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Abstract

At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in
early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and
functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional
characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we
provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence
of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended
from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin,
orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their
mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian
vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide
that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins
early in the vertebrate lineage.
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Introduction

Based on structural similarity, secretin (SCT) is classified to the

secretin/glucagon superfamily that also includes vasoactive

intestinal peptide (VIP), pituitary adenylate cyclase-activating

polypeptide (PACAP), PACAP-related peptide (PRP), glucagon,

peptide-histidine-isoleucine (PHI), glucagon-like peptides (GLP-1

and GLP-2), gastric inhibitory polypeptide (GIP), and growth

hormone-releasing hormone (GHRH) [1]. It has been suggested

that several gene and exon duplication events followed by

subsequent modifications of an ancestral gene have given rise to

these structurally similar peptides [2,3]. Secretin was first

discovered as a gastrointestinal hormone with its function in

stimulating pancreatic flow [4]. Recently, various roles of secretin

in the central and peripheral nervous system as well as in other

organs including pituitary, kidney, intestine and heart [5–9] have

further been proposed.

Secretin carries out its hormonal actions through the secretin

receptor (SCTR), which is a member of Class II B1 guanine

nucleotide binding protein (G protein)-coupled receptors (GPCR)

[6]. This class of GPCR utilizes intracellular second messengers

including cyclic AMP and calcium ions in signaling pathways (For

details, see review [9]). The first secretin receptor was isolated

from a rat NG108-15 cell line based on its high affinity for

secretin in transfected COS cells [5]. Subsequently, secretin

receptors were cloned from several mammalian species, including

human [10–12], mouse [13], rat [14], bovine [15] and rabbit

[16].

Orexins A and B [17] or hypocretins 1 and 2 [18] are peptides

isolated from the rat hypothalamus in 1998 by two independent

research groups. Both peptides are derived from the same

precursor protein and are produced by differential proteolytic

cleavage. Because the C-terminal portions of both orexin peptides

resemble the N-terminal of secretin, orexins were proposed to

have originated from secretin or the related peptides in the

secretin/glucagon superfamily [18,19]. This hypothesis was then

examined by studying the bindings of these peptides with their

receptors in mammals and conflicting results were reported.

Porcine SCT was found to displace the binding of [125I] orexin A

in the rat anterior hypothalamus and orexin receptor-transfected
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cells [20]. On the contrary, another research group showed that

SCT was unable to displace [125I] orexin A or induce calcium

elevation in human orexin type-2 receptor-transfected CHO cells

[21]. There were also reports indicating that SCT exhibited

neither agonistic nor antagonistic effects on the human orexin

receptors [22]. To date, orexins have been identified in several

jawed vertebrates, including teleosts (pufferfish and zebrafish) [23],

frog [24], chicken [25] and mammals [18]. Two orexin receptors

encoded by separate genes were found in mammals [17], but in

zebrafish [23] and chicken [26], only type-2 receptors were

isolated. Functionally, orexins are neuropeptides that modulate

energy homeostasis, feeding behavior [27–29], gastrointestinal

secretion [30–32], sleep-wake cycle [33], and drinking behavior

[34]; and it is interesting to note that some of the effects of orexin

overlap with those of secretin [35].

To our knowledge, secretin and secretin receptors have only

been functionally identified in mammals while a secretin-like

peptide sequence has been isolated in chicken [36–38]. To

understand the evolutionary history of secretin and secretin

receptor, we have chosen the African lungfish Protopterus dolloi and

two frog species (Xenopus laevis and Rana rugulosa) for the isolation

of SCT and SCTR homologues as they are extant species in the

Sarcopterygii lineage [39]. Lungfish and the fish ancestors of the

tetrapod lineage are believed to be originated within a short time

window of about 20 million years, back in the early Devonian

(about 380 to 400 million years ago) [40]. Hence, lungfish holds

an important evolutionary position in the vertebrate lineage

extending from the Paleozoic fishes to the tetrapods [38]. Frog

species diversified and radiated in the amphibian lineage,

marking the critical point of Devonian origin of tetrapods from

the transition of aquatic to terrestrial habitats [41,42]. In the

present study, we have cloned and functionally characterized

putative SCTRs from lungfish and frogs, showing for the first

time that a SCTR-like sequence was already present in the lobe-

finned fish dating back to the early Devonian. Functional studies

evidently showed that these putative SCTRs were coupled to

downstream signaling mechanisms involving intracellular cAMP

and calcium ions.

