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Abstract: In this paper, the effects of viscous dissipation and the temperature-dependent thermal 

conductivity on an unsteady flow and heat transfer in a thin liquid film of a non-Newtonian 

Ostwald-de Waele fluid over a horizontal porous stretching surface is studied. Using a similarity 

transformation, the time- dependent boundary-layer equations are reduced to a set of non-linear 

ordinary differential equations. The resulting five parameter problem is solved by the Keller-Box 

method. The effects of the unsteady parameter on the film thickness are explored numerically for 

different values of the power-law index parameter and the injection parameter. Numerical results 

for the velocity, the temperature, the skin friction and the wall-temperature gradient are 

presented through graphs and tables for different values of the pertinent parameter. One of the 

important findings of the study is that the film thickness increases with an increase in the power-

law index parameter (as well as the injection parameter). Quite the opposite is true with the 

unsteady parameter. Furthermore, the wall-temperature gradient decreases with an increase in the 

Eckert number or the variable thermal conductivity parameter. Furthermore, the surface 

temperature of a shear thinning fluid is larger compared to the Newtonian and shear thickening 

fluids. The results obtained reveal many interesting behaviors that warrant further study of the 

equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena.  

Keywords: Thin film flow, heat transfer, variable fluid property, power-law fluid, viscous 

dissipation, numerical method. 

 

1. Introduction 

During the past two decades, due to its applications to several areas in science and engineering, 

considerable attention has been devoted to the study of flow and heat transfer within a thin liquid 
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film on an unsteady stretching sheet. These areas include extrusion processes, wire and fiber 

coating, polymer processing, food stuff processing, design of various heat exchangers and 

chemical processing equipment, etc. In particular, in melt-spinning processes, the extrudate from 

the die is generally drawn and simultaneously stretched into a filament or sheet, which is then 

solidified through rapid quenching or gradual cooling by direct contact with water or chilled 

metal rolls. In fact, stretching imparts a unidirectional orientation to the extrudate and, as a 

consequence, the quality of the final product depends considerably on the flow and heat transfer 

mechanism. Therefore, the analysis of momentum and thermal transport within a thin liquid film 

on a continuously stretching surface is important for gaining some fundamental understanding of 

such processes. Motivated by the process of polymer extrusion, in which the extrudate emerges 

from a narrow slit, Crane [1] examined the Newtonian fluid flow induced by the stretching of an 

elastic flat sheet. Subsequently, several extensions related to Crane’s [1] flow problem were 

made for different physical situations (see [2-6]). In these studies [1-6], the boundary layer 

equation is considered and the boundary conditions are prescribed at the sheet and on the fluid at 

infinity. Imposition of a similarity transformation reduced the system to a set of ordinary 

differential equations (ODEs), which was then solved analytically or numerically. 

All the above mentioned studies deal with flow and/or heat transfer from a stretching sheet in a 

fluid medium extending to infinity. However, in real physical situations involving coating 

processes, one needs to consider the fluid adhering to the stretching sheet as a finite liquid film. 

Wang [7] was the first to consider such a flow problem with a finite liquid film of a Newtonian 

fluid over an unsteady stretching sheet. Later, Usha and Sridharan [8] considered a similar 

problem of axi-symmetric flow in a liquid film. Dandapat et al. [9] investigated the effects of 

variable fluid properties and thermo-capillarity on the flow and heat transfer in a liquid film on a 

horizontal stretching sheet. Further, Liu and Andersson [10] explored the work of [7] to study the 

thermal characteristics of liquid film on an unsteady stretching surface. Abel et al. [11] studied 

the heat transfer problem for a thin liquid film in the presence of an external magnetic field with 

viscous dissipation. Nadeem and Awais [12] analyzed the effect of a thin film flow over an 

unsteady shrinking sheet with variable viscosity. Recently, Aziz et al. [13] addressed the 

influence of internal heat generation/absorption on the flow and heat transfer in a thin film on an 

