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Abstract: This paper presents a rail-bridge coupling element of unequal lengths, in which the length of a bridge 

element is longer than that of a rail element, to investigate the dynamic problem of train-track-bridge interaction 

systems. The equation of motion in matrix form is given for a train-track-bridge interaction system with the present 

element. Numerical examples with two types of bridge models are chosen to illustrate the application of the present 

element. The numerical results show that, for the same length of rail element, (1) the dynamic responses of train, 

track and bridge obtained by the present element are almost identical to those obtained by the rail-bridge coupling 

element of equal length, and (2) compared with the rail-bridge coupling element of equal length, the present element 

can help to save computer time. Furthermore, the influence of the length of rail element on the dynamic responses of 

rail is significant. However, the influence of the length of rail element on the dynamic responses of bridge is 

insignificant. Therefore, the present element with a shorter rail element and a longer bridge element may be adopted 

to study the dynamic responses of a train-track-bridge interaction system. In addition, the numerical results show that 

there are deviations of the dynamic responses of vehicle, rail, and bridge based on the one-layer and two-layer track 

models, and the maximum deviations increase with the increase of the mass of sleeper. 
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1  Introduction   

The dynamic behaviour of railway bridges subjected to a moving loads has long been an interesting topic 

in the field of civil engineering. Some researchers studied the dynamic problem of railway bridges taking into 

account the effects of the track structure subjected to a moving vehicle or train. Le et al. [1] reported some 

numerical work and field measurements on ballast mats on high-speed bridges, where the rail and bridge were 

modelled as conventional Timoshenko beam elements. Cheng et al. [2] presented a bridge-track-vehicle 

element with a few single-wheel vehicles for investigating the vibration of railway bridges under a moving 

train taking into account the response of track structure. Majka et al. [3] proposed a numerical model to 

simulate the dynamic interaction between a train, rail track and bridge and applied the model to investigate the 

influence of dynamics effects on the vertical displacements of the Boyne Viaduct, Drogheda, Ireland. Wu and 

Yang [4] investigated the two-dimensional steady-state response and riding comfort of a train moving over a 

series of simply supported railway bridges, together with the impact response of the rails and the bridges. 

Based on the principle of a stationary value of total potential energy of dynamic systems [5, 6], Lou [7] and 

Lou and Zeng [8] derived the equations of motion in matrix form with time-dependent coefficients for three 

types of vehicle-track-bridge interaction elements considering one-, two- and four-wheelset vehicle models, in 

which the dynamic contact forces between the moving vehicle and the rails were considered as internal forces, 

and studied the dynamic responses of the vehicle-track-bridge interaction system. Furthermore, Lou [9] 

investigated the dynamic responses of the interaction system consisting of a moving train, track and bridge by 

using the finite element method. Zhai et al. [10] developed a high-speed train-track-bridge interaction model 

and analyzed the dynamic train-track-bridge interactive mechanism. Lee et al. [11] proposed a 

vehicle-track-bridge interaction analysis model and studied the effects of track on the response of bridge by 

finite element method. Biondi et al. [12] investigated the vibration of railway bridges under moving trains 

taking into account the track by a component-mode synthesis method. Li et al. [13] established a coupled 
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dynamic model of a suspension bridge taking into account the track subjected to a moving train and analyzed the 

dynamic properties of the bridge, track and train when assuming that ICE3 train was moving on the suspension 

bridge at a speed of 160~300 km/h. Wu et al. [14] developed a vehicle-rail-bridge interaction model for 

analyzing the three-dimensional dynamic interaction between the moving trains and the railway bridge. 

Besides the above papers have concerned the dynamic problem of the vehicle-track-bridge interaction, some 

monographs have devoted this subject. For example, Zhai [15], and Pan and Gao [16] proposed the theory and 

method for analysing the dynamic problem of the vehicle-track-bridge interaction. 

In the aforementioned works, most researchers established the finite element model of the track-bridge 

interaction system, in which a rail-bridge coupling element of equal length, i.e. with the length of rail element 

equal to that of bridge element, was adopted. With the length of bridge increases, then the degrees of freedom 

of the track-bridge interaction system increase. Therefore, the dynamic analysis of a track-bridge interaction 

system using the rail-bridge coupling element of equal length becomes relatively time consuming. Generally, 

the flexural rigidity and mass of rail are much smaller than those of bridge. Thus, the aim of this paper is to 

present a rail-bridge coupling element of unequal length, in which the length of a bridge element is longer than 

that of a rail element, for investigating the dynamic problem of a track-bridge interaction system subjected to a 

moving train. The present element not only gives satisfactory results, but also helps to save computer time. In 

addition, this paper can be regarded as an extension of the theory presented in references [7, 8]. A one-layer 

track model with sleeper ignored was adopted in references [7, 8], however, a two-layer track model with 

sleeper considered is applied in this paper. Compared with the former, the latter is close to the practical 

situation of track and can give the dynamic responses of sleepers. A numerical example is applied to 

investigate the effects of the two types of track models on the dynamic responses of vehicle, rail, and bridge. 

