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ABSTRACT This paper aims to provide a state-of-the-art review of the transport network 

design problem (NDP) under uncertainty and to present some new developments on a bi-

objective reliable network design problem (BORNDP) model that explicitly optimizes the 

capacity reliability and travel time reliability under demand uncertainty. Both are useful 

performance measures that can describe the supply-side reliability and demand side reliability of 

a road network. A simulation-based multi-objective genetic algorithm (SMOGA) solution 

procedure, which consists of a traffic assignment algorithm, a genetic algorithm, a Pareto filter, 

and a Monte-Carlo simulation, is developed to solve the proposed BORNDP model. A numerical 

example based on the capacity enhancement problem is presented to demonstrate the tradeoff 

between capacity reliability and travel time reliability in the NDP. 

                                                 

 

 Corresponding Address: Anthony Chen, Utah State University, Logan, UT 84322-4110, USA 

 Tel.: +1 435 797 7109; fax: +1 435 797 1185.  Email address: anthony.chen@usu.edu 



 2

Introduction 

Reliability is generally defined as the probability that the system of interest has the ability to 

perform an intended function or goal. Recently, the reliability of transport networks has emerged 

as an important topic due to its critical status as the most important lifeline in the restoration 

process following the occurrence of a disaster.  It has attracted many researchers to develop 

various indicators to assess the reliability of transport networks (see the recently edited books, 

proceedings, and special issues by Lam (1999), Bell and Cassir (2000), Bell and Iida (2003), 

Nicholson and Dantas (2004), Sumalee and Kurauchi (2006a), van Zuylen (2007), Kurauchi and 

Sumalee (2008), Schmocker and Lo (2009), and Levinson et al. (2010)). From the literature, 

three main aspects have been considered: (1) connectivity reliability, (2) travel time reliability, 

and (3) capacity reliability. These three reliability indicators are briefly described below. For 

other recently proposed transportation reliability measures, see Heydecker et al. (2007) for a 

review. 

 Connectivity reliability is concerned with the probability that network nodes are 

connected. A special case of connectivity reliability is the terminal reliability which 

concerns the existence of a path between a specific O-D pair (Iida and Wakabayashi, 

1989). 

 Travel time reliability is concerned with the probability that a trip between a given O-D 

pair can be made successfully within a given time interval and a specified level of service 

(Asakura and Kashiwadani, 1998; Bell et al., 1999).  

 Capacity reliability refers to the probability that the network capacity can accommodate a 

certain volume of traffic demand at a required service level (Chen et al., 1999, 2000, 

2002b).  

 

The aim of this paper is twofold: (1) to provide a state-of-the-art review on the transport 

network design problem (NDP) under uncertainty, and (2) to incorporate the recent emerging 

development of reliability analysis into the NDP.  Recently, Chootinan et al. (2005b) proposed a 

new capacity reliability index as a surrogate for determining the optimal capacity enhancements 

to maximize network capacity under day-to-day route choice variability in the stochastic NDP 

model. This new index explicitly accounts for the probability that all of the network links are 
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operated below their capacities when serving different traffic patterns deviating from the average 

condition (i.e., minimizing the probability of link failures). It is considered as a supply-side 

measure more useful for the planners. Yang et al. (2000) suggested that synthesizing capacity 

reliability and travel time reliability together could provide a valuable tool for designing reliable 

transport networks. In this paper, we extend the reliable NDP model to include the travel time 

reliability index – a demand-side measure that is more useful to the network users. Hence, the 

purpose of this paper, in addition to reviewing the state-of-the-art transport NDP under 

uncertainty, is to present some new developments on a bi-objective reliable NDP (BORNDP) 

model that explicitly optimizes both supply-side and demand-side reliability measures with 

demand uncertainty. To our best knowledge, this is the first time that a bi-objective reliable NDP 

model is being proposed to consider the tradeoff between capacity reliability and travel time 

reliability. 

The organization of this paper is as follows. Section 2 provides a review of the transport 

NDP under uncertainty. Section 3 presents the model formulation of the BORNDP. Section 4 

describes a solution procedure for solving the proposed reliable NDP model. Section 5 provides 

numerical results for examining the performance of the solution procedure and the tradeoff 

between capacity reliability and travel time reliability of the non-dominated solutions. Finally, 

concluding remarks are provided in Section 6. 

 

Review of network design under uncertainty  

Sources of uncertainty exist in both supply side (roadway capacity variation) and demand side 

(travel demand fluctuation). Examples of supply side uncertainty include weather conditions, 

traffic incidents, work zones and construction activities, traffic management and control, while 

examples of demand side uncertainty include temporal variation (e.g., time of day, day of week, 

or seasonal effects), special events, population characteristics (e.g., age, car ownership, 

household income, etc.), and traveler information. All these factors contribute to capacity 

variation and demand fluctuation. The current practice of roadway network design does not 

account for uncertainty (Yang and Bell, 1998). The reason is the lack of suitable reliability and 

uncertainty analysis for road networks. The design of a new road network or the upgrading of 

existing roadways would require a good understanding of the uncertainty involved and the 

impact on the system-wide performance and the benefit derived from road improvements to the 
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network users. Thus it is important to study the uncertainty of road networks such that cost-

effective and equitable design can be implemented to improve its level of performance from the 

view point of both the planner and the users. To account for uncertainty, a few recent studies 

consider various sources of uncertainty in the transport NDP and propose different criteria to 

hedge against the uncertainty. Table 1 provides a summary of these recent transport NDP models 

under uncertainty. These models are briefly discussed below; an appendix is provided for readers 

interested in the general mathematical formulations. 