unsteady stretching sheet. 
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It should be noted that the flow and heat transfer characteristics are affected not only by the 

velocity and the thermal boundary conditions but also by the physical properties of the liquid-

film. Furthermore, the study of non-Newtonian fluid flow on an unsteady stretching surface is 

important. Although the fluid employed in material processing or protective castings are 

generally non-Newtonian (example, most of the paints), there has been a very little work done on 

the flow and heat transfer of a non-Newtonian liquid film over a stretching surface. Among the 

most popular rheological models of non-Newtonian fluids is the power-law or Ostwald-deWaele 

model. This model deals with a simple non-linear equation of state for inelastic fluids; this 

includes linear Newton-fluids as a special case. The power- law model provides an adequate 

representation of many non-Newtonian fluids for range of shear rates. For instance, Andersson et 

al. [14] carried out a numerical study for the hydro-dynamical problem of a power-law fluid flow 

with in a liquid film over a stretching sheet. Here, the thermo-physical properties of the ambient 

fluid are assumed to be constant. However, it is well known that these properties may change 

with temperature, especially the thermal conductivity. Available literature [15-17] on variable 

thermal conductivity shows that this type of work has not been carried out for non-Newtonian 

fluid obeying the Ostwald-de Waele power-law model. 

The purpose of the present study is to explore the effects of thermo-physical property, namely, 

the variable thermal conductivity and the viscous dissipation on the heat transfer of an 

incompressible power-law liquid thin film on an unsteady porous stretching surface. In non-

Newtonian liquid thin film flow, the effects of variable thermal conductivity, power law index, 

and viscous dissipation play a significant role in the heat transfer process. Here, the momentum 

and energy equations are highly non-linear. Hence, a similarity transformation is used to 

transform the non-linear partial differential equations into nonlinear ordinary differential 

equations. Due to its complexity and nonlinearity, the proposed problem, is solved numerically 

by a finite difference scheme known as the Keller box method. The obtained numerical results 

are used to analyze the flow and heat transfer characteristics of the power-law liquid film that 

would find applications in manufacturing industries. 
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Consider an unsteady, two-dimensional, viscous, laminar flow and heat transfer of an 

incompressible non-Newtonian thin fluid film obeying a power-law model.  The flow is due to 

the stretching of a porous elastic sheet parallel to the x-axis at y = 0. Two equal and opposite 

forces are applied along the x-axis, keeping the origin fixed. A schematic representation of the 

physical model is presented in figure 1. The continuous stretching sheet is assumed to have a 

prescribed velocity ),sU x t and temperature ( ).,sT x t  Further, a thin liquid film of uniform 

thickness h(t) rests on the horizontal sheet. With the above assumptions, the equations of 

conservation of mass, momentum, and energy can be written as 

 v 0,u
x y

∂ ∂
+ =

∂ ∂
                                                                                                                   (2.1)
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where u and v are the velocity components along the x and y directions, respectively; ρ is the 

density, xyτ  is the shear stress. Here, we assume the shear stress as   

,
n

xy
uK
y

τ
⎛ ⎞∂

= − −⎜ ⎟∂⎝ ⎠
                                                                                                                      (2.4) 

where is the consistency coefficient and n is the flow behavior index, namely, the power-law 

index. The fluid is Newtonian for n

K

K1= with μ= (the absolute viscosity).  As n deviates from 

unity, the fluid becomes non-Newtonian: For example, n 1<   and  correspond to shear 

thinning (pseudo plastic) and shear thickening (dilatants) fluids, respectively.  Further, C  is the 

specific heat at constant pressure, T is the temperature, and 

1n >

p

( )

0

Tκ is the temperature-dependent 

variable thermal conductivity. For liquid metals, the thermal conductivity varies linearly with 

temperature in the range 0 (see for details Savvas et al. [15]).  In the present 

study, the thermal conductivity is assumed to vary linearly with temperature (Chaim [23]) as 

0 Fto 400F



 
( ) ( )0 1T T

T
εκ κ ⎛= + −⎜ Δ⎝ ⎠

0 .T ⎞
⎟                                                                                                     (2.5)  

Here, , ( 0sT T TΔ = − ) sT is the temperature of the stretching sheet, ε  is a small parameter known 

as the variable thermal conductivity parameter, and 0κ is the thermal conductivity of the fluid. 