2  A rail-bridge coupling element of unequal lengths 

2.1 Model 
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In the present study, only the dynamic behaviour in the vertical plane is studied, while the axial 

deformations of rail and bridge are neglected. The two rails of a track are effectively treated as one in the 

subsequent analysis. Both the rail and bridge deck are modelled as a uniform Bernoulli-Euler beam. Figure 1 

shows a typical rail-bridge coupling element of unequal lengths, in which the length of bridge element is 

longer than that of rail element. The present coupling element consists of several rail elements of equal lengths, 

a bridge element, a few sleepers, a series of pads modelled as discrete massless springs with stiffness rsk  and 

dampers with damping coefficient rsc  connecting rail and sleepers, and a series of ballasts modelled as 

discrete massless springs with stiffness sbk  and dampers with damping coefficient sbc  connecting sleepers 

and bridge deck. In Figure 1, rl  denotes the length of rail element (LRE), bl  denotes the length of bridge 

element (LBE), spl  denotes the distance between two adjacent sleepers, and the black dots denote the nodes 

of the rail and bridge elements. The cubic Hermitian interpolation polynomials are used as shape functions of 

the rail and bridge elements. As axial deformations are neglected, each node in the rail and bridge elements has 

two degrees of freedom (DOFs), i.e. a vertical displacement and a rotation about an axis normal to the plane of 

paper. Each sleeper has only one DOF, i.e. a vertical displacement. Fig. 1 also shows the positive directions of 

these DOFs, which are measured with reference to their respective vertical static equilibrium positions if 

applicable. It is assumed that LBE is an integer number of times of LRE. 

2.2 Stiffness and damping matrices of discrete massless spring and damper 

In the present model, one end point of the discrete massless spring and damper connecting the sleeper has 

an independent DOF, while the other end point connecting the rail or bridge element has a dependent DOF. 

Considering the discrete massless spring and damper modelling a pad as shown in Fig. 2 as an example, the 

lower end point has an independent DOF, i.e. vertical displacement sy  of a sleeper, while the upper end point 

has a dependent DOF, which depends on the four DOFs of the i-th rail element. From the energy principle, the 
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stiffness matrix e
padk  of order 55×  of the discrete spring for a pad can be expressed as 
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where rsξ  denotes the distance between the left node of the i-th rail element and the discrete spring, as shown 

in Fig. 2. The damping matrix e
padc  of order 55×  of the discrete damper for a pad can be obtained by 

simply replacing “ rsk ” in the corresponding stiffness matrix e
padk  of Eq. (1) by “ rsc ”. Similarly, the stiffness 

matrix e
ballastk  of order 55×  of the discrete spring for ballast can be expressed as 
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where bsξ  denotes the distance between the left node of the i-th bridge element and the discrete spring, as 

shown in Fig. 3.  

3  Equation of motion for a train-track-bridge interaction system with the present element 

By using the energy principle, such as the principle of a stationary value of total potential energy of 
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dynamic systems [5, 6], one can derive the equation of motion written in sub-matrix form for the 

train-track-bridge interaction system as shown in Fig. 4 as 
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where M, C and K denote the mass, damping and stiffness sub-matrices respectively, X and F denote the 

displacement and force sub-vectors respectively, and the subscripts “v”, “r”, “s” and “b” denote vehicle, rail, 

sleeper and bridge, respectively. The formation of Eq. (3) from terms in the previous equations is further 

explained below. 

 The stiffness matrix e
padk  in Eq. (1) can be partitioned and used as follows in building up Eq. (3). 

Elements in the first four rows and the first four columns should be placed in the stiffness sub-matrix rrK . 

Elements in the first four rows in the last column should be placed in the stiffness sub-matrix rsK . Elements 

in the first four columns in the last row should be placed in the stiffness sub-matrix srK . The remaining 

element rsk  should be placed in the stiffness sub-matrix ssK . In a similar manner as e
padk , the damping 

matrix e
padc  can partitioned into four parts and used as damping sub-matrices rrC , rsC , srC  and ssC  in 

Eq. (3).  