 

Expected value model 

The expected value model (EVM) is perhaps the most commonly used method for handling 

uncertainty. The main idea is to optimize the expected value of a linear (or additive) system-wide 

objective function subject to the budget constraint and the limit constraints on the decision 

variables. Yin and Ieda (2002) used a user satisfaction reliability measure to determine optimal 

improvement scheme that involves increasing the capacity or decreasing the variability of travel 

time for some links in the network. Chen and Yang (2004) provided a NDP model under demand 

uncertainty that minimizes the expected total travel time subject to spatial equity constraint. 

Chen and Subprasom (2007) provided a tolling strategy under demand uncertainty for optimizing 

the expected value of profit, social welfare, and/or equity for build-operate-transfer (BOT) roads. 

Ukkusuri and Patil (2010) presented a multi-period network design problem that explicitly 

considers both demand uncertainty and demand elasticity to obtain optimal capacity 

improvements by staging the investment over time, while Chow and Regan (2011) developed 

two network-based real option models to consider the design variables, timing of investment 

decisions, and project selections under time dependency and uncertainty (i.e., the first model is 

the network option design problem, which maximizes the expanded net present value of a 

network investment, and the second model is the project selection problem, which decomposes 

the network investment deferral option into individual, interacting link or project investments). 

 

 

Mean-variance model 

The mean-variance model is a classical model developed by Markowitz (1927) in the finance 

area. The basic assumption is that risk is measured by variance, and the decision criteria (or 
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objectives) are to maximize the expected return and to minimize the variance of return. In 

transportation, it has been applied to design reliable/robust network under uncertainty. Chen et 

al. (2003b) adopted this model for determining the optimal toll and capacity in BOT scheme 

under demand uncertainty. The mean-variance model involves maximizing the expected profit 

and minimizing the variance (or standard deviation) of profit. The variance associated with profit 

is considered as a risk. Subsequently, Chen et al. (2006b), Karroonsonntawong and Waller 

(2007); Ukkusuri et al. (2007), Ng and Waller (2009), Sumalee et al. (2009), Sharma et al. 

(2009), and Yin et al. (2009) also applied different versions of the mean-variance model to the 

capacity enhancement problem under demand uncertainty, while Li et al. (2008) applied the 

mean-standard deviation model to the toll design under both demand and supply uncertainty, and 

Gardner et al. (2008) determined the first-best robust pricing scheme using a mean-variance 

model under demand uncertainty. Some focus on model development for a particular NDP (e.g., 

Karroonsonntawong and Waller (2007) developed a robust dynamic continuous network design 

problem that accounts for short-term traffic dynamics using a cell transmission model and long-

term O-D demand uncertainty; Ng and Waller (2009) developed a convex mean-variance model 

with implicit chance constraints to probabilistically guarantee the obtained capacity expansion 

decisions satisfy certain system-wide travel time requirement; Yin et al. (2009) provided two 

models (sensitivity-based and scenario-based) for optimizing the efficiency and robustness (i.e., 

variance) of the network), while others focus on developing solution techniques to generate a 

portfolio of Pareto optimal solutions (e.g., Chen et al. (2006b) developed a simulation-based 

multi-objective genetic algorithm (SMOGA) procedure for solving the BOT network design 

problem, while Sharma et al (2009) developed a nondominated sorting genetic algorithm 

(NSGA) to generate the Pareto optimal front for the capacity enhancement problem).  

 

Chance constrained model 

The chance constrained model (CCM), originally developed by Charnes and Cooper (1959), 

models stochastic decision systems with the assumption that the constraints will hold at least  

times, where  is referred to as the confidence level provided as an appropriate safety margin by 

the decision-maker. Its focus is on the system’s ability to meet the chance constraints (risk 

measures) with a certain reliability under uncertainty. In the context of transport NDP, Waller 

and Ziliaskopoulos (2001) developed a chance-constrained model for the continuous NDP with 
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system optimal flow conditions that accounts for traffic dynamics and time-dependent random 

demands specified as chance constraints; Lo and Tung (2003) formulated a reserve capacity 

NDP model by considering degradable link capacity as chance constraints; Chen and Yang 

(2004) considered both spatial equity and demand uncertainty in the capacity enhancement NDP 

model by formulating the maximal equity ratio as a chance constraint; and Dimitriou and 

Stathopoulos (2008) adopted the expected value model of CCM to determine reliable stochastic 

design of road network systems. 

 

Probability model 

The probability model, also known as the dependent chance model in uncertain programming 

(Liu, 1999), has been recently proposed to solve the stochastic NDP model. For example, 

Chootinan et al. (2005b) proposed a new capacity-reliability index, which measures the 

probability that all of the traffic links are operating below their respective capacities, to 

determine the optimal design to maximize network capacity under day-to-day route choice 

variability in the stochastic NDP model. Chen et al. (2006a) provided an alternative reserve 

capacity model by explicitly minimizing the probabilities of link failures for designing timings 

for a signal-controlled road network. Yim et al. (2011) extended the reliability-based NDP by 

Chootinan et al. (2005b) to include not only capacity enhancements of the network but also 

residential and job allocations in the system to form a more comprehensive reliability-based land 

use and transportation model for the integrated residential and job allocations and transportation 

network design problem. Sumalee et al. (2006c) suggested maximizing the network total travel 

time reliability, which is defined as the probability of the network total travel time to be less than 

a threshold under demand uncertainty. In this paper, we incorporate the recent emerging 

development of reliability analysis into the NDP by developing a bi-objective reliable NDP 

model that explicitly considers both capacity reliability and travel time reliability under demand 

uncertainty. 

