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The free vibration analysis of symmetrically laminated thick rectangular plates is examined. The
p-Ritz method is employed in which sets of uniquely defined polynomials are used as the admissible
trial displacement and rotation functions. The energy integral expressions of the laminates are
derived by incorporating the shear deformation using Reddy’s higher-order plate {dedppl.

Mech. ASME51, 745-752(1984)]. The formulation is basically applicable to rectangular laminates
with any combination of free, simply supported, and clamped boundary conditions. To evaluate the
validity and to demonstrate the applicability of the proposed method, a series of free vibration
analyses of laminated composite plates is reported. Wherever possible, the accuracy of this analysis
is validated through comparison with available results. Efforts are made to interpret the results to
provide physical insight to the problem. ®997 Acoustical Society of America.
[S0001-496607)01708-9

PACS numbers: 43.40.D)CBB]

INTRODUCTION sions by replacing the laminated plate with an equivalent
f\i’noomogenous anisotropic plate and introducing a global dis-

high strength and high stiffness-to-weight ratios, high fatigu lacement approm_mat,on n the thickness dwepnqn. The or
resistance, high damping, and potential for tailoring, have Ie(ﬁj?r of apprOX|mat|on 'S_W'th resp.ect FO the d|str|bl_Jt|on of
to serious examination of their engineering performance iffiSPlacements in the thickness direction. Thus, this theory
areas such as vibration, buckling, and stress analyses. AfOVides reasonably accurate solutions in predicting the glo-
understanding of the vibration behavior of composite panel9a! Pehavior of composite laminates. _ _
has particularly attracted many researchers to the possibility PUring the past decades, there has been much interest in
of furnishing an optimal design state. Numerous works havéne finite element method using various laminate plate theo-
applied a direct extension of Kirchhoff's classical theory of €S because of its versatility! However, sufficient num-
plates to composite laminates. The assumptions underlyinBers of discretized elemen_tg and node; are required if there
this theory, however, result in underestimation of deflectiorA’® curved boundary conditions. TpeRitz method some-
and overestimation of natural frequencies of a plate. Becausghat improves these shortcomings by using the more tradi-
of this disadvantage in the classical plate theory, numeroudonal Rayleigh—Ritz method which assumes the entire plate
refined theories incorporating the transverse shear deformas @ single element and eliminates the need for discretization,
tions have been proposed. mesh generation, and larger degrees of freedom. Excellent
In existing literature, the first-order laminated plate results were seen on earlier works for isotropic plates and
theory was due to Yangt al,! which was extended to the thin and thick laminate®.*? An important feature of the Ritz
higher-order laminated plate theory by Reddyhe first- method is the selection of admissible functions in the series
order theory implies a conceptual paradox as the transvergepresenting the unknown functions in the displacement
shear strain does not vanish on the top and bottom surfacefé¢ld. The accuracy and convergence of the solution are
The thick laminated plate theories were developed to imgreatly dependent on the choice of the trial functions. In the
prove the modeling of transverse shear distribution. In addipresent analysis, the-Ritz functions are employed in which
tion, the higher-order theory discards the shear correctiosets of uniquely defined polynomials are used as the admis-
factors required in the first-order theory. A comprehensivesible trial displacement and rotation functions. To account
review of the various refined plate theories for laminates profor the transverse shear effects, Reddy’s higher-order shear
posed over the years has been summarized by Reddy adeéformation plate theory has been integrated with the
Robbins Jr and Noor and Burtofi.Out of these theories, the p-Ritz method for solving the free vibration analysis of thick
theory used in the present study comes under the class oflaminated plates with various boundary conditions.
single-layer displacement-based thebry this theory, the It should be noted that Reddy and his assocfateave
three-dimensional elasticity theory is reduced to two dimenpresented results for only plates with opposite sides simply

The unique properties of composite laminates, includin
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supported. Results for plates with general boundary condi-  u(x,y,z,t)=ug(X,y,t) + z¢.(X,y,t)
tions are still unavailable, to the authors’ knowledge. There- 3
fore, this paper attempts to provide examples of rectangular _ 4i
plates with various boundary conditions to show the applica- 3h?
bility and versatility of thep-Ritz method, without the diffi-

culty of mesh generation and continuity conditions of other

discretization methods. Details of the analytical method and v (x,y,z,t)=vo(X,y,t) + 2z (X,y,t)
formulation for the problem of free vibration of laminated