 The stiffness matrix e
ballastk  in Eq. (2) can also be partitioned and used in building up Eq. (3). The 

element sbk  in the first row and first column should be placed in the stiffness sub-matrix ssK . Elements in 

the last four columns of the first row should be placed in the stiffness sub-matrix sbK . Elements in the last 

four rows of the first column should be placed in the stiffness sub-matrix bsK . Elements in the last four rows 
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and last four columns should be placed in the stiffness sub-matrix bbK . In a similar manner as e
ballastk , the 

damping matrix e
ballastc  can partitioned into four parts and used as damping sub-matrices ssC , sbC , bsC  

and bbC  in Eq. (3). 

 The displacement sub-vectors, the mass, damping and stiffness sub-matrices, and the force sub-vectors of 

the vehicles, rail, sleepers and bridge are elaborated in the following sections. 

3. 1  Displacement vectors 

It is assumed the number of vehicles on the track concerned is vN , as shown in Fig. 4. The displacement 

sub-vector of sleepers sX  of order 1s ×N  can be written as 

T
ss2s1s ][

sNyyy =X                                               (4) 

where sN  denotes the total number of sleepers as well as the total number of DOFs of sleepers. To reduce 

the repetition, the expressions of the displacement sub-vectors vX  of vehicles, rX  of rail, and bX of 

bridges are not given here and can be found in reference [9].   

3. 2  Sub-matrices of vehicles 

The expressions of the mass sub-matrix vvM , the stiffness sub-matrix vvK , and the damping 

sub-matrix vvC  are also not given here and can be found in reference [9].   

3. 3  Sub-matrices of rail 

The sub-matrices of rail are marked with subscript “rr”. The mass sub-matrix of the rail rrM  of order 

rr NN ×  can be written in terms of the overall mass matrix rr1M  of the rail itself and the overall mass 

matrix rr2M  induced by all wheelset masses as 

rr2rr1rr MMM +=                                                         (5) 
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as elaborated below. The overall mass matrix rr1M  of the rail itself is obtained by assembling all its element 

mass matrices ∫
r

0
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irN  ( i =1, 2, …, rn ) is the shape function matrix for the i-th rail element of order r1 N× . It should be noted 

for irN  that, apart from those elements corresponding to four DOFs of the two nodes of the i-th rail element, 

all other elements are zero. In the formulation of the overall mass matrix rr2M  induced by all wheelset 

masses, ξ  denotes the local coordinate measured from the left node of a beam element; as shown in Fig. 5, 

the local coordinate jhξ  (h = 1 - 4) denotes the distance between the h-th wheelset of the j-th vehicle and the 

left node of the rail element on which the wheelset is acting; and the shape function matrix for the rail element 

jhN  (h = 1 - 4) of order r1 N×  is evaluated at the position of the h-th wheelset of the j-th vehicle. It should 

be noted for jhN  (h = 1 - 4) that, apart from those elements corresponding to four DOFs of the two nodes of 

the rail element on which the h-th wheelset of the j-th vehicle is acting, all other elements are zero. 

The stiffness sub-matrix rrK  of rail of order rr NN ×  can be similarly expressed in terms of the 

overall stiffness matrix rr1K  of the rail itself, the overall stiffness matrix rr2K  induced by all vehicles and 

the overall stiffness matrix rr3K  induced by the stiffness of all pads as 
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u
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as elaborated below. The overall stiffness matrix rr1K  of the rail itself is obtained by assembling all its 

element stiffness matrices ∫ ′′′′
r

0
r

T
rrr

l

ii dIE ξNN  of order rr NN × , in which rE  denotes Young’s modulus 

of the rail, rI  denotes the constant moment of inertia of the rail cross section, and the prime denotes 

differentiation with respect to the local coordinate ξ . In the formulation of the overall stiffness matrix rr3K  

induced by the stiffness of all pads, the shape function matrix u,rN  (u=1, 2, …, sN ) of order r1 N×  for 

the rail element is evaluated at the position of the u-th pad, and u,rξ  denotes the distance between the u-th 

pad and the left node of the rail element containing the u-th pad, as shown in Fig. 5. It should be noted for 

u,rN  (u=1, 2, …, sN ) that, apart from those elements corresponding to four DOFs of the two nodes of the 

rail element containing the u-th pad, all other elements are zero.  

Similarly, the damping sub-matrix rrC  of rail of order rr NN ×  can be written in terms of the overall 

damping matrix rr1C  induced by all vehicles and the overall damping matrix rr2C  induced by the damping 

of all pads as 

rr2rr1rr CCC +=                                                           (7) 
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3. 4  Sub-matrices of sleepers 

The sub-matrices of sleepers are marked with subscript “ss”. The mass sub-matrix ssM , stiffness 

sub-matrix ssK , and damping sub-matrix ssC  of order ss NN ×  of sleepers can be written respectively as 

][diagss sss mmm =M                                              (8) 

][diag sbrssbrssbrsss kkkkkk +++= K                                (9) 
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][diag sbrssbrssbrsss cccccc +++= C                                (10) 

where sm  denotes the mass of each sleeper. 