Because of the elusive structural and functional similarities

observed in secretin and orexin peptides in mammals, together

with the conflicting reports on the cross-reactivity of secretin and

orexin with their mutual receptors, we sought to test the ligand-

receptor activation of secretin and orexin in X. laevis that now

remains confined to mammalian studies. We hypothesized that

secretin and orexin receptors could have been functional

complementary partners in mediating physiological processes

before the origin of mammals; and subsequent to the early

divergence of mammals, they became highly specific to their

respective ligands. Our expectation under this hypothesis is that

secretin and orexin could activate their mutual receptors in frog

species, but not in mammalians. Therefore, in addition to

secretin and secretin receptor, the orexin type-2 receptor was

also cloned from X. laevis to clarify the ancestral relationship of

secretin and orexin. We showed that Xenopus orexin A (xOA)

could stimulate calcium transients in both lungfish and X. laevis

SCTRs; while Xenopus secretin (xSCT) could also evoke calcium

elevations in Xenopus orexin type-2 receptor (xOX2R). Substan-

tiated by these reciprocal ligand-receptor activations in non-

mammalian vertebrates, we provide evidence that, secretin and

orexin, could be modulating physiological processes in coordi-

nation before the divergence of mammals; but we found that

such interaction was due to their moderate structural identities

instead of a common ancestral origin early in the vertebrate

lineage.

Results

Identification and Analysis of Putative Secretin Receptors
in P. dolloi and X. laevis

By searching the X. tropicalis genome, DNA sequences that

shared high levels of sequence identity with mammalian SCTRs

were identified. Primers were designed accordingly to amplify the

putative SCTR in X. laevis, and a full-length cDNA of 1841 bp

(GenBank accession no. HQ236552) with an open reading frame

of 1350 bp encoding a 450-amino acid protein was obtained (Fig.

S1). To amplify the SCTR in P. dolloi, degenerative primers were

designed. The full-length putative P. dolloi SCTR cDNA was

1509 bp (GenBank accession no. HQ236551) with an open

reading frame of 1389 bp encoding a 463-amino acid protein

(Fig. S2). Using the CBS Prediction Servers (http://www.cbs.dtu.

dk/services/), putative lfSCTR and xSCTR were shown to

structurally resemble other class II B1 GPCRs with an N-terminal

signal peptide of 28 and 24 amino acids, respectively, a ligand

binding domain and seven transmembrane domains. Phylogenetic

analyses of putative lfSCTR and xSCTR were performed using

the Maximum Likelihood method with the Jones-Taylor-Thorn-

ton (JTT) model (Fig. 1A). PAC1, VPAC1 and VPAC2 receptors

were included for their closer phylogenetic relationships with

SCTRs [8], while PTHR was used as an outgroup. The tree

grouped the putative lfSCTR and xSCTR to the clade of SCTRs,

supporting their identities as the orthologs of mammalian SCTRs.

Moreover, phylogenies inferred from the SCTR sub-branch are

consistent with the divergence of vertebrate groups. The overall

tree containing the analyzed receptors is in agreement with the

published observations [43]. When compared to human, rat,

mouse, rabbit, and bovine SCTR, lfSCTR and xSCTR shared

58.8–71.0% sequence identity in the ligand-binding domain (Fig.

S3A), and 62.6–69.0% identity for the entire receptor (Fig. S3B).

Structurally, the six cysteine residues involved in the formation of

three disulphide linkages within the ectodomain [44,45] and the

third endoloop (IC3), as well as the RLAR/K motif for Gs

coupling [46] were conserved in lfSCTR and xSCTR (Fig S4).

Interestingly, the IIRIL motif that was believed to be unique to

VPAC1 receptors [47] was found in all secretin receptors.

Moreover, the PDI/V motif present in all VIP receptors [47]

was also found in lfSCTR. In chromosomal synteny analysis

(Fig. 1B), SCTR genes were located in close proximity to the

Tmem37 genes in all the analyzed species. This information

therefore supports that the SCTR gene in X. tropicalis is

homologous to the mammalian SCTR genes.

Molecular Cloning of X. laevis and R. rugulosa Secretin
Precursors

The predicted amino acid sequences of Xenopus and Rana SCT

precursors are shown in Fig. S5, S6 (X. laevis secretin (xSCT)

cDNA GenBank accession no. HQ236553 and Rana secretin

(Rana SCT) cDNA GenBank accession no. HQ236554). Both

precursors encode a 28-amino acid secretin peptide predicted by

the conserved GKR motif as cleavage site. Alignment of frog SCT

with other SCTs showed identical residues at positions 1, 3, 4, 7, 8,

9 11 and 17 (Fig. S7A) and 57.1–96.4% sequence identity (Fig.

S7B). Rana SCT and the predicted X. tropicalis SCT are identical

while they differ from xSCT by 1 residue at position 5. The

phylogenetic relationship of SCT precursors was analyzed with the

precursors of the other secretin/glucagon superfamily peptides

(Fig. 2A). Precursors instead of mature peptides were used in the

analysis because the mature peptides are too short for phylogenetic

studies (less than 50 amino acid residues). In the tree, frog, avian

and mammalian SCT precursors formed three sub-branches in the
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same clade, which are consistent with the established phylogenies

