, m > 1
other tuple(s) is (are) on the left of ej+l. Since E is also
true, the values of Xk for all these m tuples must also be in
in Sj. Using Lemma 3, we can then deduce that Pr(NIE n
F) = The maximum value of Pr(N E nF) is 1, which
happens when m= 1.
Now, Pr(E n F) = Pr(F) since F c E (Figure 15).

Also, Pr(F) = HXk >ej+I Ak7i (-Dk(ej+l)), which can

be simplified as HUknsj+1 0AkAi(-Dk(ej+l)), since any
tuple Tk whose uncertainty region does not fall into Sj+±
must have Dk(ej+±) equal to zero. Moreover, Pr(E n F) =

Pr(E) -Pr(F) (Figure 8), with Pr(E) given by Equation 9.
By substituting these expressions into Equation 10, we can
obtain the expression of qij.u as stated in Equation 5. U

Notice that Equation 5 can be written as:

1 Y= I__Yj_+_
qij" (1 -Di(ej) 1 -Di(j+l (11)

where Yj and Yj+± are given by Equation 2. Hence, similar
to L-SR, qij.u can be obtained easily. If both Yj and Yj+±
have been stored (e.g., in a ID array) after the evaluation of

982