3. 5  Sub-matrices of bridges 

The sub-matrices of bridges are marked with subscript “bb”. The mass sub-matrix bbM  of order 

bb NN ×  of bridges can be written as 

][diag
bbb2b1bb NMMMM =                                       (11) 

where the mass matrix ibM  ( i =1, 2, …, bN ) of the i-th multi-span continuous bridge of order ii nn bb ×  

can be written as 
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in which bm  denotes the mass per unit length of bridge, jbN  ( j =1, 2, …, inb ) is the shape function 

matrix for the j-th element of the i-th bridge of order inb1× , and inb  is the total number of degrees of 

freedom of the i-th multi-span continuous bridge. It should be noted for jbN  that, apart from those elements 

corresponding to four DOFs of the two nodes of the j-th element, all other elements are zero.  

    The stiffness sub-matrix bbK  of order bb NN ×  of bridges can be written as 

][diag
bbb2b1bb NKKKK =                                        (13) 

where ibK  ( i =1, 2, …, bN ) of order ii nn bb ×  denotes the stiffness matrix of the i-th multi-span 

continuous bridge. The stiffness matrix ibK  can be written in terms of the overall stiffness matrix 1biK  of 

the i-th bridge itself and the overall stiffness matrix 2biK  induced by the stiffness of ballast on the i-th bridge 

as 

2b1bb iii KKK +=                                                        (14) 
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with        ∑∫
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where bE  denotes Young’s modulus of the bridge, bI  is the constant moment of inertia of the bridge 

cross-section, iNsb  denotes the total number of discrete ballast segments on the i-th bridge, g,bN  (g=1, 2, 

…, iNsb ) of order inb1×  is the shape function matrix of the bridge element evaluated at the position of the 

g-th discrete ballast segment, and g,bξ  denotes the distance between the g-th discrete ballast segment and the 

left node of the bridge element supporting it, as shown in Fig. 5. It should be noted for g,bN  (g=1, 2, …, 

iNsb ) that, apart from those elements corresponding to four DOFs of the two nodes of the bridge element 

containing the g-th discrete ballast, all other elements are zero. 

Similarly, the damping sub-matrix bbC  of order bb NN ×  of bridges can be written as 

][diag
bbb2b1bb NCCCC =                                         (15) 

where ibC  ( i =1, 2, …, bN ) of order ii nn bb ×  denotes the damping matrix of the i-th multi-span 

continuous bridge. The damping matrix ibC  can be written in terms of the overall damping matrix 1biC  of 

the i-th bridge itself and the overall damping matrix 2biC  induced by the damping of ballast on the i-th 

bridge as 

2b1bb iii CCC +=                                                         (16) 

with        ∑
=

=
iN

g
ggi c
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,b

T
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Based on the assumption of Rayleigh damping, the damping matrix 1biC  of order ii nn bb ×  of the i-th 

bridge itself can be computed as 

            1bb1b iii KMC ⋅+⋅= βα                                                  (17) 
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Given the damping ratio ζ  and the first two natural circular frequencies of vibration of the bridge 1ω  and 

2ω , the coefficients can be determined as )/(2 2121 ωωωζωα +=  and )/(2 21 ωωζβ +=  [4]. 

3. 6  Sub-matrices for vehicle-rail interaction 

The sub-matrices for vehicle-rail interaction are marked with subscript “vr” or “rv”. The sub-matrices 

vrK , rvK , vrC  and rvC  can be worked out similarly. Their full expressions are not given here and can be 

found in reference [9]. 

3. 7  Sub-matrices for rail-sleeper interaction 

The sub-matrices for rail-sleeper interaction are marked with subscript “rs” or “sr”. The stiffness 

sub-matrix rsK  and the damping sub-matrix rsC  of order sr NN ×  for the stiffness and damping, 

respectively, of pads between the rail and sleepers can be written as 

           [ ]T
,rrs

T
,rrs

T
2,rrs

T
1,rrsrs sNu kkkk NNNNK −−−−=                     (18) 

   [ ]T
,rrs

T
,rrs

T
2,rrs

T
1,rrsrs sNu cccc NNNNC −−−−=                      (19) 

In addition, one also has T
rssr KK =  and T

rssr CC = . 