Min-Max model and alpha reliable model 

Optimizing the worst-case performance can be regarded as a Min-Max model, which is to 

identify a robust design plan that minimizes the worst-case total travel time under different future 

demand scenarios. The Min-Max model is known to give a very conservative solution (i.e., 
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tradeoff a significant amount of efficiency for reliability since it has to consider the worst-case 

scenario). Yin et al. (2009) provided a continuous version while Lou et al. (2009) gave a discrete 

version of the Min-Max model for modeling the capacity enhancement problem under demand 

uncertainty. On the contrary, the alpha reliable NDP model, proposed by Chen et al. (2007), has 

the ability to specify a risk control measure through the confidence level  to identify a solution 

with an acceptable risk without sacrificing too much efficiency. It optimizes the total travel time 

by considering demand uncertainty for different risk aversion levels. This alpha reliable NDP 

model has a number of attractive features: (1) it adopts the Value-at-Risk (VaR) risk measure 

instead of the utility function to model planner risk preferences, (2) the risk preference is 

specified using the performance measure with some confidence level (planner might find it 

easier by selecting their own level of risk), (3) VaR is a commonly used risk measure adopted in 

finance to evaluate the maximum loss with a specified confidence level, and (4) VaR is 

applicable to non-symmetrical performance distribution, which is suitable to measure downside 

risk (i.e., losses in the right-hand-side tail). 

 

For a review of the uncertain programs (i.e., expected value model, chance constrained model, 

and dependent chance model) used to model the transport NDP under uncertainty, readers are 

referred to Chen et al. (2009) for the single objective models and Chen et al. (2010) for the 

multiple objective models. 
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Table 1. Summary of recent developments in NDP models under uncertainty 

Model Reference Uncertainty Design Variable 
Performance 

Indicator 
Approach/Criterion for Hedging Uncertainty 

Expected 

value 

model 

Yin and Ieda, 2002 Travel time 
Capacity  

enhancement and 
variability reduction 

User satisfaction 
reliability 

Minimizing total travel disutility 

Chen and Yang, 2004 Demand 
Capacity  

enhancement 
Total travel time 

Minimizing the expected total travel time subject to 
spatial equity constraint 

Chen and Subprasom, 
2007 

Demand Toll 
Profit; social welfare; 

equity 
Optimizing the expected value of profit, social 

welfare, and/or equity 

Ukkusuri and Patil, 
2010 

Demand 
Capacity  

enhancement 
System consumer 

surplus 
Maximize the present expected system consumer 

surplus 

Chow and Regan, 
2011 

Demand 
Capacity 

enhancement 
Option value 

Maximize the expanded net present value of a 
network investment by optimizing not only the 

design variables but also the timing of the 
investment decisions 

Mean-
variance 
model 

 

Chen et al., 2003b; 
2006b 

Demand 
Toll and capacity of 

BOT roads 
Profit; social welfare 

Optimizing the expected value and variance of 
profit (or social welfare) 

Karroonsonntawong 
and Waller, 2007 

Demand 
Capacity  

enhancement 
Total travel time 

Minimizing the weighted summation of the 
expected total system travel time and the expected 

risk using dynamic traffic assignment linear 
programming models 

Ukkusuri et al., 2007; 
Sharma et al., 2009 

Demand 
Capacity  

enhancement 
Total travel time 

Minimizing the total system travel time and the 
higher moment for total system travel time 

Gardner et al., 2008 Demand Toll Total travel time 
Minimizing the expected value and the variance of 

the total system travel time 

Li et al., 2008 
Demand; 

degradable link 
capacity 

Toll 
Network travel time 

reliability 
Optimizing a weighted sum of the expected value 

and standard deviation of trip travel time 

Ng and Waller, 2009 
Degradable link 

capacity 
Capacity  

enhancement 
Total travel time 

Minimizing the total system travel time while 
satisfying certain probabilistic guarantees 

Sumalee et al., 2009 
Demand; 

 route choice 
Capacity  

enhancement 
Reserve capacity 

Maximizing a weighted sum of the expected value 
and standard deviation of perturbed demands 

Yin et al., 2009 Demand 
Capacity  

enhancement 
Total travel time 

Optimizing the efficiency and robustness (i.e., 
variance) of the network using sensitivity-based and 

scenario-based models 
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Table 1. (Continued) 

Chance-
constrained 

model 

Waller and 
Ziliaskopoulos, 2001 

Demand 
Capacity  

enhancement 
Total travel time 

Minimizing the total travel time subject to time-
dependent random demands specified as chance 

constraints 

Lo and Tung, 2003 
Degradable link 

capacity 
Capacity  

enhancement 
Reserve capacity 

Maximizing the reserve capacity subject to link 
capacity chance constraints 

Chen and Yang, 2004 Demand 
Capacity 

enhancement 
Total travel time 

Minimizing the expected total travel time subject to 
spatial equity chance constraints 

Dimitriou and 
Stathopoulos, 2008 

Demand; 
degradable link 

capacity 

Capacity 
enhancement 

Total travel time 
Minimizing the expected total travel time subject to 

a chance constraint on the total travel time 

Probability 
model 

Chootinan et al., 
2005b 

Route choice 
Capacity  

enhancement 
Capacity reliability 

Maximizing the network capacity (or minimizing 
the link failures) 

Chen et al., 2006a Route choice Signal timing Capacity reliability 
Maximizing the network capacity (or minimizing 

the link failures) 

Sumalee et al., 2006c 
Demand; route 

choice 
Capacity  

enhancement 
Total travel time 

reliability 
Maximizing the total travel time reliability 

Yim et al., 2011 Demand 

Capacity 
 enhancement and 
residential and job 

allocations 

Capacity reliability   
Maximizing the network capacity (or minimizing 

the link failures) 

This paper Demand 
Capacity 

 enhancement  

Capacity reliability 
and travel time 

reliability  

Maximizing both capacity reliability and travel time 
reliability 

Min-max 

model 

Lou et al., 2009 Demand 
Discrete capacity 

enhancement 
Total travel time 

Minimizing the maximum system travel cost 
realized from the uncertainty set of future demand 

Yin et al., 2009 Demand 
Capacity  

Enhancement 
Total travel time Minimizing the worst-case total travel time 

Alpha 
reliable 
model 

Chen et al., 2007 Demand 
Capacity 

 enhancement 
Total travel time 

budget 
Minimizing the total travel time budget required to 

satisfy the total travel time reliability constraint 
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Model formulation  

This section describes the bi-objective reliable network design problem (BORNDP) as a 

dependent chance multi-objective programming (DCMOP) model (Liu, 1999) in a bi-level 

programming framework for the optimal capacity enhancement problem with demand 

uncertainty.  