of these species. In an attempt to analyze the SCT genes in

vertebrates, their genomic locations in human, mouse, bird,

chicken and X. tropicalis were mapped (Fig. 2B). The overall

genomic arrangement of the SCT loci was syntenic, as shown by

genes such as DRD4, DEAF1, and ASCL2, although the gene

environment of SCT in X. tropicalis was less conserved compar-

atively. This could be attributed to the incomplete assembling of

Figure 1. Analyses of secretin receptor phylogeny and in silico genomic locations. (A) Receptor phylogeny: phylogenetic analysis of
vertebrate receptors in Class II B1 GPCR. The tree was generated by Maximum Likelihood (ML) and plotted by MEGA 5.0. Receptors cloned in the
present study are marked by an asterisk. Diverged from the ancestral VPAC-like receptor (denoted by a black dot), the P. dolloi SCTR retained the VIP/
PACAP functions (branch in dotted line); whereas the X. laevis and mammalian SCTRs acquired the specificity towards secretin (branch in thick solid
black line). PTHR, parathyroid hormone receptor; SCTR, secretin receptor; PAC1, pituitary adenylate cyclase-activating polypeptide (PACAP) receptor
type I; VPAC1, vasoactive intestinal peptide (VIP)-PACAP receptor I; VPAC2, VIP-PACAP receptor II. (B) Chromosomal locations of secretin receptor in
various vertebrate species. Genes adjacent to secretin receptor in different vertebrate genomes are shown. Homologous genes present in different
species are linked to show their similarities in chromosomal location.
doi:10.1371/journal.pone.0019384.g001
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scaffolds in the X. tropicalis genome, or it is reflecting the

occurrence of some major evolutionary events that took place in

amphibian divergence. Despite our efforts, we could neither

identify a secretin-like sequence in P. dolloi by molecular cloning,

nor any secretin-like sequence in various fish genome databases by

informatics.

Comparison of Functional Properties of lfSCTR and xSCTR
To functionally characterize the putative lfSCTR and xSCTR,

CHO cells transiently transfected with these receptors were

stimulated by SCT or related peptides, and intracellular cAMP

production ([cAMP]i) as well as intracellular Ca2+ mobilization

([Ca2+]i) were monitored. Among all the peptides tested, hSCT,

Figure 2. Analyses of secretin phylogeny and in silico genomic locations. (A) Ligand Phylogeny: phylogenetic analysis of the secretin/
glucagon hormone precursor superfamily. The tree was generated by Maximum Likelihood (ML) and plotted by MEGA 5.0. Sequences determined in
the present study are marked by an asterisk. SCT, secretin precursor; preproGHRH, prepro-growth hormone-releasing hormone; PHI-VIP, peptide
histidine isoleucine-vasoactive intestinal peptide precursor; PRP-PACAP, pituitary adenylate cyclase-activating polypeptide (PACAP)-related peptide-
PACAP precursor. (B) Chromosomal locations of secretin genes in various vertebrate species. Neighboring genes of secretin in different vertebrate
genomes are shown. Homologous genes in proximity of secretin are linked by straight lines to demonstrate the syntenic gene environment of
secretin in the analyzed vertebrate species.
doi:10.1371/journal.pone.0019384.g002
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xSCT, hVIP, and hPACAP27 (100 nM) were able to significantly

stimulate lfSCTR (Fig. 3A). The xSCTR was found highly specific

to xSCT in both functional assays (Fig. 3B, 3D and 3F) ([cAMP]i

EC50 = 0.24 mM and [Ca2+]i EC50 = 2.52 nM). Graded concen-

trations of these peptides stimulated both SCTRs dose-depen-

dently (Fig. 3C and D). As shown by the EC50 values, the order of

specificity in activating lfSCTR was hVIP (0.16 mM).hPACAP27

(0.41 mM).hSCT (0.79 mM).xSCT (1.82 mM). Despite that the

peptides were weakly potent as shown by their sub-micromolar

EC50 values, their abilities to stimulate in a concentration-

dependent manner cAMP response showed that they were fully

efficacious agonists of this receptors. Of interest is the agonistic

effect of hSCT on lfSCTR stimulation. While hSCT was less

potent than hVIP and hPACAP27 in activating lfSCTR, at micro-

molar concentrations (1025 and 1026 M), hSCT was 3.6 and 5.0

fold more efficacious than hVIP and hPACAP27 respectively in

triggering [cAMP]i in lfSCTR-CHO cells. In addition to cAMP

stimulation, exposure of lfSCTR-transfected CHO cells preloaded

with the Ca2+-sensitive dye Fluo-3 to hSCT, xSCT, hVIP, and

hACAP27 evoked transient [Ca2+]i increase in a dose-dependent

manner (Fig. 3E). As shown by their EC50 values, the order of

specificity was hVIP (10.3 nM).hSCT (14.7 nM).hPACAP27

(25.6 nM).xSCT (273.1 nM), which is in agreement with the

cAMP assay. By confocal imaging, real-time traces from single

cells were recorded (Fig. S8). Ionomycin, an ionophore, was added

at the end of each trial to ensure that [Ca2+]i elevation was not

caused by cell lysis.

Tissue Expression of X. laevis secretin, P. dolloi and X.
laevis Secretin Receptors

To examine their potential sites of action, the expression profiles

of xSCT, xSCTR and lfSCTR transcripts were studied by the

quantitative PCR technique (Fig. 4). All the transcripts were found

widely expressed in lungfish and X. laevis, and the X. laevis intestine

exhibited the highest co-expression of SCT and SCTR. This co-

expression extended to the gastrointestinal tract (stomach and

pancreas), lung and kidney. Expression of the xSCT transcript was

also detected in the brain, while its receptor was relatively weakly

expressed in this tissue. Unlike the most abundant expression of

xSCTR in the digestive system, lfSCTR had the highest transcript

level in the brain, and less in gall bladder, female gonad and

pancreas.