The last term in equation (2.3) is due to the viscous dissipation.  

Substituting (2.4)-(2.5) into equations (2.2)-(2.3) we obtain 

v
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In the derivation of the above governing equations, the conventional boundary layer 

approximation has been invoked. This is justified by the assumption that the film thickness h is 

much smaller than the characteristic length L (in the direction along the sheet). The mass 

conservation equation (2.1) then implies that the ratio (v )u  between the two velocity 

components is of order ( .h L )2  Also, streamwise diffusion of momentum and thermal energy is 

of order (  smaller than the corresponding diffusion perpendicular to the sheet. For this 

reason the stream wise diffusion terms are neglected in equations (2.6) and (2.7).   

)2 ,h L

Assuming that the interface of the planar liquid film is smooth and free of surface waves and the 

viscous shear stress and the heat flux vanish at the adiabatic free surface, the boundary 

conditions become  

v v at 0,s s su U T T y= = = =                                                                                       (2.8) 

( )0, v at ,u T dh y h t
y y dt
∂ ∂

= = = →
∂ ∂

                                                                                                  (2.9) 

where sU  and sT  are the surface velocity and temperature of the stretching sheet, respectively, 

and vs is the injection parameter. Here ( )h t  is the free surface elevation of the liquid film. That 
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is, the film thickness. In this paper, the flow is caused by the linear stretching of the elastic sheet 

at y = 0 with a velocity of the form  

,
1s

bxU
tα

=
−

                                                                                                                              (2.10)  

where b and α  are both positive constants with dimension reciprocal of time t. Here b is the 

initial stretching rate, whereas 
1 t

b
α−

 is the effective stretching. In the context of polymer 

extrusion, the material properties, in particular the elasticity of the extruded sheet, may vary with 

time even though the sheet is being pulled by a constant force. The dimensionless ratio 

,S bα≅ 0,→is the only parameter in Wang’s [7] analysis; in the limiting case as S  Wang’s 

case reduces to the steady-state problem of Crane [1]. With unsteady stretching  ( )α ≠

1

0 ,  

however, α− becomes the representative time scale of the resulting unsteady boundary layer 

problem. The adopted formulation of the sheet velocity ( )
1

,sU x t  in equation (2.10) is valid for 

t α−<  only, unless 0.α =  Further, it should be noted that the end effects and the gravity are 

negligible, and the surface tension is sufficiently large such that the film surface remains smooth 

and stable throughout the motion.  

The surface temperature Ts of the sheet varies with the distance x from the slot and time t: 

( ) ( )
2 2

,
n−

T=

2

5 2
0 1

2
n

s ref
b xT T T t

K
α

ρ
−⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

                                                                                        (2.11) 

where T  is the fixed temperature at the slit, and  T is the reference temperature, which can be 

taken as T in the present study. The constant of proportionality d is assumed to be positive 

with dimension (time -1). Equation (2.11) represents a situation in which the sheet temperature 

decreases from   and is proportion to

0 ref

0ref

0T ,x and the amount of temperature reduction along the 

sheet increases with time. It should be noted that the expressions given by equations (2.10) and 

(2.11) are valid for time ( )1t .α<  The assumptions about sU  and sT  in equations (2.10) and 

(2.11) respectively allow us to develop a similarity transformation which converts the partial 
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( ) ( )
differential equations (PDEs) into a set of ODEs. We introduce the following dimensionless 

variable andf θ ξ as well as the similarity variable ξ ξ  thus:   
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n n
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−+ +
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yβ                                                                           (2.14) 