 

Reliability Measures 

In this paper, we consider the bi-objective reliable NDP model, where the design variables (u) 

are the link capacity enhancements. In the capacity enhancement NDP model, the upper-level 

subprogram determines the optimal capacity enhancements (u) in a transportation network by 

optimizing a vector of system-wide objectives with demand uncertainty (Q), while the lower-

level subprogram determines the route choice behavior of network users for a given capacity 

enhancement with demand uncertainty (v(u,Q ). The system-wide objective functions are to 

maximize both capacity reliability (a supply-side performance measure) and travel time 

reliability (a demand-side performance measure). These two reliability measures are 

discussed in the following sections. 

 

Capacity reliability. Conventional capacity reliability analysis utilizes the concept of reserve 

capacity that was originally applied to the isolated junctions (Webster and Cobbe, 1966; 

Allsop, 1972; Wong, 1996) and was then extended to the signal-controlled road networks 

(Wong and Yang, 1997). Using the concept of reserve capacity of a road network, Chen et al. 

(1999) defined capacity reliability as the probability that the network capacity can 

accommodate a certain volume of traffic demand at a required service level. Chen et al. 

(2002b) provided an assessment methodology, which combines the reliability and uncertainty 

analysis, network equilibrium models, sensitivity analysis of the equilibrium network-flow 

and the expected performance measure, as well as Monte Carlo methods, to assess the 

capacity reliability of a degradable road network. Chen et al. (2000) also examined the effects 

of route choice models on assessing network capacity reliability. Sumalee and Kurauchi 

(2006b) adopted the capacity reliability concept to evaluate traffic regulation strategies after a 

major disaster. Lo and Tung (2003) studied the problem of allocating design capacities to 

maximize the multiplier of the O-D demand matrix (i.e., network reserve capacity), subject to 

the probabilistic user-equilibrium (PUE) constraints on network links and the budgetary 
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constraint. Recently, Chootinan et al. (2005) proposed an alternative capacity reliability 

index, which measures the probability that all of the network links are operating below their 

respective capacities under the day-to-day route choice variability, as a surrogate for 

determining the optimal design variables to maximize network capacity in a reliability-based 

NDP model. Unlike the original capacity reliability index proposed by Chen et al. (1999), the 

new capacity reliability index explicitly maximizes the probability that all of the network 

links are operated below their capacities when serving different traffic patterns deviating 

from the average condition (i.e., or minimizes link failures).  

Let  Qu,av  and  aa uC  be respectively the flow and capacity of link a. Both the link 

flow and link capacity are a function of the design variables (i.e., capacity enhancements).  

Here the link flow is also a random variable, where the randomness is induced by the random 

demand vector Q . Hence, the probability of all network links operating below their 

capacities defines the capacity reliability index: 

     AauCvR aaaCR  ,,Pr Qu . (1) 

This capacity reliability index can be interpreted as a supply-side measure that minimizes the 

probability of link failures. It also serves as a surrogate for determining the adequacy of the 

network capacity in accommodating the required travel demand at a specified level of 

service.  

 

Travel time reliability. On the other hand, network users might be more concerned about the 

reliability of getting to their respective destinations on time. In transportation network 

reliability analysis, this measure is known as travel time reliability, which is the probability 

that a trip between a given origin-destination (O-D) pair can be made successfully within a 

given time interval and at a specified level-of-service (Asakura and Kashiwadanu, 1991; Bell 

et al., 1999; Chen et al., 2002a, 2003a). There are two potential measures - path travel time 

reliability and O-D travel time reliability - that are of interest to the travelers and the network 

planner.  Path travel times are computed by summing up the link travel time on a given route. 

For the O-D travel times, they are computed as a weighted average of the path travel times, 

where the weights are the path flows. 

 Path travel time reliability is defined as the probability that the travel time of a given 

path is within an acceptable threshold. 
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 O-D travel time reliability is defined as the probability that the weighted average 

travel time of a given O-D pair is within an acceptable threshold. 

Travelers are more concerned about the path travel time reliability, because it directly affects 

their route choice decisions. O-D travel time reliability measures all relevant paths used by 

travelers to define an aggregate measure for the level-of-service between a given O-D pair.  It 

can be used as a proxy to evaluate the performance of a given O-D pair (i.e., O-D sub-system 

reliability in terms of travel time). Thus, the probability of all O-D travel times operating 

below their respective thresholds defines the travel time reliability index: 

    WwtTR wwTTR  ,,,Pr Quvu , (2) 

where   Quvu ,,wT  is the travel time between O-D pair w (i.e., a random variable), and tw is 

a threshold value between O-D pair w specified by the network users. 

 

Mathematical Formulation 

This paper considers both supply-side reliability and demand-side reliability with different 

levels of service as a bi-objective reliable NDP (BORNDP) model. Hence, the problem is to 

determine the optimal capacity enhancements for a given combination of level of service 

requirement by maximizing the probability of all network links operating below their 

capacities (i.e., capacity reliability) as a supply-side measure and by maximizing the 

probability of on-time arrivals (i.e., travel time reliability) for network users from all O-D 

pairs as a demand-side measure subject to the budget constraint and design variable 

constraints, while taking into account the behavior of network users and demand uncertainty. 

The problem can now be posed as a special case of the stochastic multi-objective bi-level 

programming (SMOBLP) formulation (Liu, 1999). 

The upper-level subprogram can be formulated as a dependent chance bi-objective 

programming problem as follows. 

