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Abstract The combined effects of vertical heterogeneity of permeability and local thermal
non-equilibrium (LTNE) on the onset of ferromagnetic convection in a ferrofluid saturated
Darcy porous medium in the presence of a uniform vertical magnetic field are investigated. A
two-field model for temperature representing the solid and fluid phases separately is used. The
eigenvalue problem is solved numerically using the Galerkin method for different forms of
permeability heterogeneity function Γ (z) and their effect on the stability characteristics of
the system has been analyzed in detail. It is observed that the general quadratic variation
of Γ (z) with depth has more destabilizing effect on the system when compared to the homo-
geneous porous medium case. Besides, the influence of LTNE and magnetic parameters on
the criterion for the onset of ferromagnetic convection is also assessed.
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c Specific heat
ca Acceleration coefficient
d Thickness of the porous layer
D = d/dz Differential operator
�g Acceleration due to gravity
ht heat transfer coefficient
�H Magnetic field intensity

H0 Imposed uniform vertical magnetic field
Ht = hd2/εktf Scaled inter-phase heat transfer coefficient
k̂ Unit vector in z-direction
K0 The mean value of K (z)
K (z) Permeability of the porous medium
kf Thermal conductivity of the fluid
ks Thermal conductivity of the solid
Kp = −(∂ M/∂Tf )H0 ,Ta Pyromagnetic co-efficient
�, m Wave numbers in the x and y directions
�M Magnetization

M0 = M(H0, Ta) Constant mean value of magnetization
M1 = μ0 K 2β/(1 + χ)αtρ0g Magnetic number
M3 = (1 + M0/H0)/(1 + χ) Non-linearity of magnetization parameter
p Pressure
�q = (u, v, w) Velocity vector
R = ρ0αtgβkd2/εμfκf Darcy–Rayleigh number
t Time
T Temperature
TL Temperature of the lower boundary
Tu Temperature of the upper boundary
Ta = (Tl + Tu)/2 Reference temperature
W Amplitude of vertical component of perturbed velocity
(x, y, z) Cartesian co-ordinates

Greek Symbols
αt Thermal expansion coefficient
β = �T/d Temperature gradient
χ = (∂ M/∂ H)H0 , T0 Magnetic susceptibility
∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 Laplacian operator
∇2

h = ∂2/∂x2 + ∂2/∂y2 Horizontal Laplacian operator
ε Porosity of the porous medium
Γ (z) Non-dimensional permeability heterogeneity function
κf = ktf/(ρ0c)f Thermal diffusivity of the fluid
μf Dynamic viscosity
μ0 Free space magnetic permeability of vacuum
ϕ Magnetic potential
Φ Amplitude of perturbed magnetic potential
γ = εktf/(1 − ε) kts Porosity modified conductivity ratio
ρf Fluid density
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ρ0 Reference density at Ta

Θ Amplitude of temperature

Subscripts
b Basic state
f Fluid
s Solid

1 Introduction

Buoyancy-driven convection in a layer of Newtonian viscous fluid saturated porous medium
heated from below has received considerable attention during the last few decades because
of its relevance in various applications such as biomedical engineering, drying processes,
thermal insulation, radioactive waste management, transpiration cooling, geophysical sys-
tems, contaminant transport in groundwater, ceramic processing, solid-matrix compact heat
exchangers, and many others. Both local thermal equilibrium (LTE) and local thermal non-
equilibrium (LTNE) models have been utilized in investigating the problems. The growing
volume of work is well documented by Ingham and Pop (1998), Vafai (2000, 2005), Nield
and Bejan (2006), and Vadasz (2008).

Ferrofluids or magnetic nanofluids are not occurring in nature but they are synthesized in
the laboratory because of their increasing importance in heat transfer applications in electron-
ics, engines, micro and nanoelectromechanical systems, and other engineering applications.
When a ferrofluid is submitted to a gradient of temperature, the momentum balance experi-
ences a profound modification, through the Kelvin body force reflecting the magnetization
of the ferrofluid. Such a study in a clear ferrofluid layer is well known since the classical
works of Finlayson (1970), Neuringer and Rosensweig (1964), and Bashtovoi and Berkovski
(1973). The analogous buoyancy-driven convection in a layer of ferrofluid saturating a porous
medium heated from below in the presence of a uniform magnetic field has also attracted
considerable attention in the literature owing to its importance in controlled emplacement
of liquids or treatment of chemicals, and emplacement of geophysically imageable liquids
into particular zones for subsequent imaging, etc. (for details see Borglin et al. 2000 and
references therein). Sunil and Mahajan (2009) have used generalized energy method to study
nonlinear convection in a magnetized ferrofluid saturated porous layer heated uniformly from
below for the stress-free boundaries case. Shivakumara et al. (2008, 2009) have investigated
theoretically the onset of convection in a layer of ferrofluid saturated porous medium for
various types of velocity and temperature boundary conditions. Nanjundappa et al. (2010)
have investigated the onset of buoyancy-driven convection in a ferromagnetic fluid saturated
sparsely packed porous medium with fixed heat flux condition at the lower rigid boundary
and a general thermal boundary condition at the upper free boundary. Recently, Shivakumara
et al. (2011a) have analyzed the effect of Coriolis force due to rotation on the onset of
ferromagnetic convection in a ferrofluid saturated porous layer.