In equation (2.12) the stream function ( ), ,x y tψ  is defined by and vu y xψ ψ= ∂ ∂ = −∂ ∂ , 

such that the continuity equation (2.1) is satisfied automatically, and β  is  a constant denoting 

the dimensionless film thickness. In terms of these new variables, the momentum and the energy 

equations together with the boundary conditions become 

 ( ) 1 1 2 12 2 0,
1 1

n n n+n nf f f f S f f
n n

β β ξ− + −⎛ ⎞ ⎛ ⎞′′ ′′′ ′′ ′ ′ ′′− + − − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
n f                                      (2.15)  
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n
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+−′ ⎡ − ⎤⎛ ⎞′′ ′ ′′+ + − − − + =+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦′ 1
n⎛ ⎞

⎜ ⎟+⎝ ⎠
   (2.16) 

and 

( ) ( ) ( ) ( ) 20 , 0 1, 1 0, 1
2w

n ,f f f f S
n
−⎛ ⎞′ ′′= = = = ⎜ ⎟

⎝ ⎠
f                                                          (2.17) 

( ) ( )0 1, 1 0,θ θ ′= =                                                                                                                (2.18) 

where a prime denotes the differentiation with respect to ξ, S bα=  is a dimensionless measure 

of the unsteadiness, ( )
2
1Pr Re n

s xU α
−
+=  is the generalized Prandtl number, 

( )( )
1

1v 2 1 Re n
w s s xf U n n += − +  is the suction/injection parameter (namely, corresponds 

to suction whereas corresponds to injection), and 

0wf >

0wf < ( )2
s pEc U C T= 0s T− is the Eckert 

number. The parameter β  is an unknown constant which must be determined as a part of the 

boundary value problem.  
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( )

Although the dimensionless film thickness is a constant for fixed values of S and n, the actual 

film thickness depends on time t and the streamwise location x.  From equation (2.14) we find 

that the film thickness can be expressed as ,h x t

( ) ( ) ( ) ( ) ( )( ) ( )2 11 1
2, 1 n nn n

n

K
h x t x t

b
ρ

β α − +− +
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.

u

                                                                                     (2.19) 

In the Newtonian case (n =1), h becomes a function of time only; whereas for non-Newtonian films, the 

thickness decreases with x for pseudo plastics (n <1), while the film thickness decreases in the streamwise 

direction for dilatant fluids (n >1). 

It is worth mentioning here that the momentum boundary layer problem defined by the ODE 

(2.15) subject to the relevant boundary conditions (2.17) is de-coupled from the thermal 

boundary layer problem, while the temperature field is on the other hand coupled with the 

velocity field. For practical purposes, the physical quantities of interest include the velocity 

components , the local skin friction coefficient and v ,fxC and the local Nusselt number xNu . 

These quantities can be written as  

,su U f ′=  

( )1 1 2 1v Re
1 1

n
s x

n nU f
n n

ξ− + −⎛ ⎞′= − +⎜ ⎟+ +⎝ ⎠
,f  

( ) ( )1 12Re 0 ,
nn

fx xC f− + ′′= −⎡ ⎤⎣ ⎦  

( ) ( )
21
12

1 1 Re
2

n
n

x xNu tα θ
+−
+ ′= − 0 ,  

where 2Re n n
x sU x Kρ −=   is the local Reynolds number.  

3. Numerical procedure 

The system of equations (2.15) and (2.16) are highly non-linear ordinary differential equations of 

third-order and second-order, respectively. Exact analytical solutions are not possible for the 

complete set of equations (2.15) and (2.16). Hence, we use the efficient numerical method with 

second order finite difference scheme known as the Keller-Box method [18-19]. This method is 
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0.005

unconditionally stable and has a second order accuracy with arbitrary spacing. First, we write the 

differential equations and the boundary conditions in terms of first order system, which is then 

converted to a set of finite difference equations using central differences. Then the non-linear 

algebraic equations are linearized by Newton’s method and the resulting linear system of 

equations is solved by block tri-diagonal elimination technique. For the sake of brevity, the 

details of the solution process are not presented here. For numerical calculations, a uniform step 

size of ξΔ =  is found to be satisfactory and the solutions are obtained with an error 

tolerance of in all the cases. To demonstrate the accuracy of the present method, results for 

the dimensionless film thickness and the skin friction are compared with the available results in 

the literature for a special case: That is, for a Newtonian fluid (n=1), obtained by Aziz et al. [13] 

and Wang [7]. It was found from Table 1 that the present results agree very well with those of 

Aziz et al. [13] and Wang [7].  