IW(X,Y,t)

X ) ' (13

(¢x(x,y,t)+

plates with combinations of clamped, simply supported, and _ 4_23 (¢ (X.y.1)+ (9W(va,t)) (1b)
free edges are presented. The accuracy and validity of the 3nz | AV ay )’
present method is established through convergence and com-
parison studies with the available literature results.
W(X!yvzlt):WO(va!t)r (10)

I. MATHEMATICAL FORMULATION .
where (g,v4,Wp) are the displacement components of the

A. Preliminary mid-plane along the, y, andz directions, respectively. The

A thick, flat laminated plate with a thickness length rotations about the andy directions, respectively, aré,
a, width b, and composed dfl orthotropic laminae oriented and ¢, . i ) e .
at anglesd is considered. The reference Cartesian coordinate  ASSuming  transverse  inextensibility, the strain—
system is located at the mid-plane of the laminated plate, adisplacement relationship for any lamina in the Cartesian
depicted in Fig. 1. The laminae are assumed to possessSYStém can be expressed as
plane of elastic symmetry parallel to the/ plane and be
stacked symmetrically with respect to the middle surface of
the laminated plate. The vibration frequencies of the sym- e=Lu @)
metric laminates subjected to a variety of edge conditions,
length-to-thickness ratios, aspect ratios, degrees of orthot-
ropy, stacking angles, and numbers of layers are to be detefith

mined.
u=[us vy Wo ¢y ¢l (3a)
B. Energy expressions
By applying Reddy’s higher-order shear deformation e=[ex &y Yy Yxz yxy]T, (3b
theory, the displacements of an arbitrary point of the thick
laminated plate along the y, andz axes can be represented
as and

Laminate mid-plane
b/2

b/2

h2

hi

%
la—a/2 —wia—as2 —»]

FIG. 1. Geometry of the laminated plate.
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|
and the constitutive equations for théh lamina are ou o\2 [ ow
— +
=Dy @ 2;1”” ) (at> (at) }dA ©
in which o =[ 0oy oy 0y, 0y, 0x,]" and the stiffness matrix in which p, is the mass density per volume for theh
is defined by lamina.
- - The equivalent modulus for a multidirectional lamina is
Qu Qe 0 0 Qup introduced:
Qp Q 0 0 Q
S (Aij,Bij ,Dij . Eij ,Fij  Hij)
Di=| 0 O Qu Qs O | . 5 N
0 0 Q Qs O => f k+1Qij(1,z,zz,z3,z“,26)dz, (10)
- — k=1 Jn,
L Qs Q2 0 0 Qeel,

where allB;; and E;; vanish if laminates are stacked sym-
Here, (Q,J)k are obtained by transforming the stacking anglemetrically about the mid-plane. The total potential energy
¢ and the stiffness constantQy ), which are related to the U and total kinetic energyl can be further expanded in
material propertiesE, Es, vis, vo1, Gyo, Gi3, Gys, Of  terms of the equivalent modulusee the Appendjx The
each ply. In terms of these engineering constai@s,)( can  deflection and rotation functions of the laminate mid-plane

be written in the form of are periodic in time. Therefore, for small amplitude vibra-
tion, we can assume that
(Quk=E1/(1=viv20), (63
Uo(X,y,t) =U(X,y)sin ot, (119
(Quk=v1zEo /(1= vipvz0), (6b) °
vo(X,Y,t)=V(X,y)sin wt, (11b
(Qa2k=Ea /(1= v1ovz0), (60) °
Wyo(X,Y,t)=W(X,y)sin ot, (1190
(Q44)k=Gas, (6d) olx.y (xy)
x,y¥,1)=0,(X,y)sin wt, (11d
(Qs5)k=Ga3, (6e) S0y D=0ulxy)
X,¥,t)=0,(X,y)sin wt. 11
(Qedh=G1z. @ o ((y)a) o e ( | °
By substituting Eqs(11a—(11e into the total potential en-
Ir:\/llnnegr elasticity analysis, the strain energy for each ply is ergy U and the total kinetic energ§, we can obtain the
given by maximum strain energy ., and the maximum kinetic en-
1 T ergy Tnax- The total energy functiondll of the plate is de-
Uk:§ L,.ksk‘fk dVi, (7)) fined in terms ofU max @Nd T ax @S