3. 8  Sub-matrices for sleeper-bridge interaction 

The sub-matrices for sleeper-bridge interaction are marked with subscript “sb” or “bs”. The stiffness 

sub-matrix bsK  of order bs,b NN ×  induced by the stiffness of ballast between the bridge and sleepers can 

be written as 

][diag
bbsbs2bs1bs NKKKK =                                       (20) 

where ibsK  ( i =1, 2, …, bN ) of order ii nn bs,b ×  denotes the stiffness matrix induced by the stiffness of 

ballast between the i-th bridge and sleepers on it, bs,N  denotes the total number of sleepers on bridges, and 

in bs,  denotes the number of sleepers on the i-th bridge. The stiffness matrix ibsK  can be written as 

        [ ]T
,bsb

T
,bsb

T
2,bsb

T
1,bsbbs b,s ingi kkkk NNNNK −−−−=                 (21) 
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Similarly, the damping sub-matrix bsC  of order bs,b NN ×  induced by the damping of ballast 

between the bridge and sleepers on it can be written as 

][diag
bbsbs2bs1bs NCCCC =                                        (22) 

with        [ ]T
,bsb

T
,bsb

T
2,bsb

T
1,bsbbs b,s ingi cccc NNNNC −−−−=   

In addition, one also has T
bssb KK =  and T

bssb CC = . 

3. 9  Force sub-vectors of vehicles, rail, sleepers and bridge 

The force sub-vectors vF  of order 16 v ×N  of vehicles and rF  of order 1r ×N  of rail can be 

worked out accordingly. Their full expressions are not given here and can be found in reference [9]. Each 

element in the force sub-vectors sF  of order 1s ×N  of sleepers and bF  of order 1b ×N  of bridges is 

zero. 

Eq. (3) can be solved by the step-by-step integration method, such as Newmark-β  method [17] or 

Wilson-θ  method [18], to obtain simultaneously the dynamic responses of train, track and bridges. Eq. (3) 

has been written on the assumption that vN  vehicles are acting on the track concerned. If certain vehicles are 

not on the track concerned, the corresponding rows and columns of the matrix equation should be deleted. 

4  Numerical examples 

The present element is applied in the following three examples. The first one is to illustrate the efficiency 

of the present element. The second one is to investigate the effect of LRE on the dynamic responses of the 

train-track-bridge interaction system. The last one is to investigate the effects of two types of track models on 

the dynamic responses of vehicle, rail, and bridge. Five identical vehicles are considered to run over a 

track-bridge coupling system shown in Fig. 4. The parameters of vehicle are listed in Table 1. In the 

track-bridge coupling system, the central part of railway track is supported on bridge, while the left and right 

parts of railway track are supported on embankment. The railway track is assumed to be smooth and 
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continuous throughout, while the lengths of left and right parts of track considered are both 20 m. The 

parameters of bridge and track listed respectively in Tables 1 and 2 are adopted in this section unless otherwise 

stated. Two types of bridge models are applied in the sections 4.1 and 4.2. One comprises three single-span 

simply supported bridges each of 20 m, with a total length of 60 m. The other is a 3-span continuous bridge 

with spans of 20 m. To solve the equation of motion for the train-track-bridge interaction system, the 

Wilson-θ  method is used with θ = 1.4 and moving length of 0.1 m of vehicles along track for each time step. 

The analysis is performed by applying the speed from 10 m/s to 200 m/s at 2.5 m/s interval. 

4.1 Example 1: Two types of rail-bridge coupling elements of equal LRE and unequal LBE 

To illustrate the efficiency of the present element, the following two cases are studied.  

Case I: Analysis using rail-bridge coupling element of equal length, with LRE = LBE = 0.625 m; and 

Case II: Analysis using the present element, with LRE = 0.625 m and LBE = 5.0 m.  

    It should be noted that LRE is the same for Cases I and II, but LBE is unequal. The dynamic responses of 

vehicle, rail, sleeper and bridge of two bridge configurations for Cases I and II at various vehicle speeds are 

plotted in Figs. 6-12. For convenience hereafter, SB denotes the arrangement of 3 simply supported bridges 

while CB denotes a 3-span continuous bridge. Fig. 6 shows the maximum vertical acceleration at the centroid 

of the last car body. Figs. 7 and 8 show respectively the maximum vertical displacement and maximum 

bending moment of the rail at the middle of central span. Figs. 9 and 10 show respectively the maximum 

vertical displacement and maximum vertical acceleration of the sleeper immediately to the right of the middle 

of central span. Figs. 11 and 12, respectively, plot the maximum vertical displacement and maximum bending 

moment of the bridge at the middle of central span. The simply supported bridges, being less stiff, display 

resonance roughly at a train speed of 160 m/s and mostly give higher dynamic responses compared with those 

of the continuous bridge. For the same bridge model, excellent agreement between the dynamic responses of 
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Cases I and II can be observed from Figs. 6-12 as elaborated below. The major difference here is that Case I 

uses 8 bridge elements to model a bridge length of LBE = 5.0 m, while Case II uses just one bridge element. In 

spite of the theoretical discrepancies between the displacement functions of Cases I and II, excellent agreement 

is obtained because the structural response is largely governed by the much higher flexural rigidity of bridge.      