610−

4.   Results and discussion 

In order to analyze the effects of the pertinent parameters, namely, the power-law index n, the 

dimensionless film thickness β, the unsteady parameter S, the injection parameter ,wf  the 

variable thermal conductivity parameter ε, the modified Prandtl number Pr, and the Eckert 

number Ec on the flow and heat transfer characteristics, the numerical solutions are obtained. 

Also, in order to get a clear insight in to the physical problem, the velocity and the temperature 

fields are presented graphically in figures 2-7. Values of the skin friction, the dimensionless film 

thickness and the wall-temperature gradient for different values of the physical parameters are 

recorded in Tables 2 and 3. For this hydrodynamic problem, there exists a critical value of S, 

above which no solution could be obtained: Wang [7] noticed the critical value of S = 2 for 

Newtonian fluid. It may be noted here that (for positive values of S), S→0 stands for the case of 

an infinitely thick fluid layer (i.e., β → ∞), whereas the limiting case of S→2 represents a liquid 

film of infinitesimal thickness (i.e., β → 0). In the case of non-Newtonian fluids, the present 

calculations show that the critical value of S = 1.35 for shear thinning fluids and the critical value 

of S = 3.03 for shear thickening fluids when β→0. However, it is difficult to perform these 

calculations for the limiting case of β → ∞.  



 

The transverse velocity profiles ( )f  and the horizontal velocity profiles ( )f ′  for blowing and 

suction cases are shown graphically in figures 2-3 with different values of S, wf and n. The 

general trend is that ′ decreases monotonically, whereas f f increases monotonically as the 

distance increases from stretching sheet. The effect of increasing values of S is to 

increase f and f ′  and thereby reduce the horizontal boundary layer thickness. This phenomenon 

is true even for shear thinning (n = 0.8), Newtonian (n = 1) and shear thickening (n = 1.2) fluids. 

We further notice from these figures that a moderate deviation from Newtonian rheology (n = 1) 

have a significant influence on the horizontal velocity component f ′ across the fluid film. For a 

given value of S, the pseudo plastic (shear thinning fluids) film is thinner and exhibits a greater 

surface velocity than a Newtonian film, while quite reverse behavior is true for shear thickening 

(dilatant) fluids. In shear thinning fluids, viscosity is reduced with increasing shear rates; 

whereas for dilatants substances, viscosity increases with shear rate and becomes more viscous 

and will thicken with an increasing rate of shear.  It is therefore not surprising to observe that the 

pseudo plastics are more likely to flow nearly as an inviscid layer on top of the stretching sheet 

than as in the case of shear thickening or dilatants fluids. These results are in good agreement 

with the physical situations. Comparison of figure 3(a) with figure 3(b) reveals that suction 

 reduces the horizontal velocity boundary layer thickness whereas blowing (( w 0)f > f 0)w < has 

quite the opposite effect on the velocity boundary layer. 

The effects of the power law index parameter on the temperature profiles for  and  

are shown graphically in figures 4(a)-4(b). It is observed that the temperature distribution is unity 

at the wall. With changes in the physical parameters it decreases as the distance increases from 

the sheet. Further, the effect of increasing S with different values of n, [namely, shear thinning (n 

= 0.8), Newtonian (n = 1), and shear thickening (n = 1.2) fluids] is to reduce the temperature, and 

hence the thermal boundary layer thickness. Comparison of figure 4(a) with figure 4(b) reveals 

that the effect of the injection parameter is to reduce the thermal boundary layer thickness. 