As propounded by many researchers, the assumption of LTE is inadequate for proper
understanding of the heat transfer problems in many practical applications involving
hyperporous materials and also media in which there is a significant temperature differ-
ence between the fluid and solid phases (for details see Nield and Bejan 2006 and refer-
ences therein). In such circumstances, the LTNE effects are to be taken into consideration.
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Therefore, the recent trend in the study of thermal convective instability problems in porous
media is to account for LTNE effects by considering a two-field model for energy equation
each representing the fluid and solid phases separately. Realizing the importance, studies
have been undertaken recently to know the effect of LTNE on ferromagnetic convection in
a layer of porous medium heated from below but it is still in infancy. Lee et al. (2010) have
investigated the effect of LTNE on the criterion for the onset of ferromagnetic convection in
a horizontal layer of Darcy porous medium in the presence of a uniform vertical magnetic
field, while Sunil et al. (2010) have discussed nonlinear aspects of the problem. Recently,
Shivakumara et al. (2011b,c) have analyzed the problem of ferromagnetic convection in a
layer of Brinkman porous medium using LTNE model.

It has been recognized that the effect of heterogeneity in either permeability or thermal
conductivity or both on thermal convective instability in a layer of porous medium is of
importance since there can be dramatic effects in the case of heterogeneity (Braester and
Vadasz 1993; Simmons et al. 2001; Prasad and Simmons 2003). The effects of hydrody-
namic and thermal heterogeneity, for the case of variation in both the horizontal and vertical
directions as well as various other aspects, on the onset of convection in a horizontal layer
of Newtonian fluid saturated porous medium, have been studied analytically and enough
progress has been made in this direction in the recent past (Nield and Kuznetsov 2007a,b,
2010; Nield and Simmons 2007; Nield and Kuznetsov 2008a,b; Kuznetsov and Nield 2008;
Nield et al. 2009, 2010; Kuznetsov et al. 2010, 2011; Simmons et al. 2010).

Both theoretical and experimental works are available on ferroconvection in homoge-
neous porous media. In fact, flow of ferrofluids through porous media was motivated by the
potential use of ferrofluids to stabilize fingering in oil recovery processes. In such situations
the presence of heterogeneities is common and it may affect the flow of ferrofluids through
porous media. Since ferrofluids are stable colloidal suspensions of magnetic nanoparticles,
these particles are buffeted by the fluid molecules. As a consequence, the fluid temperature
may fluctuate rapidly with position which may lead to a thermal lagging between fluid and
solid phases. Moreover, ferrofluids are considered to be very good conductors of heat and they
are being used in many heat transfer related applications to augment heat transfer (Ganguly
et al. 2004) and in some cases the temperatures involved may be high. For example, in a
rotating shaft seal involving ferrofluids the temperature may rise above 100◦C at high shaft
surface speeds and a similar situation also arise in the use of ferrofluid in loud speaker coils
(Popplewell et al. 1982). The use of porous media in many of these devices may be viable
in the cooling of the systems still more effectively. Under the above circumstances, it is a
prerequisite to know the LTNE effect on thermal convection in a ferrofluid saturated hetero-
geneous porous medium for a better understanding of heat transfer in such systems. To the
best of our knowledge, the study has not received any attention in the literature. Therefore,
it has motivated us to undertake this investigation. For simplicity the permeability heter-
ogeneity is confined to just the vertical variation of that quantity in the present study and
a two-field temperature model is used in analyzing the problem. The resulting eigenvalue
problem is solved numerically using the Galerkin method for various forms of permeability
heterogeneity function.