Compared with the rail-bridge coupling element of equal length, the present element helps to save 

computer time because of the drastic reduction of DOFs. For example, the total CPU times for Cases I and II 

for 3 simply supported bridges are 18972 s and 10413 s on a 2.4 GHz personal computer, respectively, and the 

ratio of the latter to the former is 0.549. Similarly, the total CPU times for Cases I and II for a continuous 

bridge are 18455 s and 10155 s, respectively, and the ratio of the latter to the former is 0.55.  

4.2 Example 2: Two types of rail-bridge coupling elements of unequal LRE and equal LBE 

 To investigate the effect of LRE on the dynamic responses of the train-track-bridge interaction system, 

the following two cases are studied.  

Case II: Analysis using the present element, with LRE = 0.625 m and LBE = 5.0 m; and 

Case III: Analysis using rail-bridge coupling element of equal length, with LRE = LBE = 5.0 m.  

It can be seen that LRE is unequal for Cases II and III, but LBE is the same. The dynamic responses of 

vehicle, rail, sleeper and bridge of two bridge configurations for Cases II and III at various vehicle speeds are 

plotted in Figs. 13-19. Fig. 13 shows the maximum vertical acceleration at the centroid of the last car body. 

Figs. 14 and 15 show respectively the maximum vertical displacement and maximum bending moment of the 

rail at the middle of central span. Figs. 16 and 17 show respectively the maximum vertical displacement and 

maximum vertical acceleration of the sleeper immediately to the right of the middle of central span. Figs. 18 

and 19, respectively, plot the maximum vertical displacement and maximum bending moment of the bridge at 

the middle of central span. Figs. 14 and 15 show that, for the same bridge configuration, there are obvious 
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differences between Cases II and III for the rail responses. Figure 16 shows negligible difference in maximum 

vertical displacement of sleeper between Cases II and III for the same bridge configuration. However, Figure 

17 shows obvious difference in maximum vertical acceleration of sleeper between Cases II and III for the 

same bridge configuration, as acceleration is more sensitive to small variations than displacement. As seen 

from Figs. 18 and 19, the differences between Cases II and III for the bridge responses are insignificant. From 

Tables 1 and 2, the ratio of flexural rigidity of bridge to that of rail is about 8460, while the ratio of mass per 

unit length of bridge to that of rail is about 281. As the stiffness and mass of the bridge are much larger than 

those of the rail, the bridge responses are little affected by the modelling of the rail. However if accurate rail 

responses are needed, sufficiently fine mesh should be adopted for the rail. Therefore the rail responses given 

by Case II in Figs. 14 and 15 are more accurate than those of Case III. This is especially the case for bending 

moments.   

4.3 Example 3: The effects of two types of track models on the dynamic responses of vehicle, rail, and 

bridge 

In this example, let us consider a simply supported bridge of 20 m length with two types of track models. 

One is a one-layer track model with sleeper ignored, and the other one is a two-layer track model with sleeper 

considered applied in this paper. The total length of each track model is 60 m. LRE = 0.625 m and LBE = 5.0 

m are adopted. The stiffness rbk  of discrete spring between rail and bridge in the one-layer track model can 

be obtained by considering rsk  and sbk  as series connection in the two-layer track model with sleeper 

ignored, i.e., )/( sbrssbrsrb kkkkk +⋅= . Similarly, the damping coefficient rbc  of discrete damper between 

rail and bridge in the one-layer track model can be obtained by )/( sbrssbrsrb ccccc +⋅= . To study the effect 

the mass sm  of a sleeper in the two-layer track model on the dynamic responses of vehicle, rail, and bridge, 

three masses of 340 kg, 680 kg, and 1020 kg are applied, respectively. The other parameters are the same as 
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Tables 1 and 2.  

To observe the effects of track model on the dynamic responses of vehicle, rail, and bridge, the deviation 

eD  between the dynamic response based on the one-layer track model and that based on the two-layer track 

model is determined according to the definition   

%100
2

21
e ×

−
=

dyn
dyndynD                                        (23) 

where 1dyn  and 2dyn  are the dynamic responses based on the one-layer and two-layer track models, 

respectively. The deviations of the dynamic responses of vehicle, rail, and bridge at various vehicle speed 

based on the one-layer track model and the two-layer track model with sm = 340 kg, 680 kg, and 1020 kg are 

plotted in Figs. 20-24. Fig. 20 shows the deviations of maximum vertical acceleration at the centroid of the last 

car body. Figs. 21 and 22 show respectively the deviations of the maximum vertical displacement and 

maximum bending moment of the rail at the mid-span of the bridge. Figs. 23 and 24 plot the deviations of the 

maximum vertical displacement and maximum bending moment of the bridge at the mid-span, respectively. It 

can be seen, from Figs. 20-24, that there are deviations of the dynamic responses based on the one-layer and  

two-layer track models, and the maximum deviations of the dynamic responses increase with the increase of 

the mass of sleeper. The reason for which will be explained as follows.    