Figures 5(a) and 5(b) exhibit the temperature distribution 

0f < 0f >w w

( ) withθ ξ ξ for different values of Ec 

in blowing and suction cases, respectively. From these figures we see that the effect of increasing 
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(Ec is to increase the temperature distribution )θ ξ . This is in conformity with the fact that 

energy is stored in the fluid region as a consequence of dissipation due to viscosity and elastic 

deformation.  

The effects of ε  on the temperature profile in the boundary layer for both  and  are 

depicted in figures 6(a) and 6(b), respectively. From these figures, we observe that the 

temperature distribution is lower throughout the boundary layer for zero values of ε as compared 

with non-zero values of ε. This is due to the fact that the presence of temperature-dependent 

thermal conductivity results in reducing the magnitude of the transverse velocity by a quantity 

0wf < >

( )

0wf

,K T y∂ ∂  and this can be seen from the energy equation. This behavior holds for all types of 

fluids considered, namely, pseudo plastic, Newtonian, and dilatant fluids. The variations of 

temperature profile ( ) withθ ξ ξ

0f

for various values of the modified Prandtl number Pr are shown 

in figures 7(a) and 7(b) for both  w <  and , respectively. Both figures demonstrate that 

an increase in Pr results in a monotonic decrease in the temperature distribution and it tends to 

zero as the distance increases from the sheet. That is, the thermal boundary layer thickness 

decreases for higher values of the Prandtl number. This holds good for all values of n and

f 0w >

wf .  

The values of  S, and ( )′′ ( )θ ′0 ,f 0 , wf are recorded in Table 2.  It is interesting to note that β , 

( ) ( )0 andf ′′ 0θ ′ decrease gradually with increasing S. This is true for all values of n. Further, 

the effect of increasing n and wf is to enhance β, ( ) ( )0 and 0 .f θ′′ ′  From Table 3, we see that 

the effect of Ec and ε is to decrease the magnitude of the wall- temperature gradient; whereas the 

effect of Pr is to enhance it. This is true for all values of n and wf . 

5.   Conclusions 

The purpose of the present work is to obtain numerical solutions to the problem of flow and heat 

transfer in a power-law liquid film on an unsteady porous stretching sheet in the presence of 

viscous dissipation and temperature-dependent thermal conductivity. Results for the velocity and 

the temperature distributions across the liquid film, the free surface velocity ( )1 ,f ′ the 
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( )temperature , the wall-shear stress, and the wall-temperature gradient are presented for 

different values of the governing parameters. The results obtained might be useful for the 

material processing industries. We summarize some of the interesting results below: 

1θ

1. In comparison with the Newtonian fluid, the free surface temperature is enhanced for 

shear thinning fluid, while it is decreased for shear thickening fluid. Also free surface 

temperature approaches zero for higher values of the Prandtl number. 

2. The effect of suction is to reduce the thermal boundary layer thickness as compared to 

blowing. This holds for all values of the power-law index, the variable thermal 

conductivity and the Eckert number. 

3. The effect of viscous dissipation is found to increase the dimensionless free surface 

temperature ( )1 .θ  This observation is true for all values of the power-law index.  
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Table 1: Variation of the dimensionless film thickness and the skin friction with unsteady parameter for n = 1 when Pr =1.0. 
Present work Aziz et al (2011) Wang (2006) 

s β  ( )0f ′′  β  ( )0f ′′  β  ( )0f ′′  
0.8 2.149956 -2.677546 2.151994 -2.680943 2.15199 -2.68094 
1.0 1.540905 -1.967298 1.543616 -1.972384 1.54362 -1.97238 
1.2 1.124422 -1.435752 1.127780 -1.442625 1.127780 -1.442631 
1.4 0.816898 -1.003991 0.821032 -1.012784 0.821032 -1.012784 
1.6 0.570868 -0.631578 0.576173 -0.642397 0.567173 -0.642397 
1.8 0.348569 -0.296197 0.356389 -0.309137 0.356389 -0.309137 

 

Table 2: Values of the dimensionless film thickness, skin friction, and the wall-temperature gradient for different values of the 
physical parameters when Ec = 0.0, ε = 0.0, and Pr = 1.0. 