In Vitro Activation by xSCT on R. rugulosa Pancreatic
Ductal Cells

The function of mammalian secretin in stimulating pancreatic

secretion is well-established. In our study, we have therefore tested

the function of xSCT by monitoring in vitro cAMP stimulation

using primary pancreatic ductal cell culture prepared from R.

rugulosa (Fig. 5). As an indicator of cell viability upon overnight

culture, sealing of both ends of the pancreatic ducts were observed

under microscope. xSCT was found to dose-dependently stimu-

late cAMP production; thus, affirming its effect on activating

pancreatic secretion in frogs. Forskolin was used in each

independent trial as a positive control and was able to induce a

20-fold increase in cAMP level when compared with the basal.

Reciprocal Activation of Secretin and Orexin Receptors
by their Mutual Endogenous Ligands

Since SCT was found only in frogs but not in lungfish, we are

thus limited to testing the reciprocal activation of SCT and orexin

with their receptors in frogs. In this study, we cloned the first

amphibian orexin type-2 receptor from X. laevis (xOX2R, cDNA

GenBank accession no. HQ242647) (Fig. S9). Type-2 orexin

receptor was cloned because it is the only orexin receptor present

and has previously been characterized in non-mammalian verte-

brates. xOX2R shares a high level of sequence identity (80%) and

structural similarity with its mammalian orthologs. lfSCTR,

xSCTR and xOX2R were transiently expressed and exposed to

graded concentrations of Xenopus orexins and secretin followed by

measurements of intracellular cAMP accumulation and calcium

mobilization. Interestingly, xOA, but not xOB, could increase

dose-dependently calcium level in both lfSCTR- (EC50 = 1.2 nM)

and xSCTR- (EC50 = 8.6 nM) transfected cells (Fig. 3E and F

respectively). In xOX2R-expressing cells, orexins (xOA and xOB)

and xSCT could trigger dose-dependent [Ca2+]i elevations, but

not intracellular cAMP accumulation, with EC50 values at

2.0 nM, 215 nM, and 146 nM, respectively (Fig. 6 and S10).

Other peptides of the secretin/glucagon superfamily failed to elicit

any responses in both cAMP and calcium assays (data not shown).

These data suggest that calcium mobilization instead of cAMP is

used as the main signaling pathway for orexin receptors from

amphibians to mammals. Human orexin A and B were also able to

induce calcium elevations in xOX2R-CHO cells, but not in

SCTR-expressing cells (data not shown).

Discussion

Structural and Functional Evolution of SCTR in
Vertebrates

To examine the origin of secretin receptor, previously known

only from mammals, we tried to clone orthologs from more

distantly related species – frog (X. laevis) and lungfish (P. dolloi). We

identified orthologs (xSCTR and lfSCTR), indicating that this

receptor originated much earlier than previously thought. Its

cognate ligand, secretin, was only found in X. laevis but not in

lungfish. Despite repeated trials on varying conditions and

different designs of degenerate primers, we were not able to

amplify a secretin-like sequence in lungfish. As the same PCR-

based approach was adopted for the molecular cloning of secretin

in frog and lungfish, we evaluated the failure in lungfish was

probably attributed to the absence of secretin. Because the

genomes of lungfish and other lobe-finned fish are not available,

we tried to search for secretin-like sequences in other fish genomes

(fugu, medaka, zebrafish, tetraodon, and stickleback). Again,

secretin-like sequences were not found (data not shown).

Substantiated by these evidences, we proposed that secretin does

not exist in fish.

As shown by functional assays, both xSCTR and lfSCTR were

coupled to cAMP and calcium signaling pathways albeit

differential ligand affinities. Our data indicated that xSCTR is

highly selective for frog SCT over other secretin-related peptides

tested. On the other hand, it is interesting to note that hVIP and

hPACAP were consistently more specific than hSCT and xSCT in

stimulating lfSCTR in both cAMP and calcium pathways. Since

PACAP and VIP are highly conserved peptides in vertebrates, and

since we are unable to find secretin sequences in fish, we therefore

hypothesize here that although the lungfish SCTR is structurally

more similar to SCTRs in vertebrates, it functions as a VIP/

PACAP receptor in this fish model.