    From Yang et al. [19], it is known that the dimensionless resonant speed parameter is 

)2/( bres nLdS =                                                 (24) 

where d  is the vehicle length, bL  the bridge span length, and n  is positive integer. Furthermore, from 

Yang et al. [20], the speed parameter S  is taken as  

)/( b1LvS ωπ=                                                  (25) 

where 1ω  is the natural fundamental circular frequency of bridge, v  is the seed of vehicle. Substituting Eq. 

(25) into Eq. (24), the resonant speed can be written as 
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)2/(1 ndv ⋅= πω                                                 (26) 

From Frýba [21], the natural fundamental circular frequency of a simply supported bridge is 

)/( 4
bbbb

2
1 LmIE ⋅⋅= πω                                        (27) 

For the bridge taking into account the effect of track, the bm  in Eq. (27) should be included the mass of track. 

Therefore, for the two-layer track model, when the mass sm  of sleeper increases, the bm  in Eq. (27) will 

increase and the 1ω  in Eq. (27) will decrease. Furthermore, the resonant speed v  in Eq. (26) will also 

decrease. This can be verified by Figs. 25 and 26. Figs. 25 and 26 plot the maximum vertical displacements 

and maximum bending moments of the bridge at the mid-span with the one-layer track model and the 

two-layer track model of sm = 340 kg, 680 kg, and 1020 kg, respectively. It can be seen from Figs. 25 and 26 

that , with the increase of the mass of sleeper, the resonant speed decreases and the shift distance of the curve 

increases, which results in that the difference between the curve based on the two-layer track model and that 

based on the one-layer track model at a certain speed increases.  

5  Concluding remarks 

Based on the obvious difference of flexural rigidity between rail and bridge, the rail-bridge coupling 

element of unequal lengths has been presented. The dynamic responses of a train-track-bridge interaction 

system with two types of bridge configurations have been modelled using rail-bridge coupling elements of 

unequal lengths and equal lengths. In addition, the effects of two types of track models on the dynamic 

responses of vehicle, rail, and bridge have been investigated. From the numerical results, the following 

conclusions can be reached. 

(1) In modelling a train-track-bridge interaction system, the dynamic responses obtained by the present 

rail-bridge coupling element of unequal lengths agree very well with those obtained by the rail-bridge coupling 

element of equal length if rail elements of the same length are used. In addition, the present element helps to 
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save computer time. 

(2) In analysis of a train-track-bridge interaction system using rail-bridge coupling elements having the 

same length of bridge element, the influence of length of rail element on the rail responses is significant, but 

the influence of length of rail element on the bridge responses is insignificant.  

(3) If one is interested in the dynamic responses of the entire train-track-bridge interaction system, the 

present element with shorter rail elements and a longer bridge element may be adopted. This not only gives 

satisfactory results, but also helps to save computer time.  

(4) The one-layer track model with sleeper ignored and the two-layer track model with sleeper considered 

affect the natural frequency of bridge. Therefore, there are deviations of the dynamic responses of vehicle, rail, and 

bridge based on the one-layer and two-layer track models, and the maximum deviations increase with the increase of 

the mass of sleeper. 

(5) The approach of the present coupling element can be extended to composite structures with obvious 

difference in flexural rigidity.   
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Figure 1. A typical rail-bridge coupling element of unequal lengths 
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Figure 2. A sleeper and pad attached to the i-th rail element 
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Figure 3. A sleeper and ballast attached to the i-th bridge element 
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Figure 4. A typical train-track-bridge interaction system 
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Figure 5. The j-th vehicle running on rail-bridge coupling elements of unequal lengths 
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Figure 6. The maximum vertical acceleration at centroid of last car body at various speeds for Cases I and II  

(SB: simply supported bridge; CB: continuous bridge) 
 

 
 

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

v (m/s)

M
ax

im
um

 v
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

 

 

LRE 0.625 m  LBE 0.625 m
LRE 0.625 m  LBE 5.0 m

SB

CB

 
Figure 7. The maximum vertical displacement of rail at middle of central span at various train speeds for Cases 