0.1wf = −  0.0wf =  0.1wf =  
n s 

β  ( )0f ′′  ( )0θ ′  β  ( )0f ′′  ( )0θ ′  β  ( )0f ′′  ( )0θ ′  
0.4 2.946857 -3.055868 -4.160374 3.807364 -4.486288 -5.790560 4.935935 -7.201140 -8.525701 
0.6 1.684658 -1.885005 -2.596097 2.156749 -2.646549 -3.473627 2.732279 -3.788101 -4.704508 
0.8 1.016171 -1.106725 -1.616648 1.322460 -1.614392 -2.212826 1.680126 -2.276095 -2.951423 
1.0 0.572817 -0.502090 -0.829930 0.811267 -0.896435 -1.335308 1.065762 -1.361451 -1.881660 

0.8 

1.2 0.250278 -0.107785 -0.224396 0.423738 -0.322772 -0.566811 0.648091 -0.696177 -1.069610 
0.4 3.814856 -3.686102 -5.163469 4.981264 -5.649096 -7.540908 7.112672 -10.88815 -13.33392 
0.6 2.451166 -2.646380 -3.649005 3.130509 -3.740963 -4.994978 4.051656 -5.695822 -7.254840 
0.8 1.694112 -1.949764 -2.693337 2.149956 -2.677546 -3.592371 2.717756 -3.773035 -4.894077 
1.0 1.208905 -1.426557 -2.002029 1.540905 -1.967298 -2.671805 1.938147 -2.698758 -3.553401 
1.5 0.479897 -0.459440 -0.707743 0.688502 -0.812051 -1.185444 0.907301 -1.215614 -1.697482 

1.0 

1.8 0.151347 -0.060926 -0.100959 0.348569 -0.296197 -0.465575 0.546683 -0.632880 -0.938642 
0.4 4.562485 -4.175917 -5.900652 6.386359 -7.075603 -9.588795 8.561658 -13.595714 -17.478777 
0.6 3.168481 -3.258797 -4.514707 4.172085 -4.858248 -6.572510 6.259832 -9.265298 -12.06632 
0.8 2.359576 -2.627898 -3.607574 3.030494 -3.690320 -4.985146 4.080532 -5.765680 -7.616121 
1.0 1.825443 -2.153828 -2.948138 2.318130 -2.935676 -3.964484 2.992874 -4.211517 -5.600378 
1.5 1.036959 -1.312976 -1.818325 1.318035 -1.783379 -2.429001 1.657002 -2.399008 -3.224663 
2.0 0.584205 -0.698526 -0.992735 0.782885 -1.053527 -1.469266 1.002888 -1.466741 -2.008754 

1.2 

2.5 0.230544 -0.179074 -0.248906 0.421897 -0.483644 -0.689867 0.597107 -0.814618 -1.147503 



Pr Ec ε  0.8n =  1.0n =  1.2n =  

   0.1wf = −  0.0wf =  0.1wf =  0.1wf = −  0.0wf =  0.1wf =  0.1wf = −  0.0wf =  0.1wf =  
0.0 -1.594710 -2.175171 -2.891972 -2.642449 3.515657 -4.775250 -3.533790 -4.870410 -7.408976 
0.2 -1.401533 -1.916397 -2.544558 -2.339826 -3.103672 -4.190680 -3.136838 -4.297609 -6.471589 
0.4 -1.256667 -1.723788 -2.287883 -2.114304 -2.798674 -3.760927 -2.840922 -3.873808 -5.784683 0.1 