2 Mathematical Formulation

We consider an initially quiescent incompressible ferrofluid saturated horizontal heteroge-
neous porous layer of characteristic thickness d . The lower surface is held at constant temper-
ature TL, while the upper surface is at TU (<TL). A Cartesian co-ordinate system (x, y, z) is
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used with the origin at the bottom of the porous layer and the z-axis directed vertically upward
in the presence of gravitational field. Based on the Oberbeck–Boussinesq approximation for
the density, an LTNE model with a two-field model for temperature is used.

The governing basic equations are (Nield and Bejan 2006; Finlayson 1970):

∇ · �q = 0 (1)

ρ0 ca
∂ �q
∂t

= −∇ p + ρf �g − μf

K (z)
�q + μ0( �M · ∇) �H (2)

ε (ρ0c)f
∂Tf

∂t
+ (ρ0c)f (�q · ∇) Tf = εkf∇2Tf + ht (Ts − Tf ) (3)

(1 − ε) (ρ0c)s
∂Ts

∂t
= (1 − ε) ks∇2Ts − ht (Ts − Tf ) (4)

ρf = ρ0 [1 − αt (Tf − TL)] (5)

where �q the velocity vector, p the excessive pressure over the reference hydrostatic value, ρf

the fluid density, K (z) the permeability of the porous medium, ca the acceleration coefficient,
ε the porosity of the porous medium, �M the magnetization, �H the magnetic field intensity, μf

the fluid viscosity, μ0 the magnetic permeability of vacuum, Tf the temperature of the fluid
phase, Ts the temperature of the solid phase, c the specific heat, kf the thermal conductivity
of the fluid, ks the thermal conductivity of the solid, αt the thermal expansion coefficient
of the fluid, and ht is the inter-phase heat transfer coefficient which depends on the nature
of the porous matrix and the saturating fluid and ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the
Laplacian operator. The term μ0( �M · ∇) �H in the above equation is the magnetic body force
which appears as a result of polarization of the ferrofluid in the presence of magnetic field. It
may be noted that large values of η correspond to a rapid transfer of heat between the phases
which represents the LTE case, while moderate values of ht corresponds to relatively strong
LTNE effects. In other words, it measures the ease with which heat is transferred between
the phases.

The Maxwell equations in the magnetostatic limit are:

∇ · �B = 0, ∇ × �H = 0 (6a)

or

�H = ∇ϕ (6b)

where �B is the magnetic induction and ϕ is the magnetic potential.
Further, �B, �M , and �H are related by

�B = μ0( �M + �H). (7)

It is assumed that the magnetization is aligned with the magnetic field, but may depend on
the magnitude of the magnetic field as well as temperature (Finlayson 1970) and thus

�M = M(H, Tf )
�H

H
. (8)

where M = | �M | and H = | �H |. The magnetic equation of state, following (Finlayson 1970),
is taken as

M = M0 + χ(H − H0) − Kp(Tf − Ta) (9)

where, χ = (∂ M/∂ H)H0 , Ta is the magnetic susceptibility, Kp = −(∂ M/∂Tf )H0 ,Ta is the
pyromagnetic co-efficient and M0 = M(H0, Ta).
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The basic state is quiescent and there exists the following solution for the basic state:

�qb = 0

pb(z) = p0 − ρ0gz − 1

2
ρ0αtgβz (z − d) − μ0 M0 Kpβ

1 + χ
z − μ0 K 2

p β2

2(1 + χ)2 z (z − d)

Tfb(z) = Ta − β (z − d/2) = Tsb(z) (10)

�Hb (z) =
[

H0 − Kpβ

1 + χ

(
z − d

2

)]
k̂, �Mb (z) =

[
M0 + Kpβ

1 + χ

(
z − d

2

)]
k̂

where β = �T/d = (TL − TU)/d is the temperature gradient, k̂ is the unit vector in the
z-direction, and the subscript b denotes the basic state.

3 Linear Stability Theory

To investigate the conditions under which the quiescent solution is stable against small dis-
turbances, we consider a perturbed state in the form

�q = �q ′, p = pb(z) + p′, Tf = Tfb(z) + T ′
f , Ts = Tsb(z) + T ′

s
(11)�H = �Hb(z) + �H ′, �M = �Mb(z) + �M ′

where �q ′ = (u′, v′, w′), p′, T ′
f , T ′

s ,
�H ′ = (H ′

x , H ′
y, H ′

z), and �M ′ = (M ′
x , M ′

y, M ′
z) are

perturbed variables and are assumed to be small. Substituting Eq. 11 into Eqs. 7 and 8, and
using Eq. 6, we obtain (after dropping the primes)

Hx + Mx = (1 + M0/H0) Hx , Hy + My = (1 + M0/H0) Hy
(12)

Hz + Mz = (1 + χ) Hz − K Tf .