 
 

    









WwtTR

AaCvR

wsw

asa

,,,Pr

),u(),(Pr
 max

TTR

aCR




Quvu

Qu
u

 (3a) 

subject to 

 Bug a
Aa




)( , (3b) 
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 Aauu aa  ,0 max , (3c) 

where s and s are threshold values defining the level-of-service (LOS) for supply-side 

reliability and demand-side reliability, respectively; A  is the set of capacity enhancement 

links in the network; ( )a ag u  is the construction cost function of link a; B is the budget; and 

max
au  is the upper bound of capacity enhancement on link a; for a realization q of the random 

demand Q,  qu,av  is the equilibrium flow on link a, which can be obtained by solving the 

lower-level subprogram as shown below: 

  
Aa

v

aa
v

a

dut
0

,min   (4a) 

subject to 

 Wwqf w
Rr

w
r

w




, , (4b) 

 Aafv
Ww Rr

w
ar

w
ra

w

 
 

, , (4c) 

 WwRrf w
w

r  ,,0 . (4d) 

 

The objective function (3a) is to optimize both supply-side reliability and demand-side 

reliability for a given combination of levels of service (s and s) by maximizing the 

probability of all network links operating below their capacities (i.e., capacity reliability) and 

the probability of all O-D travel times operating below their respective thresholds (i.e., travel 

time reliability). Constraint (3b) is the budgetary constraint. Constraint (3c) sets the lower 

and upper bounds of the possible link capacity enhancements.  Equation (4a) is the objective 

function for the user-equilibrium problem (i.e., the sum of the integrals of the link cost 

function), equation (4b) is the flow conservation constraint, equation (4c) represents the link-

path flow relationship, and equation (4d) ensures the non-negativity of path flows.  

For a given realization q, the optimal solution  Tw
rf  ,,f  to the lower-level 

subprogram satisfies the following user equilibrium (UE) conditions: 

     WwRr
fif

fif
TC ww

r

w
r

w
w
r 










  ,,
0

0

0

0
ff , (5) 
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where     w
araa

a
a

w
r uvtC ,f  is the travel time on path wr R  between the O-D pair 

w W , and     w
w
rw RrCT   ,min ff  is the minimum travel time between the O-D 

pair w W . That is, when the travel time on path r is larger than or equal to the minimum 

travel time, the flow on that path is zero or the path is not used. When the travel time on path 

r is equal to the minimum, its flow is greater than zero or the path is used. For simplicity, this 

widely used UE model is used as the lower-level subprogram to model users’ route choice 

behavior for each realization of O-D demand (i.e., route choice pattern will settle into a full 

UE). We further assume that there is a mechanism (e.g., four-step travel demand forecasting 

model or activity-based travel demand forecasting model) to predict the future demand with 

some levels of uncertainty. To ensure a reliable network design, we may plan for the worst, 

but it would be generally too costly. To compromise, we design a system that is robust 

enough to entertain the majority of cases that deviate from the predicted future demand. 

Putting this into context, if we tolerate a 5% level in the parameter specification, it means that 

out of every 100 possibilities away from the predicted demand, there are only 5 cases that the 

designed system cannot accommodate the realized demand in terms of the specified capacity 

and travel time thresholds. Therefore, for each realized demand, we can allow the system to 

go into a complete UE, because this realized demand will last for a sufficiently long time for 

the system to evolve into the final UE pattern. This BORNDP model can be considered as a 

strategic planning application. 

 

Solution procedure 

Stochastic bi-level programs with multiple objectives are generally difficult to solve by 

traditional calculus-based optimization methods. To solve the BORNDP model with demand 

uncertainty, we develop a simulation-based multi-objective genetic algorithm (SMOGA) 

solution procedure to handle the different complexities involved in solving the BORNDP 

model in this paper. The SMOGA solution procedure consists of a traffic assignment 

algorithm, a genetic algorithm, a Pareto filter, and a Monte-Carlo simulation. The demand 

uncertainty is addressed by the stochastic (Monte Carlo) simulation. The nonlinear and 

nonconvex nature of the bi-level program is handled by the genetic algorithm (Gen and 

Cheng, 2000). Bi-level mathematical programs are generally difficult to solve because 

evaluation of the upper-level objective function requires solving the lower-level subprogram. 
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Here a standard traffic assignment algorithm (known as the Frank-Wolfe algorithm) is used 

to solve the lower-level subprogram (Sheffi, 1985). When the objectives are conflicting, there 

is, in general, no single optimal solution that can simultaneously optimizes all aspects. A 

solution may be best in one objective, but worst in the others. Hence, solving multi-objective 

optimization problems often requires a set of non-dominated (ND) solutions, not just a single 

best solution as in the single objective optimization problems. The distance-based method 

(Osyczka and Kundu, 1995) is used as a Pareto filter to determine a set of ND solutions. Here 

the main steps of the SMOGA solution procedure for solving the BORNDP model as depicted 

in Figure 1 are summarized. 

 

Step 1. Define GA parameters: mutation probability (Pm), crossover probability (Pc), 

population size (P), maximum number of generations (N), and maximum number of 

sample sizes (S). Initialize n (counter for the number of generations) and a set of 

initial solutions of size P.  Initialize p (counter for the number of solutions). 

Step 2. Evaluate the objective functions (i.e., capacity reliability and travel time reliability for 

a given combination of supply and demand levels of service) of solution p with the 

maximum number of samples.   

Step 3. Use the distance-based method to update the ND solution set.  Increment p = p + 1. 

Repeat Step 2 until p > P (population size). 

Step 4. Evolve all solutions via GA operators: reproduction, crossover, and mutation.  

Increment n = n + 1. Repeat Step 2 and Step 3 until n >N. 