whereU, andV, are respectively the strain energy and the I1=Umax— Trax: (12)
volume of thekth lamina. Hence, the total strain energy for which can be minimized using the-Ritz method to obtain
the entire laminated plate is the vibration frequencies.

=5 fff (oxexT oyey+ oyExt OysEy,
k=1 1 )
C. p-Ritz method

+ . .

TxyExy)ic dZ dA ® The displacement and rotation componeritix,y),
Accordingly, the total kinetic energy associated with the V(x,y), W(x,y), 0,(x,y), and ®,(x,y), can be further
vibration of laminated plate is simplified by using the nondimensional expressions
1602 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Chen et al.: Laminated thick rectangular plates 1602
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X
g_a
Yy
n b

TABLE I. Notations for boundary conditions.

Boundary constraints u,=us=0 N,=ug=0 Nps=Uu,=0 N,s=N,=0
Free M s/9s+Q,=0 Fi Fs Fs Fau
M,=0
Simply supported w S, S, S; S,
M,=0
Clamped w=0 C, C, Cs C,
ow/on=

@Here,n ands indicate the directions normal and tangential to the corresponding supporting edges.

(13a

(13b

+1)(p+2
e (PFL(PF2) 5
2
wherep is the degree of the set of two-dimensional polyno-
mials.
The p-Ritz shape functions can be generated by assum-

Accordingly, the in-plane deflection and rotation functionsing that

can be expressed in the nondimensiafaplane, leading to

U<§,n)=§l clol(£,7m),

V<§,n>=§l clel(&,m),

W(¢, n)=§1 el (&),

0.4(¢, n>=§l o€, ),

0,(¢, 77)=i21 cvel(€m),

(143

(14b)

(140

(14d

(149

whereo!', ¢!, ¢, goia“, (,Dig” are the so-calleg-Ritz func-

tions which are products of two-dimensional polynomials
and basic functions. The associatgd ¢}, c

Cieu, Ci‘g” are

P q
(£, n)=q§0 ]20 79 ep(é,m) (16)
in which a=u,v,w,8,,6,, and ¢g(&,7) denotes the basic
function which must at least satisfy the geometric boundary
conditions of the laminated plate. The basic function for the
laminated plate can be expressed as

4
ep=1I1 [Ts(&m]%, (17)
wherel' (¢, ») is the boundary equation of treth support-

ing edge and(¢ denotes the associated basic power. The
basic functions consist of products of boundary expressions
of the laminated plate raised to their associated basic powers
to guarantee automatic satisfaction of geometric boundary
conditions. Whitned? suggested that one member of each
pair of the following four quantities must be prescribed along
the boundary to ensure unique solutions to the governing
equations

the unknown coefficients. The number of termsin the UiNg UGN oML w2y (18
series(14g—(14e can be obtained by an Js

TABLE Il. Powers of basic functions for various combinations of boundary conditions.

PowerQ2
1 2 3 4
Edges
a u v w 0, 0, u v w 0, 0, u v w 0, 0, u v w 0, 0,

S,F4SF, 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
C,F,CiF, 1 1 2 1 1 0 0 0 0 0 1 1 2 1 1 0 0 0 0 0
C,F,F,F, 1 1 2 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
C,F,F,F, O 1 2 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
S,S,S,S, 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0
$:5:5:S; 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0
C,5,5,S, 0 1 2 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0
S,C,S,C; 0 1 1 0 1 1 1 2 1 1 0 1 1 0 1 1 1 2 1 1
c,c,C,C; 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1
C,C,C,C, 0 1 2 0 1 1 0 2 1 0 0 1 2 0 1 1 0 2 1 0
CsCaCsCs 1 0 2 1 0 0 1 2 0 1 1 0 2 1 0 0 1 2 0 1
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TABLE lll. Convergence study of frequency parameters= why/p/G, for an isotropic thick plate with different degree of polynomip) (