Again substituting Eq. 11 into momentum Eq. 2, linearizing, eliminating the pressure term by
taking curl twice and using Eq. 12 the z-component of the resulting equation can be obtained
as (after dropping the primes):

[
ρ0ca

∂

∂t
+ μf

K (z)

]
∇2w + ∂

∂z

{
μf

K (z)

}
∂w

∂z
= −μ0 Kpβ

∂

∂z

(
∇2

hϕ
)

+ μ0 K 2
p β

1 + χ
∇2

h Tf

+ρ0αtg∇2

h Tf (13)

where ∇2
h = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

Equations 3 and 4, after using Eq. 11 and linearizing, take the following form (after
dropping the primes):

ε (ρ0c)f
∂Tf

∂t
+ (ρ0c)f w

dTfb

dz
= εkf∇2Tf + h (Ts − Tf ) (14)

(1 − ε) (ρ0c)s
∂Ts

∂t
= (1 − ε) ks∇2Ts − h (Ts − Tf ) . (15)

Equations (6a, 6b), after substituting Eq. 11 and using Eq. 12, may be written as (after
dropping the primes)

(
1 + M0

H0

)
∇2

h ϕ + (1 + χ)
∂2ϕ

∂z2 − Kp
∂Tf

∂z
= 0. (16)
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Since there are no physical mechanisms to set up oscillatory convection, it is obvious to
reason out that the exchange of stability holds for the problem considered. Accordingly, the
normal mode expansion of the dependent variables is assumed in the form

{w, Tf , Ts, ϕ} = {W (z),Θf (z),Θs(z),Φ(z)} exp [i(�x + my)] (17)

where � and m are wave numbers in the x and y directions, respectively.
Substituting Eq. 17 into Eqs. 13–16, and non-dimensionalizing the variables by setting

(
x∗, y∗, z∗) =

(
x∗

d
,

y∗

d
,

z∗

d

)
, t∗ = κf

d2 t, W ∗ = d

εκf
W, Θ∗

f = 1

βd
Θf

(18)
Θ∗

s = 1

βd
Θs, Φ∗ = (1 + χ)

Kpβd2 Φ, Γ (z) = K0

K (z)

where κf = kf/ (ρ0c)f is the effective thermal diffusivity of the fluid, Γ (z) is the non-dimen-
sional permeability heterogeneity function, and K0 is the mean value of K (z), we obtain (after
dropping the asterisks for simplicity)

Γ (z)
(
D2 − a2) W + DΓ (z)DW = a2 RD [M1DΦ − (1 + M1) Θf ] (19)(

D2 − a2) Θf + Ht (Θs − Θf ) = −W (20)(
D2 − a2) Θs + γ Ht (Θf − Θs) = 0 (21)(

D2 − a2 M3
)
Φ − DΘf = 0. (22)

In the equations above, RD = ρ0αtg (TL − TU) K0d/εμfκf is the Darcy–Rayleigh number,
Ht = htd2/εkf is the scaled inter-phase heat transfer coefficient, D = d/dz is the dif-
ferential operator, γ = εkf/ (1 − ε) ks is the porosity modified conductivity ratio, M1 =
μ0 K 2

p β/(1 + χ)αtρ0g is the magnetic number and it is a ratio of magnetic to gravitational
forces and M3 = (1 + M0/H0)/(1 + χ) is a measure of nonlinearity of magnetization. The
function Γ (z) is chosen in the following form:

Γ (z) = 1 + δ1

(
z − 1

2

)
+ δ2

(
z2 − 1

3

)
(23)

where δ1and δ2 are constants and it may be noted that the quadratic function above has a unit
mean. For the homogeneous porous medium case, δ1 = 0 = δ2.