Step 5. Report the ND solution set. 
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Figure 1. A simulation-based multi-objective genetic algorithm (SMOGA) solution procedure 

 

Remark 1:  In Step 2, evaluating the objective functions of each capacity enhancement 

design vector requires solving the lower-level subprogram to obtain the probability 

distributions of link flows  Qu,av  and O-D travel times   Quvu ,,wT  in order to compute 

the capacity reliability and travel time reliability in the upper-level subprogram.  The link-

flow pattern and the OD travel time pattern are random variables as a function of the design 

vector u and the random demand vector Q. Computing the reliability measures in Eqs. (1) 

and (2) or Eq. (3a) requires evaluating the joint probability functions of link flow and O-D 

travel time distributions, which is accomplished by the stochastic simulation.  

 

Remark 2:  To update the ND solutions from one generation to the next in Step 3, the 

distance-based method (Osyczka & Kundu, 1995) is used as a Pareto filter to sort out the 

solutions that go into an approximate Pareto solution set. The main idea is to evolve the 
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genetic search toward the ideal Pareto solutions in which all individual objectives are 

simultaneously achieved at the highest possible level. In practice, such a solution is usually 

unknown; therefore, an alternative benchmark, which is the current set of ND solutions, is 

considered.  The solutions are improved by being distanced away from the existing set of ND 

solutions. It should be noted that the SMOGA solution procedure can accommodate any 

Pareto filter methods (e.g., non-dominated sorting genetic algorithm (NSGA) II (Deb. et al., 

2002)) to update the approximate Pareto solution set. 

 

Remark 3:  In Step 4, the main purpose is to perform the GA operators (i.e., reproduction, 

crossover, and mutation) to evolve the chromosomes (or design variables) to obtain better 

solutions. Detailed descriptions of the GA implementation can be found in Gen & Cheng 

(2000). 

 

For a detailed description of the SMOGA solution procedure, the reader may refer to Chen et 

al. (2006b, 2010). 

 

Numerical example  

Problem description and GA parameter setting 

In this section, we illustrate the BORNDP model with a simple network given in Figure 2.  

The network consists of six nodes, seven links, two origins, two destinations, and four O-D 

pairs. The link travel time function used is the standard Bureau of Public Road (BPR) 

function:  
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where av , f

at , and aC are the flow, free-flow travel time, and capacity on link a, respectively.  
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Figure 2. Test network 

 

In the experiment, it is assumed that the demands of O-D pairs (1,3), (1,4), (2,3), and 

(2,4) are normally distributed with the means of 36, 9, 9, and 36 veh/min, respectively, while 

the standard deviations are one-third of the mean values.  Alternatively, these random O-D 

demands can be generated by a random multivariate generation procedure (e.g., Chen et al., 

2002b), which is capable of generating multivariate, non-normal, correlated random 

variables. Link capacity is allowed to upgrade up to 100% of its existing capacity. The 

construction-cost function adopted in this study is  

 aaa Luug  3.0)( , (7) 

where au  is the capacity expansion of link a and aL  is the length of link a.  The definitions 

of level of service (LOS) for both supply side and demand side are listed in Table 2. For each 

budget level, there are 16 possible combinations of the supply-side (i.e., capacity reliability) 

and demand-side (i.e., travel time reliability) LOS that can be considered for the capacity 

enhancements. For example, (C, D) means LOS “C” for supply side and LOS “D” for 

demand side, (E, F) means LOS “E” for supply side and LOS “F” for demand side, and so on.  

 

 

 

 

 

 

 

 



 

 

19 

 

Table 2. Level of service for supply side and demand side of road network 

Level of Service Supply Side (s) 
V/C ratio 

Demand Side (s) 
tc / tf  ratioa 

LOS "A" and LOS "B" 0.50 1.010 

LOS "C" >0.50 - 0.75 >1.010 - 1.050 

LOS "D" >0.75 - 0.85 >1.050 - 1.080 

LOS "E" >0.85 - 1.00 >1.080 - 1.150 

LOS "F" >1.00 >1.150 

a: tc is the prevailing travel time while tf is the free-flow travel time 

Note: s is set according to the Highway Capacity Manual, while s is set approximately using 

the standard BPR link-cost function.  Its value corresponds to the V/C ratio of the supply side. 

 

This study used the following parameters: 

 Population size = 128 

 Maximum number of generations = 1000 

 Arithmetic crossover with half replacement strategy 

 Mutation rate = 0.20 

 Sample size of random demand = 1000.   

These parameters for testing the SMOGA solution procedure were selected based on 

some numerical experiments conducted in Chootinan et al. (2005) and Chen et al. (2006b). 

Before discussing the numerical results of the reliability-based capacity enhancement 

problem, the performance results of the existing network are shown in Tables 3 and 4. Table 

3 shows the expected value and standard deviation of link flows, and the probability of link 

flow operating below its link capacity. Table 4 shows the capacity reliability and travel time 

reliability measures at different levels of service for the existing network before capacity 

enhancements. As can be seen from Table 3, links 1, 3, and 5 have a lower probability 

compared to other links, indicating that these links have a higher probability of link failures 

and contribute to a lower overall network reliability for both supply side and demand side. 

The existing network without capacity enhancements has virtually no chance of operating at 

LOS “A” or “B” for both supply side and demand side. It is currently operating at LOS “E” 

with a probability close to 0.6. In other words, the unreliability of the existing network 

operating at LOS “F” is as high as 40%. 