I and II (SB: simply supported bridge; CB: continuous bridge) 
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Figure 8. The maximum bending moment of rail at middle of central span at various train speeds for Cases I 

and II (SB: simply supported bridge; CB: continuous bridge) 
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Figure 9. The maximum vertical displacement of the sleeper immediately to the right of middle of central span at 

various train speeds for Cases I and II (SB: simply supported bridge; CB: continuous bridge) 
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Figure 10. The maximum vertical acceleration of the sleeper immediately to the right of middle of central span at 

various train speeds for Cases I and II (SB: simply supported bridge; CB: continuous bridge) 
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Figure 11. The maximum vertical displacement of bridge at middle of central span at various train speeds for 

Cases I and II (SB: simply supported bridge; CB: continuous bridge) 
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Figure 12. The maximum bending moment of bridge at middle of central span at various train speeds for Cases 

I and II (SB: simply supported bridge; CB: continuous bridge) 
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Figure 13. The maximum vertical acceleration at centroid of last car body at various train speeds for Cases II 

and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 14. The maximum vertical displacement of rail at middle of central span at various train speeds for 

Cases II and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 15. The maximum bending moment of rail at middle of central span at various train speeds for Cases II 

and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 16. The maximum vertical displacement of the sleeper immediately to the right of middle of central span 

at various train speeds for Cases II and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 17. The maximum vertical acceleration of the sleeper immediately to the right of middle of central span at 

various train speeds for Cases II and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 18. The maximum vertical displacement of bridge at middle of central span at various train speeds for 

Cases II and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 19. The maximum bending moment of bridge at middle of central span at various train speeds for Cases 

II and III (SB: simply supported bridge; CB: continuous bridge) 
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Figure 20. The deviations of maximum vertical acceleration at the centroid of the last car body at various speeds 
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Figure 21. The deviations of the maximum vertical displacement of rail at the mid-span of the bridge at various 

speeds 
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Figure 22. The deviations of the maximum benidng moment of rail at the mid-span of the bridge at various speeds 
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Figure 23. The deviations of the maximum vertical displacement of bridge at the mid-span at various speeds 
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Figure 24. The deviations of the maximum bending moment of bridge at the mid-span at various speeds 
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(a) full figure 
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(b) local figure 

Figure 25. The maximum vertical displacements of bridge at the mid-span with two types of track models at 
various speeds 
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(b) local figure 

Figure 26. The maximum bending moments of bridge at the mid-span with two types of track models at various 
speeds 
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Tables 
 

Table 1. Parameters of vehicle and bridge in numerical examples 

Notation Parameter Value 
Vehicle   
mc Mass of car body 4.175×104 kg 
Jc Mass moment of inertia of car body 2.08×106 kg⋅m2 
Ld Longitudinal distance between the centre of rear bogie of a 4-wheelset 

vehicle and the centre of front bogie of the following 4-wheelset vehicle 
6.0 m 

ks Spring stiffness of the second suspension system 5.3×105 N/m 
cs Damping coefficient of the second suspension system 9.02×104 N⋅s/m 
L1 Longitudinal distance between the centres of gravity of car body and rear 

bogie 
8.75 m 

L2 Longitudinal distance between the centres of gravity of car body and front 
bogie 

8.75 m 

mt Mass of a bogie frame 3.04×103 kg 
Jt Mass moment of inertia of a bogie frame 3.93×103 kg⋅m2 
Lt Half of bogie axle base 1.25 m 
kp Spring stiffness of the primary suspension system 1.18×106 N/m 
cp Damping coefficient of the primary suspension system 3.92×104 N⋅s/m 
mw Mass of a wheelset 1.78×103 kg 
   
Bridge   
Eb Young’s modulus 2.943×1010 Pa 
Ib Moment of inertia 3.81 m4 

bm  Mass per unit length 3.4088×104 kg/m 

bζ  Damping ratio 0.02 
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Table 2. Parameters of track 

Notation Parameter Value 
Lr Total length of track structure concerned 100 m 
Er Young’s modulus 2.06×1011 Pa 
Ir Moment of inertia 2×3.217×10-5 m4 

rm  Mass per unit length 2×60.64 kg/m  

ms Mass of a sleeper 340 kg 
lsp Spaces between two adjacent sleepers 0.625 m 
krs Stiffness of discrete spring reflecting the property of rail pad 2×6.0×107 N/m 
crs Damping coefficient of discrete damper reflecting the property of rail pad 2×7.5×104 N⋅s/m 
ksb Stiffness of discrete spring reflecting the property of ballast 2×2.25×108 N/m 
csb Damping coefficient of discrete damper reflecting the property of ballast 2×6.0×104 N⋅s/m 
 
 