The boundaries are impermeable, paramagnetic with fixed temperatures and hence we
have

W = Θf = Θs = 0 at z = 0, 1. (24a)

(1 + χ)DΦ − aΦ = 0 at z = 0 (24b)

(1 + χ)DΦ + aΦ = 0 at z = 1. (24c)

4 Numerical Solution

Equations 19–22 together with the boundary conditions given by Eq. 24 constitute an eigen-
value problem with RD as the eigenvalue. The resulting eigenvalue problem is solved numer-
ically using the Galerkin technique. In this method, the test (weighted) functions are the same
as the base (trial) functions. Thus, W (z), Θf (z), Θs(z), and Φ(z) are expanded in the series
form
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W =
n∑

i=1

Ai Wi (z),Θf (z) =
n∑

i=1

Bi Θ f i (z),Θs(z)

=
n∑

i=1

Ci Θsi (z),Φ(z) =
n∑

i=1

Ei Φi (z) (25)

where Ai , Bi , and Ci are unknown coefficients. Multiplying Eq. 19 by W j (z), Eq. 20 by
Θ f j (z), Eq. 21 by Θs j (z), and Eq. 22 by Φ j (z); performing the integration by parts with
respect to z between z = 0 and 1, and using the boundary conditions, we obtain the following
system of linear homogeneous algebraic equations:

C ji Ai + D ji Bi + E ji Ei = 0 (26)

Fji Ai + G ji Bi + Hji Ci = 0 (27)

I ji Bi + J ji Ci = 0 (28)

K ji Bi + L ji Ei = 0. (29)

The coefficients C ji –I ji involve the inner products of the base functions and are given by

C ji = 〈(
1 + δ1(z − 1/2) + δ2(z

2 − 1/3)
)

DW j DWi
〉 − 〈

(δ1 + 2δ2z) W j DWi
〉

+a2 〈(
1 + δ1(z − 1/2) + δ2(z

2 − 1/3)
)

W j Wi
〉

D ji = a2 RD(1 + M1)
〈
W jΘ f i

〉
, E ji = −a2 RD M1

〈
W j DΦi

〉
Fji = −〈Θ f j Wi 〉, G ji = 〈DΘ f j DΘ f i 〉 + (a2 + Ht)〈Θ f jΘ f i 〉
Hji = −Ht〈Θ f jΘsi 〉, I ji = −γ Ht〈Θs jΘ f i 〉
J ji = 〈DΘs j DΘsi 〉 + (a2 + γ Ht)〈Θs jΘsi 〉, K ji = −〈DΦ jΘ f i 〉
L ji = a

1 + χ

[
Φ j (1)Φi (1) + Φ j (0)Φi (0)

] + 〈DΦ j DΦi 〉 + a2 M3〈Φ jΦi 〉 (30)

where the inner product is defined as 〈· · · 〉 = ∫ 1
0 (· · · )dz.

The base functions Wi (z), Θ f i (z), Θsi (z), and Φi (z) are assumed in the following form:

Wi = z(1 − z)T ∗
i−1, Θ f i = z(z − 1)T ∗

i−1 = Θsi , Φi = (z − 1/2)T ∗
i−1 (31)

where T ∗
i s (i ∈ N ) are the modified Chebyshev polynomials, such that Wi (z), Θ f i (z), and

Θsi (z) satisfy the corresponding boundary conditions. The magnetic potential Φi does not
satisfy the respective boundary conditions but the boundary residuals technique is used for
the function Φi (see Finlayson 1970) and the first term in L ji represents this residual term.
The characteristic equation formed from Eqs. 25–28 for the existence of non-trivial solution
is solved numerically for different values of physical parameters as well as for different forms
of Γ (z). The Newton–Raphson method is used to obtain the Darcy–Rayleigh number RD

as a function of wave number a when all the parameters and functions are fixed and the
bisection method is built-in to locate the critical stability parameters (RDc, ac) to the desired
degree of accuracy. It is observed that the results are converged by taking six terms in the
Galerkin expansion.

5 Results and Discussion

The effect of LTNE and different forms of permeability heterogeneity function Γ (z) on the
criterion for the onset of ferromagnetic convection in a layer of ferrofluid saturated Darcy
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Table 1 Various forms of
vertical heterogeneity of
permeability Γ (z)

Models δ1 δ2 Nature of Γ (z)

F1 0 0 Homogeneous

F2 1 0 Linear variation in z

F3 0 1 Only quadratic variation in z

F4 1 1 General quadratic variation in z

Table 2 Comparison of critical Darcy–Rayleigh and the corresponding wave numbers for different values of
Ht with M1 = 1 = M3 and γ = 1 for a homogeneous porous medium case

Present analysis Lee et al. (2010)