Based on these findings and topology of the phylogenetic tree,

we postulate that SCTR was descended from a VPAC-like

receptor early in the vertebrate lineage (Figure 1A). Suggested by

its newly discovered role in water homeostasis in mammals

[48,49], it is possible that the occurrence of SCTR in the

Sarcopterygii lineage prior the emergence of tetrapods was used

for the change from aquatic to terrestrial habitat. Due to its origin,

Secretin Receptor Origin and Orexin
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Figure 3. Functional characterization of lfSCTR and xSCTR. Intracellular cAMP accumulation ([cAMP]i) in response to 100 nM of the secretin
and related peptides on CHO-K1 cells transfected with (A) lfSCTR and (B) xSCTR (*** indicates P,0.001). Effects of graded concentrations of peptides
on (C) lfSCTR- and (D) xSCTR-expressing cells. Peptide species: h, human; x, X. laevis, zf, zebrafish Danio rerio; gf, goldfish Carassius auratus. Values
represent mean 6 SEM (n = 4). Effects of secretin and related peptides on intracellular calcium mobilization ([Ca2+]i) in recombinant CHO cells
expressing (E) lfSCTR and (F) xSCTR. Transiently transfected cells expressing the receptors were stimulated with graded concentrations of peptides.
Data were expressed in DRFU value (maximum changes in the fluorescence signals from baseline) and converted to percentage of the maximum of
xSCT-induced [Ca2+]i elevation. Results are expressed as mean 6 SEM from at least 10 independent experiments, cell number = 20 to 50.
doi:10.1371/journal.pone.0019384.g003

Secretin Receptor Origin and Orexin
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the lfSCTR is still able to interact with and be activated by VIP

and PACAP, possibly by retaining the VIP/PACAP recognition

motifs (e.g. IIRIL and PDI/V). The SCTR then co-evolved with

SCT leading to the divergence of functional SCT/SCTR axis

paralleled with the emergence of amphibians. Descended from

lobe-finned fish, the SCTR-like sequence gradually increased its

Figure 4. Tissue expression profile of xSCT, lfSCTR and xSCTR. Using real-time RT-PCR, the tissue distribution patterns of lfSCTR, xSCT and
xSCTR were investigated on P. dolloi and X. laevis. The expression level of each gene was calculated from respective standard curve. Data are
expressed as mean 6 SEM (n = 4).
doi:10.1371/journal.pone.0019384.g004

Figure 5. Effects of xSCT on cAMP production in primary
culture of R. rugulosa pancreatic ductal cells. Graded concentra-
tions of xSCT dose-dependently stimulated the [cAMP]i in cultured
pancreatic ductal cells. Forskolin was used in each experiment as a
positive control to show the viability of the pancreatic ductal cells. Data
are expressed as mean 6 SEM (n = 4, *** indicates P,0.001).
doi:10.1371/journal.pone.0019384.g005

Figure 6. Effects of X. laevis secretin and orexin peptides on
[Ca2+]i in xOX2R-CHO cells. Data are expressed as DRFU value
(maximum changes in the fluorescence signals from baseline) and
converted to percentage of maximum xSCT-induced [Ca2+]i increase.
Results are expressed as mean 6 SEM from 10 independent
experiments, cell number = 20 to 50.
doi:10.1371/journal.pone.0019384.g006
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specificity and sensitivity towards the newly appeared SCT, until it

became fully functional as a specific receptor for SCT; and as a

result, functions of VIP/PACAP and SCT were independently

regulated in tetrapods.

Although we did not identify a SCT-like sequence in lungfish,

we cannot exclude the possibility of the presence of a SCT-like

peptide in lungfish or other lobe-finned fish species (e.g.

coelacanth). If a SCT-like peptide does exist before the divergence

of amphibians, it suggests that the fish secretin could have

contributed to the modeling of SCTR’s ligand specificity in

direction to establish a functional SCT-SCTR axis in amphibians.

Cross-Interactions of SCT and Orexin with their Receptors
in Frog

The question of whether secretin and orexin as well as their

receptors shared the same origin early in the vertebrate lineage is

elusive and was a controversial issue in the past. In the present

study, with the cloning of orexin type-2 receptor from X. laevis, we

demonstrated that, in frog, orexin and secretin could reciprocally

activate their receptors. Of all the secretin/glucagon superfamily

peptides, the ability of stimulating orexin receptor is, however,

limited to secretin. Hence, it is unlikely that orexin and secretin are

sharing a common ancestral origin since the superfamily peptides

are well documented for their cross reactivity towards each other’s

receptors [50–52]. Structurally, frog secretin and orexin share

moderate sequence homology (43%) when the N-terminus of SCT

(HAAGILT) is compared to the C-terminus of OA (HVDGRFT).

As the N-terminus of SCT is crucial for receptor binding, the

observed structural similarity shared by these peptides, likely due

to convergent evolution, may explain their cross reactivity with

respective receptors.

The interesting reciprocal ligand-receptor activation exhibited

hereby suggests that secretin and orexins were complementary

partners in mediating similar and/or overlapping physiological

processes via stimulating SCTR and OX2R in non-mammalian

vertebrates of the Sarcopterygii lineage. Taking together the ability

of orexin in activating lfSCTR, we postulate a major alteration of

ligand-receptor interaction of secretin and orexin by the advent of

mammals. Before the divergence of mammals, SCT and orexin A

were in coordination in activating SCTR and OX2R; while orexin

B is specific to activating OX2R to mediate functions distinct from

those controlled by SCT and orexin A. By the divergence of

mammals, orexin type-1 receptor (OX1R) emerged to facilitate

the precise control over the biological functions mediated by

orexin receptors. OX2R in mammals retained its ligand specificity

for orexin A and B descended along the vertebrate lineage; while

OX1R is specifically activated by orexin A. The functional

diversifications of orexin receptors and SCTRs in mammals were

fine-tuned to be activated by their own endogenous peptides,

resulting in the loss of the reciprocal activation observed in non-

mammalian vertebrates.