Mode shapes

p

7 0.0930 0.2220 0.3407 0.4152 0.5256 0.6975 0.7510
9 0.0930 0.2220 0.3406 0.4151 0.5209 0.6846 0.7463
1t 0.0930 0.2220 0.3406 0.4151 0.5208 0.6840 0.7454
13 0.0930 0.2220 0.3406 0.4151 0.5208 0.6840 0.7454
15 0.0930 0.2220 0.3406 0.4151 0.5208 0.6840 0.7454
CLPT 0.0963 0.2408 0.3853 0.4816 0.6261 0.8686 0.9632
Mindlin'® 0.0930 0.2218 0.3402 0.4144 0.5197 0.6821 0.7431
Mallikarjuna®®  0.0929 0.2216 0.3379 0.4184 0.5152 0.6941 0.7610
Noor"? 0.0932 0.2226 0.3421 0.4171 0.5239 0.6889 0.7511

*Higher-order shear deformation theory.

Therefore, many types of boundary conditions are consid- I

ered along the geometric and natural boundary constraints ?:0, (203
given in Eq.(18) and summarized in Table I. For examples, !

there are four types of simply supported conditioBs; S,, all

S;, andS,. These supports have the transverse direation 3_(;?:0* (20D
constrained and varying in-plane support conditions. The

most common simply supported conditionSg where both ﬂ_o (200
the normal and tangential displacements in the midplane are  Jc}" e

constrained. Another condition having physical interpreta- o

tion is S, with transversew) and tangential §;) directions =0, (200)
constrained which occur mostly in composite plates and Jc;*

sometimes termed “freely supported***® The basic pow- .

ers (g are assigned 0, 1, or 2 depending on whether the J =0, (200

h . . . . [2
normal, tangential, or transverse direction is constrained at Jc;”
the edge. Details of basic power for various combinations of, i from 1 tom. The differentiation leads to an eigenvalue
boundary conditions are listed in Table Il. As shown in Fig'equation
1, s=1 refers to the edge at=—a/2, ands=2,3,4 corre- '

spond to the subsequent edges, going counterclockwise. In  {K—AM}c}=0, (21
detail, the nondimensional basic functions for the rectangulathere{c}:{cu ¢ ¥ ach bc%}T, and\ is the non-
laminated plate are dimensional eigenvalue defined as

¢b=(£-0.5%(7-0.5"(£+0.5%(»+0.5" (19) L_wab [p 22
with a=u,v,w,6,, andé, . h Do’

By applying the Ritz method, we minimize the total en- with Dy=Q44/12. Details of the stiffness matric&sand the
ergy functionalll with respect to the unknown coefficients, mass matrice§/ are shown in the Appendix.

TABLE V. Convergence study of frequency parametarss whp/E,, for a three-ply square laminate with different degree of polynonpal (

Mode shapes

p
7 0.4537 0.6883 0.7322 0.8449 1.0182 1.1807 1.2653
9 0.4528 0.6883 0.7320 0.8442 1.0173 1.1801 1.2634
i 0.4523 0.6883 0.7320 0.8438 1.0171 1.1799 1.2628
13 0.4520 0.6883 0.7320 0.8435 1.0170 1.1799 1.2624
15 0.4517 0.6883 0.7320 0.8434 1.0170 1.1799 1.2621
1604 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Chen et al.: Laminated thick rectangular plates 1604
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TABLE V. Convergence study of frequency parametarss wh+/p/E,, for a five-ply square laminate with different degree of polynoml.

Mode shapes

p
7 0.4963 0.6883 0.8085 0.8778 1.1033 1.2468 12919
9 0.4955 0.6883 0.8082 0.8772 1.1021 1.2463 1.2907
11 0.4951 0.6883 0.8080 0.8769 1.1017 1.2462 1.2902
13 0.4949 0.6883 0.8080 0.8767 : 1.1015 1.2462 1.2899
15 0.4948 0.6883 0.8080 0.8765 1.1015 1.2462 1.2897
Il. NUMERICAL STUDIES AND DISCUSSIONS Gys=0.3391 225, 1y,=0.44.