Ht i = j = 1 i = j = 2 i = j = 5 i = j = 6 Exact solution

RDc ac RDc ac RDc ac RDc ac RDc ac

10−2 20.010 3.163 25.877 3.686 25.653 3.673 25.653 3.673 25.653 3.673

10−1 20.099 3.170 25.975 3.693 25.751 3.680 25.751 3.680 25.751 3.680

100 20.943 3.232 26.906 3.760 26.683 3.742 26.683 3.742 26.683 3.742

101 26.469 3.458 33.284 4.037 33.047 4.024 33.047 4.024 33.047 4.024

102 36.610 3.294 46.680 3.874 46.317 3.859 46.317 3.859 46.317 3.859

103 39.607 3.178 51.133 3.708 50.697 3.695 50.697 3.695 50.697 3.695

104 39.960 3.164 51.670 3.687 51.224 3.674 51.224 3.674 51.224 3.674

105 39.996 3.162 51.725 3.685 51.278 3.672 51.278 3.672 51.278 3.672

porous medium heated from below in the presence of a uniform vertical magnetic field has
been investigated numerically using the Galerkin method. As shown in Table 1, four different
forms of Γ (z) denoted by F1, F2, F3, and F4 have been considered on the stability char-
acteristics of the system. To validate the numerical procedure employed and also to know the
process of convergence, the critical stability parameters (RDc, ac) computed under different
limiting conditions and at various levels of the Galerkin expansion are exhibited and com-
pared with the earlier published ones in Tables 2 and 3. The results tabulated in Tables 2 and 3
are for a homogeneous porous medium case in the limit as χ → ∞ for different values of Ht .
It is seen that our numerical results are in excellent agreement with those obtained exactly by
Lee et al. (2010) for M1 = 1 = M3 = γ , and Banu and Rees (2002) for M1 = 0, γ = 0.01,
1, respectively. From the exhibited values, it is also clear that the results converge for six
terms in the Galerkin expansion and thus verify the accuracy of the numerical procedure
employed. Table 4 shows the numerically computed values of RDc and the corresponding ac

for the full problem considered when Ht = 100, M1 = M3 = 1 and χ = 6 at various levels
of the Galerkin approximation for various forms of Γ (z). From the tabulated values, it is
clear that the results converge for six terms in the Galerkin expansion. Further inspection of
the above table reveals that RDc turns out to be the same for permeability heterogeneity func-
tions of type F1 and F2 as well as F3 and F4 if a single term is considered in the Galerkin
expansion. Similar type of result is observed by Nield and Kuznetsov (2010) in the case of
an ordinary viscous fluid (M1 = 0) saturating a heterogeneous porous medium for the LTE
(Ht = 0) case, where they have considered sin(π z) as a trial function (see Table 5). Whereas,
the values of RDc differ slightly for all types of permeability heterogeneity functions at higher
order Galerkin method.
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Table 3 Comparison of critical Darcy–Rayleigh and the corresponding wave numbers for various values of
log10 Ht and for two values of γ when M1 = 0 for a homogeneous porous medium case

γ log10 Ht Banu and Rees (2002) Present analysis
Exact solution

Rc ac Rc ac

0.01 −2 39.498 3.142 39.498 3.142

−1 39.678 3.149 39.678 3.149

0 41.453 3.218 41.453 3.218

1 57.675 3.737 57.675 3.737

2 182.564 5.607 182.564 5.607

3 1097.63 7.028 1097.63 7.028

4 3310.29 3.463 3310.29 3.463

5 3910.54 3.172 3910.54 3.172

1.0 −2 39.498 3.142 39.498 3.142

−1 39.677 3.149 39.677 3.149

0 41.362 3.211 41.362 3.211

1 52.359 3.436 52.359 3.436

2 72.339 3.270 72.339 3.270

3 78.190 3.156 78.190 3.156

4 78.879 3.143 78.879 3.143

5 78.949 3.141 78.949 3.141

Table 4 Comparison of critical Darcy–Rayleigh and the corresponding wave numbers for different orders of
approximations in the Galerkin expansion for Ht = 100, χ = 6, and M1 = M3 = 1