0.6 -1.142825 -1.573377 -2.088911 -1.938122 -2.561950 -3.429562 -2.609868 -3.545184 -5.256664 
0.0 -1.510673 -2.069912 -2.758452 -2.525784 -3.363229 -4.567401 -3.387321 -4.665876 -7.090334 
0.2 -1.470402 -2.000814 -2.649451 -2.432208 -3.222360 -4.349612 -3.251530 -4.455171 -6.711020 
0.4 -1.430128 -1.931708 -2.540434 -2.338616 -3.081466 -4.131787 -3.115710 -4.244425 -6.331641 

1.0 

0.8 

0.1 

-1.349570 -1.793471 -2.322351 -2.151385 -2.799603 -3.696029 -2.843991 -3.822809 -5.572702 
1.0 -1.490538 -2.035364 -2.703953 -2.478998 -3.292798 -4.458511 -3.319429 -4.560529 -6.900684 
3.0 -2.768508 -3.729278 -5.036390 -4.354695 -5.953586 -8.514025 -5.712118 -8.275150 -13.74434 
5.0 -3.575755 -4.863968 -6.703440 -5.555696 -7.778276 -11.54963 -7.206194 -10.82880 -19.10840 

10.0 

0.1 0.1 

-4.990203 -6.942968 -9.933557 -7.614863 -11.12871 -17.66787 -9.665832 -15.51334 -30.43573 

Table 3: Values of the wall-temperature gradient for different values of the physical parameters when s = 0.8. 

 



 

 

 

 

 

 

 

 

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
   

Fig.1: Schematic of a liquid film on an unsteady stretching sheet 
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  (a)   fw = - 0.1

Fig.2(a): Transverse velocity profiles for different values of
                  n and s with  fw = - 0.1.

S = 0.4,0.6,0.8,1.0
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 n = 0.8,   n = 1.0,   n = 1.2

  (b)     fw = 0.1

Fig.2(b): Transverse velocity profiles for different values of
                  n and s with  fw = 0.1.

S = 0.4,0.6,0.8,1.0
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Fig.3(a): Horizontal velocity profiles for different values
                 of n and s with   fw = - 0.1.

S = 0.4,0.6,0.8,1.0
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Fig.3(b) : Horizontal velocity profiles for different values of
                 n and s  with  fw = 0.1.

S = 0.4,0.6,0.8,1.0
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   (a)    fw = - 0.1

Fig.4(a): Temperature profiles for different values of n and s 
                  with Pr = 1.0, Ec = 0.0, ε = 0.0,  fw = - 0.1.

S = 0.4,0.6,0.8,1.0
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  (b)    fw = 0.1

Fig.4(b): Temperature profiles for different values of n and s 
                 with Ec = 0.0, ε = 0.0, Pr = 1.0,  fw = 0.1.

S = 0.4,0.6,0.8,1.0
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  (a)   fw = - 0.1

Fig.5(a): Temperature profiles for different values of n and Ec
                  with Pr = 1.0, ε = 0.1, s = 0.8,  fw = - 0.1.

Ec = 0.0,0.2,0.4,0.8
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  (b)    fw = 0.1

Fig.5(b): Temperature profiles for different values of n and Ec
                  with Pr = 1.0, ε = 0.1, s = 0.8, fw = 0.1.

Ec = 0.0,0.2,0.4,0.8  

 

θ

ξ



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

  (a)    fw = - 0.1

Fig.6(a): Temperature profiles for different values of n and ε
                  with Pr = 1.0, Ec = 0.1, S = 0.8, fw = - 0.1.

ε = 0.0,0.2,0.4,0.6
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Fig.6(b): Temperature profiles for different values of n and ε
                  with Pr = 1.0, Ec = 0.1,  S = 0.8,  fw =  0.1.

ε = 0.0,0.2,0.4,0.6
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Fig.7(a): Temperature profiles for different values of n and Pr
                  with ε = 0.1, Ec = 0.1, S = 0.8, fw = - 0.1.

Pr = 10.0,5.0,3.0,1.0
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Fig.7(b): Temperature profiles for different values of n and Pr
                  with ε = 0.1, Ec = 0.1, S = 0.8, fw = 0.1.

Pr = 10.0,5.0,3.0,1.0  
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