Several examples with various combinations of bound- N )
ary conditions have been investigated to demonstrate the ver- The present method has been verified using three ex-
satility of thep-Ritz method. All laminae have been assumed@mples with an aspect rata'b=1.0 and boundary condi-
to have the same orthotropic properties and equal thickions Of $38;S;S;. The first example is an isotropic square
nesses. Numerical results from the published literature havelate of material 1 and with a length-to-thickness ratit
been taken for comparison to demonstrate the accuracy of 10, while the second and the third examples are three-ply
p-Ritz method integrated with the higher-order shear defor2nd five-ply laminated plates of material 3 wilth=5 and
mation theory. In this study, all results have been compute§tacking sequence (45°/45°/45°) and (45°% 45°/45°/

in double precision on 8GI PowerChallengeomputer. Ma-  —45°/45°), respectively. A convergence study for frequency
terial properties used in all examples have been assumed B§irameters was carried out by increasing the number of poly-
be nondimensional as follows: nomials from 7 to 15. In Table Ill, the results for an isotropic

_ plate® obtained using this method are very close to Noor’s
Material 1: E;/E;=1.0, Gip/E;=(1+)/2, 3-D solutiond’ and Mallikarjuna’s solutiorfs which were
Gy=G13=Gyp, v=0.3. obtained by a higher-order theory and the finite element
method. The frequency parameters obtained upin® are
Material 2: E;/E,=25, Gy»/E,=0.5, G,s/E,=0.2, within a discrepancy of 0.3% qf= 15 in all cases as shown
in Tables llI-V. It is observed that the fundamental frequen-
G13=G12, v12=0.25. cies for single-layer plates converge faster than those for the
multi-layer laminates in Tables IV and V. The frequencies
Material 3: E;/E;=40, Gi,/E;=0.6, Gy3/E;=0.5,  also converge rapidly for the modes dominated by in-plane

Gi=G v =025 displacements as opposed to the out-of-plane displacements.
137 Pl A1z e Higher values fop are therefore needed to provide sufficient
Material 4: E/E,=1.9 040 209, accuracy for the higher modes. However, a highealso
leads to more computational effort. Therefore, the parameter
G1,/E»=0.5575 868, p=15 was adopted as a reasonable compromise for subse-
guent computation.
G,3/E»=0.5 658 135, The fourth example presents a square plate made of ara-

TABLE VI. Comparison of frequency parameteis,= wh+/p/E;, for an orthotropic square plate made of Material 4.

Mode shapes

Source

CLPT 0.0493 0.1095 0.1327 0.1924 0.2070 0.2671 0.2879 0.3248
Mallikarjuna®®  0.0473 0.1032 0.1190 0.1682 0.1906 0.2205 0.2432 0.2590
Mallikarjuna®®  0.0474 0.1032 0.1190 0.1687 0.1903 0.2201 0.2450 0.2605
Present study 0.0474 0.1032 0.1188 0.1693 0.1885 0.2180 0.2471 0.2623
Reddy’ 0.0474 0.1033 0.1189 0.1695 0.1888 0.2184 0.2477 0.2629
Srinivas'® 0.0474 0.1033 0.1188 0.1694 0.1888 0.2180 0.2475 0.2624

*First-order shear deformation theory.
Higher-order shear deformation theory.
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TABLE VII. Effect of length-to-thickness ratio a/h) on the fundamental frequency parametexs,
=(wa?/h)\Jp/E,, for four-ply square plates of Material 3.

a/h
Source 4 5 10 20 50 100
CLPT 17.907 18.215 18.652 18.767 18.799 18.804
Rikards 9.244 10.690 14.966 17.532 18.632 18.898
Mallikarjungf? 9.227 10.736 15.073 17.628 18.672 18.835
Mallikarjune’® 9.258 10.740 15.090 17.637 18.669 18.835
Present study 9.323 10.787 15.107 17.647 18.672 18.836
Reddy° 9.369 10.820 15.083 17.583 18.590 18.751
Reddy* 9.497 10.989 15.270 17.668 18.606 18.755

gFirst-order shear deformation theory.
PHigher-order shear deformation theory.
Closed form solution.