Approximations

γ Model i = j = 1 i = j = 2 i = j = 5 i = j = 6

RDc ac RDc ac RDc ac RDc ac

0.5 F1 58.175 3.979 58.175 3.979 58.818 4.058 58.818 4.059

F2 58.175 3.979 55.041 4.008 56.123 4.104 56.124 4.104

F3 60.061 4.215 57.041 4.263 57.664 4.334 57.664 4.334

F4 60.061 4.215 48.503 4.389 48.325 4.654 48.326 4.653

1 F1 44.835 3.718 44.835 3.718 45.418 3.794 45.418 3.794

F2 44.835 3.718 42.509 3.734 43.441 3.823 43.442 3.823

F3 46.610 3.920 44.378 3.950 44.928 4.019 44.928 4.019

F4 46.610 3.920 37.991 4.030 38.178 4.220 38.179 4.219

Figure 1a–d exhibits neutral curves (RD against a) for two values of γ (= 1, 5) (with
Ht = 100, M1 = 1 = M3, χ = 6), Ht (= 10, 100) (with γ = 0.5, M1 = 1 = M3 χ = 6),
M1(= 0.0001, 0.1) (with Ht = 100, γ = 0.5, M3 = 1 and χ = 6) and M3(= 1, 10) (with
χ = 6, Ht = 100, γ = 0.5 and M1 = 1), respectively, for different forms of Γ (z). The neu-
tral curves exhibit single but different minimum with respect to the wave number for various
forms of Γ (z) but their shape is identical in form to that of the Darcy–Benard problem. For
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Table 5 Comparison of critical Darcy–Rayleigh and the corresponding wave numbers for an ordinary viscous
fluid (M1 = 0) and LTE (Ht = 0) case

Nield and Kuznetsov (2010) Present analysis

Model RDc ac i = j = 1 i = j = 6

RDc ac RDc ac

F1 39.478 3.142 40.000 3.162 39.478 3.142

F2 39.478 3.142 40.000 3.162 37.861 3.157

F3 41.585 3.142 42.272 3.327 39.878 3.319

F4 41.585 3.142 42.272 3.327 34.439 3.427
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Fig. 1 Neutral curves for different values of a γ when Ht = 100, M1 = 1, M3 = 1, and χ = 6; b Ht when
γ = 0.5, M1 = 1, M3 = 1, and χ = 6; c M1 when γ = 0.5, Ht = 100 M3 = 1, and χ = 6; and d M3 when,
γ = 0.5, Ht = 100, M1 = 1, and χ = 6 for different forms of Γ (z)

123



540 I. S. Shivakumara et al.

20

25

30

35

40

45

50

55

10log tH

(a)
D

c
R

D
c

R

D
c

R
D

c
Rγ  = 5

γ  = 1

F 2
F 3
F 1

F 2

F 1
F 3

F4

F4

6
20

40

60

80

100

120

10log tH

(b)

M1= 0.1

M1= 0.0001

130

F 2

F 3 F 1

F 2

F 1
F 3

F4

F4

6
10

20

30

40

50

60

70

80

10log tH

(c)

M3 = 10

M3 = 1 F 2
F 3

F 1

F 2

F 1
F 3

F4

F4

-2 0 2 4 6 -2 0 2 4

-2 0 2 4 -2 0 2 4 6
20

30

40

50

60

70

80

10log tH

(d)

1 +  χ  = 1

1 +  χ  = 7

F 2F 3
F 1

F 2
F 1
F 3

F4

F4

Fig. 2 Variation of RDc with log10 Ht for different values of a γ when M1 = 1, M3 = 1, and χ = 6; b M1
when γ = 0.5, M3 = 1, and χ = 6; c M3 when γ = 0.5, M1 = 1, and χ = 6; and d χ when γ = 0.5,
M1 = 1, and M3 = 1 for different forms of Γ (z)

each of the forms of Γ (z), the effect of increasing γ (see Fig. 1a), M1 (see Fig. 1c) and M3

(see Fig. 1d) is to reduce the Darcy–Rayleigh number and to decrease the region of stability,
while opposite is the trend with increasing Ht (see Fig. 1b).

To determine the criterion for the onset of convection, the critical Darcy–Rayleigh number
RDc is the important value and hence its variation is summarized in Fig. 2a–d as a function of
log10 Ht for various values of γ (= 1, 5 with M1 = 1 = M3 and χ = 6), M1(= 0.0001, 0.5
with γ = 0.5, M3 = 1 and χ = 6), M3(= 1, 10 with γ = 0.5, M1 = 1 and χ = 6) and
χ(= 0, 6 with γ = 0.5, M1 = 1, and M3 = 1), respectively. The variation of the correspond-
ing critical wave numbers ac is shown in Fig. 3a–d. For various forms of Γ (z), it is noted
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Fig. 3 Variation of ac with log10 Ht for different values of a γ when M1 = 1, M3 = 1, and χ = 6; b M1
when γ = 0.5, M3 = 1, and χ = 6; c M3 when γ = 0.5, M1 = 1, and χ = 6; and d χ when γ = 0.5,
M1 = 1, and M3 = 1 for different forms of Γ (z)

that the curves of RDc for different γ coalesce and asymptote to a single value when Ht is
small (see Fig. 2a). However, RDc decreases with increasing γ as the value of Ht increases
and remains independent of Ht at higher values of the same. This is because, for very small
values of Ht there is no significant transfer of heat between the fluid and solid phases and
hence the condition for the onset of convection is not affected by the properties of the solid
phase. Besides, increasing γ is to hasten the onset of ferromagnetic convection because heat
is transported to the system through both solid and fluid phases. Further inspection of the
figure reveals that the system is more stable if the form of Γ (z) is of the type F1 than of the
types F3 and F2, and the least stable is for F4. Thus, the onset of ferromagnetic convection
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can be either hastened or delayed depending on the type of heterogeneity in the permeability
of the porous medium.