Though secretin and orexin evolved independently, their

functions converged at some point in the vertebrate lineage. This

convergent evolutionary pattern is, however, not limited to secretin

and orexin. For instance, the intraflagellar transport (IFT) genes

and Regulatory Factor X transcription factors (RFX TFs) have

recently been reported to have evolved independently in pre-

metazoans, and their evolution converged to establish a transcrip-

tional regulatory relationship in metazoans [53]. It was suggested

that the convergent molecular evolution of IFT genes and RFX

TFs could have provided a pivotal driving force in the evolution

and emergence of metazoans [53]. In the case of secretin and

orexin, their convergence was likely the result of selection by similar

adaptive pressures [54,55]. Their complementary mediation on

crucial biological functions could have driven the establishment of

enhanced and networked control for the adaptation of amphibians

in both terrestrial and aquatic habitats. Analogy of secretin and

orexin could have been established by the neutral drift of molecular

adaptation, in which the neutral emergence of non-specific binding

was one of the possible mechanisms.

Integration of our current findings, we conclude that secretin

receptors are not exclusively expressed and functional in

mammals, thus are not encoded from gene(s) that were duplicated

or modified along with the speciation of mammals. Their tissue-

specific expression and abilities in triggering classical GPCR

signaling pathways affirmed that they were already physiologically

functional prior mammalian divergence, and are most likely

descended from a VPAC-like receptor prior the sarcopterygian-

actinopterygian split that occurred after the second round of whole

genome duplication. We also showed that, despite the reciprocal

activation of secretin and orexin receptor by their mutual

endogenous ligands in non-mammalian vertebrates, secretin and

orexin are of different ancestral origins early in the vertebrate

lineage. We speculate that the analogy observed in secretin and

orexin was a result of convergent evolution, in which their cross-

reactivity could be established by the neutral emergence of non-

specific binding.

Materials and Methods

Ethics Statement
All animal treatments were in accordance with the guidelines

established by the Committee on the Use of Live Animals in

Teaching and Research (CULATR, Approval ID 1496-07) of the

University of Hong Kong with the Cap. 340 animal license issued

by the Department of Health of the Hong Kong Government

under the Animals Ordinance.

Animals and Peptides
Lungfish P. dolloi and frog R. rugulosa were purchased from a

local commercial supplier, and X. laevis was bought from Xenopus

I (Xenopus I, Inc., CA). Glucagon, glucagon-like peptides, GIP,

GHRH, PRP, PACAP peptides were ordered from the Proteomics

Resource Center of the Rockefeller University (http://proteomics.

rockefeller.edu/). Xenopus orexin A and B were ordered from

Shanghai HanHong Chemical (Shanghai HanHong Chemical

Co., Ltd., Shanghai, China). VIP and PHI peptides were

synthesized by Bachem California (Bachem California, Inc.,

CA). Human SCT was bought from AnaSpec (AnaSpec, Inc.,

CA), and xSCT was synthesized by one of us (Alain Fournier). All

synthetic peptides were of .95.0% purity.

Total RNA Extraction and First-strand cDNA Synthesis
Animals were sacrificed by cervical decapitation. Total RNA

was isolated from freshly excised tissues by TriPure reagent

according to the manufacturer’s instructions (Invitrogen, Carlsbad,

CA). First-strand cDNA from 5 mg total RNA was synthesized

according to the protocol of SuperScript III Reverse Transcriptase

(Invitrogen) using the Adaptor Primer (AP) (Invitrogen).

Molecular Cloning of Frog Secretins, Secretin Receptors
from P. dolloi and X. laevis, and X. laevis Orexin Type-2
Receptor

Primers for the amplification of X. laevis SCT (xSCT), SCTR

(xSCTR), and orexin type-2 receptor (xOX2R) and R. rugulosa SCT

(Rana SCT) were designed based on the partial sequences obtained

from the X. tropicalis genome by a BLAST search. Degenerate
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primers for the amplification of lungfish SCTR (lfSCTR) were

designed according to conserved regions of aligned SCTR

sequences (Primer List, Table S1). Rapid amplification of cDNA

ends (RACE) was performed using the 59 and 39 RACE

amplification kits (Invitrogen) with specific primers designed

according to the partial sequences. Full-length cDNA clones

encompassing the 59 to 39 untranslated regions were produced by

PCR with specific primers and confirmed by DNA sequencing. Full-

length SCTR cDNAs were subcloned to pcDNA3.1 (+) (Invitrogen)

for functional expression. All sequences newly identified in the

present study have been deposited in the GenBank (Genbank

accession no.: xSCT, HQ236553; xSCTR, HQ236552; xOX2R,

HQ242647; Rana SCT, HQ236554; lfSCTR, HQ236551).