gonite crystal witha/h=10 and boundary conditions of by varying the ratio from 4 to 100. As shown in Table VII,
S;53S;S;. The mode shapes and frequency parameters atbe effect of length-to-thickness ratio on the fundamental fre-
tabulated in Table VI and compared with available resultsquencies is pronounced and the error in using the classical
While the results obtained by the present method have alaminated plate theory increases for thicker plates because of
error of less than 0.25% with respect to both Sriniva’s 3-Dthe neglect of shear effects. The present results are in close
solutiong® and Reddy’s closed form solutioRshe errors in  agreement with Reddy’s closed form solutions.
the results from classical laminate plate thed@LPT), The sixth example analyzed the same laminate as ex-
Mallikarjund (first-order theory, and Mallikarjund (higher- ~ ample 5 but with a length-to-thickness ratio of 5, different
order theory are 23.78%, 1.73%, and 1.01% of the exactnumbers of layers, and different degree of orthotropy. From
solutions. As expected, the results obtained by using presettie results in Table VIII, it is observed that the prediction of
method are superior to those of CLPT and first-order theothe fundamental frequency by CLPT is inaccurate for mate-
ries. They are also very close to the closed form solutionsials with a high degree of anisotropy. This reaffirms the fact
and 3-D elasticity solutions. Therefore, theRitz method is  that the effect of material anisotropy on the fundamental fre-
able to provide very accurate results without the difficultiesquency for symmetrically laminated plates is pronounced. In
of mesh generations and discretization losses in the finitaddition, the response characteristics predicted by the present
element method. method are accurate and the maximum error in the funda-
In the fifth example, a four-ply square laminate made ofmental frequencies is about 1% compared to the 3-D solu-
material 3 stacked in a sequence(6f/90°), with boundary  tions of Noor*’
conditionS, at all edges and a length-to-thickness ratio of 10 ~ The effect of boundary conditions on the fundamental
has been examined. The effect of the length-to-thickness rdrequency has been examined in the seventh example. A
tio on the laminated plates has been presented in Table Vfour-ply square laminate made of material 3 has been as-

TABLE VIII. Effect of degree of orthotropy on the fundamental frequencys whp/E,, for a square plates
with a’/h=5 andS,S,S,S, edge conditions.

E,/E,

Source Layers 3 10 20 30 40
CLPT 4 0.2920 0.4126 0.5404 0.6434 0.7320
Reddy 0.2624 0.3309 0.3811 0.4109 0.4315
Present study 0.2624 0.3309 0.3811 0.4109 0.4315
Noor'’ 0.2647 0.3284 0.3824 0.4109 0.4301
CPT 5 0.2920 0.4126 0.5404 0.6434 0.7320
Mallikarjung? 0.2626 0.3362 0.3919 0.4246 0.4463
Rikards 0.2608 0.3313 0.3852 0.4142 0.4340
Mallikarjuna®® 0.2626 0.3362 0.3919 0.4248 0.4470
Present study 0.2634 0.3372 0.3937 0.4274 0.4505
Noor'’ 0.2659 0.3409 0.3979 0.4314 0.4537
CPT 9 0.2920 0.4126 0.5404 0.6434 0.7320
Mallikarjunaf? 0.2630 0.3404 0.4011 0.4376 0.4622
Mallikarjuna®® 0.2630 0.3404 0.4011 0.4376 0.4622
Present study 0.2638 0.3413 0.4024 0.4395 0.4648
Noor'’ 0.2664 0.3443 0.4055 0.4421 0.4668

First-order shear deformation theory.

PHigher-order shear deformation theory.
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TABLE IX. Effect of boundary conditions on the fundamental frequency TABLE X. Effect of plate aspect ratioalb), length-to-thickness ratio
parameters) ' = (wa?/h)/p/E,, for a four-ply square laminate of material (a/h), and lamination anglég) on the fundamental frequency parameters,
3. \'=100X wh+/p/E,, for laminated plates of material 3 with stacking se-
quence as{/— 6/ 6/ — 6/ ) andC,F,F,F, edge conditions.