Although a similar trend as noted above could be seen with increasing M1 (see Fig. 2b),
M3 (see Fig. 2c), and χ (see Fig. 2d), the curves of RDc for different M1, M3, and χ do not
coalesce for small values of Ht . The size of M1 is related to the importance of magnetic forces
as compared to gravitational forces. The case M1 = 0 corresponds to convective instability in
an ordinary viscous fluid saturating a heterogeneous porous medium. It is seen that increase
in the value of M1 is to hasten the onset of ferromagnetic convection (i.e., to decrease the
critical Darcy–Rayleigh number) suggesting that the ferrofluids carry heat more efficiently
than the ordinary viscous fluids. This is due to an increase in the destabilizing magnetic
force with increasing M1, which favors the ferrofluid to flow more easily. Similar is the case
with increasing M3. This is because, a higher value of M3 would arise from either a larger
pyromagnetic coefficient or larger temperature gradient. Both these factors are conducive to
generating a larger gradient in the Kelvin body force field, possibly promoting the instability.
The effect of increasing χ has a stabilizing effect on the system because of its dampening
effect due to an increase in magnetic induction.

The variation of the critical wave number ac is shown in Fig. 3a–d. Irrespective of the
forms of Γ (z) considered, it is seen that the critical wave number remains the same for differ-
ent values of γ in both the small and large Ht limits and this is evident from Fig. 3a. However,
at moderate values of Ht , the critical wave number reaches its peak value and increasing γ

decreases the value of ac. In other words, increase in the value of γ is to enlarge the size
of convection cells only at moderate values of Ht and the size of convection cells remains
independent of γ when Ht 
 1 and Ht � 1. Although the critical wave number remains
invariant when Ht 
 1 and Ht � 1 for a fixed value of M1 (Fig. 3b), M3 (Fig. 3c), and
χ (Fig. 3d), the curves of ac for different M1, M3, and χ do not join together under these
two limiting cases of Ht . We note that increasing M1 and χ is to increase the critical wave
number, while opposite is the case with increasing M3. That is, increase in the value of M1

and χ as well as decrease in M3 is to diminish the size of convection cells for all values of
Ht . A closer inspection of the figures also reveals that the critical wave number is higher for
model F4 followed by F3, then F2 and the least for F1.

6 Conclusions

The principal results of the foregoing linear stability analysis of ferromagnetic convection
in a layer of ferrofluid saturated heterogeneous Darcy porous medium heated from below in
the presence of a uniform vertical magnetic field using an LTNE model may be summarized
as follows.

(i) Irrespective of different forms of permeability heterogeneity function Γ (z), the onset
of ferromagnetic convection retains its unimodal shape with one distinct minimum
which defines the critical Darcy–Rayleigh number and the critical wave number for
various values of physical parameters.

(ii) The system is more stable when Γ (z) = 1 and the least stable if Γ (z) is of general qua-
dratic variation with depth z. Thus, the onset of ferromagnetic convection can be either
hastened or delayed depending on the type of heterogeneity of the porous medium.
The porosity modified conductivity ratio γ has no effect on the onset of ferromagnetic
convection in the small-Ht limit, while for other values of Ht increasing γ is to hasten
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the onset of ferromagnetic convection. Also, increasing M1, M3 and decreasing χ is
to advance the onset of ferromagnetic convection.

(iii) The critical wave number for different values of γ in the small-Ht and large-Ht limits
(LTE case) remain invariant and coincide, but attain a maximum value at the interme-
diate values of Ht (LTNE case) and in that case increasing γ decreases the critical wave
number. Although the critical wave number assumes the same value when Ht 
 1
and Ht � 1 for different values of M1, M3, and χ , the curves of ac for these values do
not coalesce. Increasing M1 and χ is to increase the critical wave number but opposite
is the case with increasing M3.

(iv) The critical wave number is higher if Γ (z) is of general quadratic variation with depth
z and the least if Γ (z) = 1.
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