Tissue Distribution of Secretin and Secretin Receptor in P.
dolloi and X. laevis

Quantitative real-time PCR was used to determine the

expression profiles of SCT and SCTR in P. dolloi and X. laevis in

various tissues. First-strand cDNAs were synthesized from total

RNA as previously mentioned (Materials and Methods: Total

RNA Extraction and First-strand cDNA Synthesis). RT-PCR

(n = 4, each in duplicates) was performed using the Power SYBR

Green PCR Master Mix (Applied Biosystems, Foster City, CA)

and the 7300 Real Time PCR System (Applied Biosystems).

Primers used in the real-time PCR are listed in Table S1. The

threshold cycle (Ct) is defined as the fractional cycle number at

which the fluorescence reaches 10-fold standard deviation of the

baseline (from cycle 3 to 10). The specificity of the SYBR PCR

signal was confirmed by both melt curve analysis and agarose gel

electrophoresis. Standard curves were established by 106 serial

dilution of respective plasmid stocks.

Transient Expression of Secretin and Orexin Receptors in
CHO cells

Chinese Hamster Ovary (CHO) cells (ATCC, Manassas, VA)

were cultured in MEM/10% FBS/100 U/ml Penicillin/100 g/ml

Streptomycin on 100 mm tissue culture plates at 37uC and 5%

CO2 until 80% confluence. SCTR or OX2R expression construct

(2 mg) was used to transfect 16105 CHO cells with 6 ml GeneJuice

reagent (Novagen, Darmstadt, Germany). A control cell line was

established by transfecting the cells with the pcDNA 3.1 (+) vector

(Invitrogen). Intracellular cAMP production upon peptide stimu-

lation was measured using the LANCE cAMP assay kit (Perkin-

Elmer, Waltham, MA) in the Victor 64 multilabel reader (Perkin-

Elmer) according to the manufacturer’s protocol. Intracellular

cAMP levels ([cAMP]i) were measured and expressed as cAMP

concentration relative to the basal level (stimulation buffer alone

without peptide addition). Negative control experiments were

performed by simultaneous peptide stimulation at 10 mM on the

control cell line in each experimental trial.

For confocal calcium imaging, transiently transfected cells were

plated at a density of 3000 cells/well in 24-well plates (Sigma-

Aldrich, St. Louis, MO). After overnight incubation, cells were

pre-loaded with 5 mM Fluo-3 acetoxymethyl ester (AM) (Sigma)

for 45 min at 37uC in Tyrode solution consisting of (mM): 140

NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 10 glucose and 10 HEPES at

pH 7.4. Calcium transient of single receptor-transfected CHO cell

was recorded with a confocal imaging system (Olympus Fluoview

System version 4.2 FV300 TIEMPO) mounted on an upright

Olympus microscope (IX71). Peptides at concentrations ranging

from 1025 to 10212 M were added at designated time point and

calcium level was traced in a real-time manner using the Fluoview

software (Olympus). Data were expressed in DRFU value

(maximum changes in the fluorescence signals from baseline)

and converted to percentage of the maximum of xSCT-induced

[Ca2+]i elevation (i.e. xSCT [Ca2+]i at 10 mM = 100%). For both

assays, ionomycin (10 mM) was added at the end of each

experiment to test the vitality of the cells.

In Vitro Activation by xSCT on R. rugulosa Pancreatic
Ductal Cells in Primary Culture

Adult male R. rugulosa was sacrificed by cervical decapitation.

The freshly excised pancreas was removed and washed in Ringer

solution (in mM, 85 NaCl, 4 KCl, 17.5 NaHCO3, 0.8 KH2PO4, 2

glucose, 1.5 CaCl2 and 0.8 MgCl2, pH 7.6). The excised pancreas

was then minced into approximately 1 mm3 pieces and digested at

room temperature for 1 hr in the dissociation medium (Ringer

solution supplemented with 0.2 mg/ml soy beans trypsin inhibitor

(Sigma), 2 mg/ml BSA (Roche), 400 U/ml hyaluronidase (Sigma)

and 50 U/ml collagenase (Sigma)). The tissue suspension was then

washed with Ringer solution and small clusters of dissociated cells

were filtered with the use of a 100-mm cell strainer (BD Falcon,

US). Filtrate containing the undigested tissue, including the

pancreatic ducts, was maintained in culture medium (80%

Leibovitz’s L-15 medium (Invitrogen) supplemented with 10%

FBS and 100 U/ml Penicillin/100 g/ml Streptomycin) in a

humidified incubator at 24uC. Upon overnight culture, both ends

of the pancreatic ducts sealed with the lumens dilated due to

accumulation of the secretion as seen under microscope. The

isolated pancreatic ductal cells were then used for cAMP

stimulation in the presence of xSCT peptides and forskolin.

Phylogenetic Analysis
Amino acid sequences were aligned with Clustal X, and

phylogenetic trees were constructed using MEGA 5.0 software

[56]. The best-fit models of the trees were selected by ProtTest 3.0

[57]. The trees were calculated by Maximum Likelihood method

with the Jones-Taylor-Thornton (JTT) model and combined with

+I: invariable sites, +G: rate heterogeneity among sites, +F:

observed amino acid frequencies. 1000 bootstrap simulations were

used to test the reliability of branching. Numbers on the nodes of

the tree indicated the percentage of bootstrap replicates in which

the labeled branch was reproduced. Sequences used in these

analyses and their accession numbers retrieved from Genbank and

Ensembl are shown in Table S2.