Boundary Fundamental

conditions frequency parameter a/b

C,F,F,F, 1.1378 alh 6 0.2 0.5 1.0 2.0 5.0 10.0

FaoF2CoF, 1.1378

SF.SF, 6.2185 5 15 159392 15.9138 15.7384 15.3293 14.6861 10.6903

C.F,C-F 12.9422 30 13,5254 13.3575 12.6835 11.5457 10.2224 5.8314
1t 4~1" 4

$,5,5,5, 17.3813 45 10.1767 9.7417 85781 7.1679 6.1892 3.1327

C,5,S,S, 17.6704 60 6.5221 6.0553 5.3839 4.8222 45297 2.2868

75 42761 4.1890 4.1098 4.0619 4.0378 2.0629

$,5,C,S, 17.6704
SCSC, 179726 90 39612 3.9602 3.9596 3.9593 3.9591 2.0184
$,C15,C, 19.5025 100 15 00574 00572 0.0567 0.0553 0.0525 0.0506
C1C1CiCy 21.6722 30 0.0459 0.0451 0.0432 0.0396 0.0338 0.0302

45 0.0315 0.0302 0.0277 0.0240 0.0192 0.0168
60 0.0182 0.0172 0.0158 0.0142 0.0125 0.0118

sumed to have a length-to-thickness ratio of 10 and be 75 00111 0.0109 0.0107 0.0106 0.0104 0.0103
stacked with a sequence of #5°/45°). As summarized in 90 00102 00102 00102  0.0102 00102  0.0102
Table IX, the frequencies are higher for plates with stiffer
constraints. supported £;5;S;S;) laminated plate have been investi-

In the last two examples, the combined effects of plategated. The laminates have been assumed to be made of ma-
aspect ratio, length-to-thickness ratio, and stacking angle faerial 3, and be either five-ply with stacking sequet@e- 6/
symmetric angle-ply, cantilevere@(F,F,F,,), and simply  6/—é/6) or three-ply with stacking sequen¢é/—6/6). The

TABLE XI. Effect of plate aspect ratiog/b), length-to-thickness ratioa{h), and lamination angl€6) on the fundamental frequency parametexs,
=100X wh+/p/E,, for laminated plates with stacking sequence &s-6/6) and S;S;S;S; edge conditions.