 

 



 

 

20 

 

Table 3. Link flow characteristics of the existing network before capacity enhancements 

Description Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7

Link Capacity 35.00 30.00 35.00 35.00 35.00 35.00 25.00

Mean Link Flow 31.5898 13.7648 30.4335 14.4753 27.9162 14.0177 14.1579

Standard Deviation 6.6743 6.4495 7.5980 6.6551 7.9469 6.5860 6.4224

Prob(va  Ca) 0.7000 0.9890 0.7510 0.9960 0.8020 0.9970 0.9380

 

Table 4. Capacity reliability and travel time reliability of the existing network before capacity 

enhancements at various levels of LOS 

Description Value 

Capacity Reliability  

Probability to operate at least at LOS "A" or "B" 0.0000 

Probability to operate at least at LOS "C" 0.0440 

Probability to operate at least at LOS "D" 0.0860 

Probability to operate at least at LOS "E" 0.5960 

Travel Time Reliability  

Probability to operate at least at LOS "A" or "B" 0.0010 

Probability to operate at least at LOS "C" 0.0470 

Probability to operate at least at LOS "D" 0.0880 

Probability to operate at least at LOS "E" 0.5960 

Total Travel Time  

Mean 1132.3550 

Standard deviation 277.0954 

 

Convergence characteristics and numerical results 

Without loss of generality, we examine the performance of the proposed BORNDP model and 

the SMOGA solution procedure under a budget level of 200 and a LOS combination (C, AB) 

for the supply-side and demand-side reliability measures. The convergence results of the 

SMOGA solution procedure are shown in Figures 3 to 5. Figure 3 shows the convergence of 

the maximum objective function values (i.e., capacity reliability and travel time reliability) of 

the BORNDP model. The reliability indices steadily increase in the early generations and 

converge to a near-optimal solution as the generation number increases. Figure 4 shows the 
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fitness value of Pareto set and the number of ND solutions in each generation. As the 

generation number increases, the fitness value of the Pareto set increases steadily, indicating 

that new ND solutions are found and the Pareto frontier is improving toward the ideal 

frontier. It should be mentioned that some of the current ND solutions might become inferior 

and must be discarded from the current set when better ones are found. As shown in Figure 4, 

the number of ND solutions (represented by the bar graph) does not always increase as the 

fitness value of the Pareto set improves. Figure 5 depicts the evolution of the Pareto frontier 

at the 10th, 20th, 100th, 200th, and 1000th generation during the SMOGA convergence process. 

Initially only three ND solutions are generated. As the search proceeds, the number of ND 

solutions tends to increase with better fitness values as revealed by the tradeoff between the 

two objective values.  

 

0 10 100 1000
0

10%

20%

30%

40%

50%

60%

70%

80%

Number of Generations

N
et

w
or

k 
R

el
ia

bi
li

ty

 

 

Capacity Reliability
Travel Time Reliability

0.1%

4.4%

72.5%

12.8%

 

Figure 3. The maximum reliability indices in each generation 



 

 

22 

 

1   10  20  200 400 600 800 1000
0

2

4

6

8

10

12

Number of Generations

N
um

be
r 

of
 N

on
-d

om
in

at
ed

 S
ol

ut
io

ns

 

 

30

35

40

45

50

55

60
F

it
ne

ss
 V

al
ue

 

 

Fitness Value

Number of Non-dominated Solutions
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generation 
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The numerical results of the BORNDP model are presented in Table 5 and Figure 6.  

Table 5 presents the ND solutions of optimal capacity enhancements, the construction cost, 

and the corresponding capacity reliability and travel time reliability. At the final generation, 

there are 11 ND solutions. Because the objectives are to maximize network reliability, all 11 

solutions exhaust the available budget. As shown in Table 5, the ND solutions can provide a 

significant improvement for both capacity reliability at LOS “C” (from 4.4% to 72.5%) and 

travel time reliability at LOS “A” or “B” (from only 0.1% to 12.8%) compared to the do-

nothing case (solution 0). These ND solutions allow the planner to trace the tradeoff between 

the supply-side and demand-side reliabilities and select an appropriate design plan according 

to his/her own preference. 

 

Table 5. Non-dominated solutions of LOS (C, AB) under a budget level of 200 

Solution 
Capacity 

Reliability 

Travel Time 

Reliability 

Capacity Expansion 
Cost 

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 

0* 0.0440 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00 

1 0.7000 0.1280 32.2662 0.0020 26.2390 0.0437 5.6731 0.0178 0.0000 199.84

2 0.7010 0.1270 32.2541 0.0010 26.2850 0.0162 5.4779 0.0078 0.0031 199.64

3 0.7140 0.1260 32.2529 0.0031 27.1666 0.0000 3.5657 0.0001 0.0012 199.91

4 0.7170 0.1250 32.2440 0.0000 27.4085 0.0052 3.0526 0.0001 0.0084 200.00

5 0.7180 0.1240 32.2524 0.0003 27.5690 0.0000 2.6093 0.0000 0.0550 199.99

6 0.7190 0.1230 32.2066 0.0021 27.8568 0.1194 1.9171 0.0004 0.0536 199.99

7 0.7200 0.1220 31.8981 0.0004 28.1648 0.0005 1.9209 0.0000 0.0077 199.98

8 0.7210 0.1190 32.0014 0.0000 28.4639 0.0000 0.9845 0.0000 0.0000 199.95

9 0.7230 0.1180 31.9757 0.0000 28.5715 0.0088 0.7125 0.0000 0.0272 199.90

10 0.7240 0.1170 31.9913 0.0227 28.7925 0.1145 0.1386 0.0000 0.0028 200.00

11 0.7250 0.1160 31.6165 0.0000 29.2004 0.0000 0.0000 0.0000 0.0000 199.97

* Solution without capacity enhancements (i.e., do-nothing case) 
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(b) Travel time reliability 

Figure 6. Network reliability before and after capacity enhancements of ND solution 6 

 

Capacity reliability and travel time reliability are interdependent and have a complex 

relationship. For a limited budget and a given LOS combination requirement, the objectives 

of maximizing capacity reliability and travel time reliability may be conflicting, which can be 

observed from the Pareto frontier in Figure 5 and the ND solutions in Table 5.  Also in Table 
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5, it shows that link 1 and link 3 are critical links, which affect the network reliability 

significantly. These two links provide direct connection for O-D pairs (1,3) and (2,4). 