Statistical Analysis
Results are presented as mean 6 SEM, and are averages of the

means of duplicated assays in at least three independent

experiments. GraphPad Prism version 3.0 (GraphPad Software,

Inc., San Diego, CA) was used to plot the sigmoidal curves in the

cAMP and calcium mobilization assays and to perform statistical

analyses using one-way ANOVA followed by Dunnett’s test.

Differences were considered significant when P,0.05.

Supporting Information

Figure S1 Nucleotide (GenBank accession no. HQ236552) and

deduced amino acid sequence of the X. laevis secretin receptor

(xSCTR) cDNA. Nucleotides (lower line) and amino acids (upper

line) are numbered from the initiation methionine. The signal

peptide (24 amino acids) is indicated in bold characters.

Transmembrane domains are underlined with solid lines.

(PPTX)

Figure S2 Nucleotide (GenBank accession no. HQ236551) and

deduced amino acid sequence of the P. dolloi secretin receptor
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(lfSCTR) cDNA. Nucleotides (lower line) and amino acids (upper

line) are numbered from the initiation methionine residue. The

signal peptide (28 amino acids) is indicated in bold characters.

Transmembrane domains are underlined with solid lines.

(PPTX)

Figure S3 Percent amino acid homology of vertebrate secretin

receptor (A) ligand-binding domain and (B) entire sequence.

(PPTX)

Figure S4 Alignment of cloned secretin receptor amino acid

sequences. Putative transmembrane domains are overlined and

labeled. # and * indicate potential sites for N-linked glycosylation

and conserved cysteine residues, respectively. Predicted ligand-

binding domains are indicated in bold characters. Structural

features are boxed with dotted lines. Gaps (represented by - ) were

introduced to maximize sequence homology.

(PPTX)

Figure S5 Nucleotide (GenBank accession no. HQ236553) and

deduced amino acid sequence of the X. laevis secretin (xSCT)

cDNA. The full-length xSCT is 2141 bp in length. Nucleotides

(lower line) and amino acids (upper line) are numbered from the

initiation methionine residue. The signal peptide (20 amino acids)

is indicated in bold characters. The mature peptide (28 amino

acids) is underlined with solid line and the potential cleavage/

amidation site (GKR) is boxed.

(PPTX)

Figure S6 Nucleotide (GenBank accession no. HQ236554) and

deduced amino acid sequence of the R. rugulosa secretin (Rana

SCT) cDNA. The full-length Rana SCT is 763 bp in length.

Nucleotides (lower line) and amino acids (upper line) are

numbered from the initiation methionine residue. The signal

peptide (22 amino acids) is indicated in bold characters. The

mature peptide (28 amino acids) is underlined with solid line and

the potential cleavage/amidation site (GKR) is boxed.

(PPTX)

Figure S7 Sequence analyses of secretin mature peptides. (A)

Alignment of secretin mature peptide sequences. Identical residues

are indicated in bold characters. Accession numbers are: H. sapiens,

AAG31443; R. norvegicus, AAA42128; M. musculus, CAA51982; B.

taurus, P63296; C. familiaris, P09910; O. cuniculus, P32647; S. scrofa,

AAA31121; G. gallus, NP_001020004. (B) Percent amino acid

homology of the aligned secretin mature peptides.

(PPTX)

Figure S8 Representative traces of hPACAP27, hSCT, hVIP,

xOA, and xSCT on intracellular calcium mobilization in lfSCTR,

xSCTR and null pcDNA 3.1-transfected CHO cells. Peak

magnitude of traces is proportional to the order of potency of

the ligands tested. Traces were obtained from at least 10 calcium

assays with respective control shown on the right panel. Ionomycin

(10 mM) was added at the end of each experiment to test the

vitality of the cells.

(PPTX)

Figure S9 Full-length nucleotide (GenBank accession no.

HQ242647) and deduced amino acid sequence of X. laevis orexin

type-2 receptor (xOX2R). Numbers on the left and right indicate

the position of the first nucleotide and the last amino acid of each

line from the start codon, respectively. The ORF sequence is

presented in upper cases whereas the 39 and 59 UTR sequences

are presented in lower cases. The amino acid sequences corre-

sponding to the seven putative transmembrane domains (TM1-7)

are labeled and underlined. The stop codon is marked by an

asterisk sign (*).

(PPTX)

Figure S10 Representative traces of xSCT, xOA, and xOB on

intracellular calcium mobilization in xOX2R- and null pcDNA

3.1-transfected CHO cells. Peak magnitude of traces is propor-

tional to the order of potency of the ligands tested. Traces were

obtained from at least 10 calcium assays with respective control

shown on the right panel. Ionomycin (10 mM) was added at the

end of each experiment to test the vitality of the cells.

(PPTX)

Table S1 List of primers used in PCR and real-time PCR

amplifications.

(PPTX)

Table S2 Accession numbers of amino acid sequences of

secretin/glucagon superfamily hormones and GPCR secretin

family receptors [58,59].

(PPTX)
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