a/b
Material 2 Material 3
a’h 0 0.5 1.0 15 2.0 0.5 1.0 1.5 2.0
5 15° 32.2071 35.8155 42.6236 52.0862 37.6402 41.6871 49.7996 61.5597
30° 29.2007 36.2748 46.6866 58.8802 35.3459 44.0053 56.8605 72.1304
45° 25.6464 36.6625 50.3993 66.1334 31.6364 45.1748 62.2065 81.8287
60° 22.1526 36.2748 53.6901 72.9672 26.8135 44.0053 64.5530 87.0976
75° 18.5448 35.8155 56.3615 78.2015 21.5853 41.6871 64.8946 89.6031
10 15° 11.2081 12.4525 14.9253 18.5448 13.5798 14.8732 17.5509 21.5853
30° 9.8742 12.6714 16.9729 22.1526 12.1558 15.4325 20.5688 26.8135
45° 8.3602 12.8639 18.7282 25.6464 10.2682 15.7841 23.0298 31.6364
60° 6.9411 12.6714 20.3417 29.2007 8.3294 15.4325 24.7607 35.3459
75° 5.5211 12.4525 21.8693 32.2071 6.4265 14.8732 25.8619 37.6402
20 15° 3.2341 3.6033 4.3657 55211 4.0139 4.3921 5.1914 6.4265
30° 2.8157 3.7035 5.1364 6.9411 3.4941 45186 6.2016 8.3294
45° 2.3346 3.7827 5.8106 8.3602 2.8587 4.6234 7.1143 10.2682
60° 1.8917 3.7035 6.4131 9.8742 2.2622 45186 7.8871 12.1558
75° 1.4674 3.6033 6.9919 11.2081 1.7097 4.3921 8.5389 13.5798
30 15° 1.4851 1.6566 2.0151 2.5644 1.8549 2.0306 2.4044 2.9870
30° 1.2901 1.7094 2.3977 3.2813 1.6036 2.0862 2.8919 3.9277
45° 1.0642 1.7502 2.7378 4.0187 1.3021 2.1367 3.3465 4.9257
60° 0.8569 1.7094 3.0360 4.8157 1.0240 2.0862 3.7443 5.9624
75° 0.6607 1.6566 3.3187 5.5135 0.7700 2.0306 4.0998 6.7906
40 15° 0.8455 0.9437 1.1499 1.4674 1.0586 1.1592 1.3739 1.7097
30° 0.7334 0.9755 1.3748 1.8917 0.9129 1.1907 1.6575 2.2622
45° 0.6043 0.9999 1.5762 2.3346 0.7392 1.2201 1.9252 2.8587
60° 0.4854 0.9755 1.7509 2.8157 0.5800 1.1907 2.1616 3.4941
75° 0.3734 0.9437 1.9152 3.2341 0.4353 1.1592 2.3776 4.0139
50 15° 0.5442 0.6076 0.7411 0.9470 0.6822 0.7472 0.8860 1.1035
30° 0.4723 0.6287 0.8881 1.2255 0.5876 0.7674 1.0706 1.4649
45° 0.3886 0.6448 1.0203 1.5185 0.4752 0.7867 1.2459 1.8584
60° 0.3117 0.6287 1.1343 1.8374 0.3724 0.7674 1.4011 2.2826
75° 0.2395 0.6076 1.2411 2.1135 0.2792 0.7472 1.5444 2.6337
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results are presented in Tables X and XI. In both examples;ise governing eigenvalue equation has been derived. Con-
the fundamental frequencies decrease with an increase irergence of eigenvalues has been verified and excellent
length-to-thickness ratio. It is observed that boundary condiagreement has been achieved with respect to first-order,
tions have a significant influence on the effect of stackinghigher-order, finite element, and three-dimensional elasticity
angle for laminated plates. As shown in Table Xl, for thesolutions. Numerical frequencies for laminates made of ma-
simply supported laminates, the fundamental frequencies déeerials with different degrees of orthotropy have been pre-
crease as stacking angle increases for a plate with  sented and illustrated with relevant vibration mode shapes.
<1.0, and increase fa/b>1.0. However, for cantilevered The effect of length-to-thickness ratio, boundary conditions,
laminates, the fundamental frequencies decrease as the stagkate aspect ratio, number of layers, and stacking angles on
ing angle increases. It has also been shown that the fund#he laminates have also been investigated. This analysis sug-
mental frequencies increase with aspect ratio for simply supgests that, so far as the free vibration of laminated composite
ported laminates and decrease with aspect ratio foplate is concerned, the higher-order shear deformation theory
cantilevered laminates. is able to predict accurate solutions. The versatility of the
p-Ritz method in accounting for laminated plates with a va-
riety of boundary constraints should be appreciated.
I1l. CONCLUSIONS

The p-Ritz method has been employed for free vibrationAPPENDIX

analysis of thick composite plates with symmetric lamination Substitution of Eqgs(1a—(1c¢), (2), (4), and (10) into
based on the higher-order shear deformation theory. A corigs.(8) and(9) yields
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If the laminae are made of the same material with mass density per unit valutine total kinetic energy becomes

T= fJ[SlS 17¢>x+17<75y—8<75X &x 8q5y &y +h(u0+u0+w0)+252(¢>x+¢y) (A2)
The stiffness matriceK and the mass matricdd are given by
FKYY] [KY] 0 0 0 17
X [K¥Y] 0 0 0
K=5- [K™™]  [KY0u]  [K"%] (A3)
0 0,40 040
sym. [K%WP]  [KOu%]
L [K%%] ]
and
[ [MYY] 0 0 0 0 7
[M??] 0 0 0
M = [M"] [M™4] [M™%] |, (A4)
sym. [M fubu] 0
L [M%%] ]
where the elements @€ andM can further be expressed as
2 0101 0110 1001 b2 1010
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0101 0110 1001 b2 1010
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2 b2
K= RO Ao 25 [REE REE4 d  RES2 (A50)
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and
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