Enhancing the capacity of these two links can significantly improve the reliability of these 

two O-D pairs as well as the overall network reliability. In addition, link 5 seems to also play 

an important role in ensuring the overall network reliability as well as the tradeoff between 

the two reliable indices compared to other links due to its key location in the simple network 

where flow of each O-D pair needs to go through it. Furthermore, enhancements of other 

links are sometimes necessary to alter the flow pattern to further increase the overall network 

reliability. This is because the travel cost function we adopted depends on the link capacity. 

Small capacity expansions on the non-critical links could alleviate the traffic loads of the 

critical links, which contribute to the overall network reliability. Similar results are also 

found in the single-objective reliable NDP model (Chootinan et al., 2005). 

Using ND solution 6 as an illustration, Figures 6a and 6b show the capacity reliability 

and travel time reliability compared to the do-nothing case (solution 0) for each level of 

service after capacity enhancements. As can be seen from the reliability curves, both capacity 

reliability and travel time reliability are improved at all levels of service with capacity 

enhancements. Significant improvements occur at LOS “C”, “D”, and “E” for both supply-

side and demand-side reliabilities.  

 

Concluding remarks 

In this paper, we provided a state-of-the-art review of transport network design problem 

(NDP) under uncertainty. In addition, new development on a bi-objective reliable NDP model 

that considers both capacity reliability and travel time reliability was developed to determine 

the optimal link capacity enhancements with demand uncertainty. A stochastic multi-

objective bi-level programming (SMOBLP) formulation was provided in which the upper-

level subprogram is a bi-objective dependent-chance model that maximizes both supply-side 

and demand-side reliability performance measures, and the lower-level subprogram is a user-

equilibrium problem subject to demand uncertainty.  A simulation-based multi-objective 

genetic algorithm (SMOGA) solution procedure was developed to tackle the different 

complexities involved in solving the SMOBLP formulation. Numerical experiments were 

conducted to demonstrate the features of the proposed bi-objective reliable NDP model. So 

far, only demand uncertainty is considered. Future research should also consider the 
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degradation of network capacity in designing reliable roadway networks. It is also 

worthwhile to enhance the behavioral model in the lower-level subprogram by explicitly 

considering the stochasticity of network flows and risk-averse behavior of road users (e.g., 

Chen and Zhou, 2010). On the computational side, we plan to enhance the efficiency of the 

SMOGA solution procedure by incorporating local search, better evolutionary strategies, 

faster traffic assignment algorithms, and better sampling techniques to speed up the process 

of finding Pareto optimal solutions.  
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Appendix 

This appendix describes the transport network design models under uncertainty. Notation is 

provided first, followed by the general stochastic bi-level programming formulation, and 

various upper-level subprograms described in Table 1. 

 

A.1. Notation 

For convenience, the sets, variables, and parameters used throughout the paper are defined as 

follows: 

 

Sets 

A : set of links in the network 

A : set of design links in the network 

W : set of origin-destination (O-D) pairs 

wR : set of paths between O-D pair w W  

 

Variables 

w
rf : flow on path wr R  between O-D pair w W  

f: vector of path flows  T,,  w
rff  in the lower-level subprogram 

av  : link flow on link a A  
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v: vector of link flows  T,,  avv  in the lower-level subprogram 

au : design variable of link a A  

max
au : upper bound of design variable on link a A  

u: vector of link design variables  T,,  auu  in the upper-level subprogram 

 ,a a at v u : travel time on link a A , which is a function of link flow av  and link design 

variable au  

w
rc :    travel time on path wr R  between O-D pair w W  

w :    minimum travel time between O-D pair w W  

( )a ag u :             design cost for link a A  

  εuvu ,,F : performance measure in the upper-level subprogram 

   εuvu ,,FE : expected value of performance measure in the upper-level subprogram 

   εuvu ,,FV : variance of performance measure in the upper-level subprogram 

F
~

:   total performance measure budget in the alpha reliable model 

 

Parameters 

 vector of random variables 

wQ : random demand between O-D pair w W  

Q: vector of random variables wQ  

wq : realization of wQ  

q: vector of realization wq  

w
ar :            1 if path r of O-D pair w uses link a, and 0 otherwise 

B:            a fixed improvement budget 

:            confidence level in the chance-constrained model 

F : threshold of the performance measure in the chance-constrained model and the 

probability model 

 

A.2. Stochastic bi-level mathematical program 
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The network design problem is generally formulated as a bi-level optimization problem to 

reflect the different aims of the two decision makers: the network users and the planner. The 

network users are free to choose their routes such that their individual travel costs are 

minimized, whereas the planner aims to make the best use of limited resources to optimize 

one or more network-wide performance measures (e.g., reducing congestion, minimizing 

environmental impact, maximizing throughputs), while taking into account users’ route 

choice behavior. The general stochastic bi-level mathematical program can be formulated as 

follows. 

(UP)   εuvu
u

,,Minimize F        (A.1) 

subject to       0εuvuG ,, ,                                                                                (A.2)  

where  v(u,) is implicitly defined by: 

(LP)   εuvu
v

,,Minimize f         (A.3) 

subject to    0εuvug ,, ,        (A.4) 

where F is the objective function and u is the design vector of the upper-level subprogram 

(UP), G is the constraint set of UP, f is the objective function and v(u is the decision 

variable vector of the lower-level subprogram (LP) as a function of the design vector (u) as 

well as a random vector (, and g is the LP constraint set. The upper-level subprogram 

describes the leader or planner problem, and the lower-level subprogram represents the 

follower or user’s behavioral problem. 

 

A.3. Transport network design models under uncertainty 

In the transport network design models under uncertainty reviewed in Table 1, the upper-

level subprogram determines the optimal designs (u) in a transportation network by using 

different criterion to optimize a system-wide objective with uncertainty (), while the lower-

level subprogram determines the route choice behavior (i.e., user equilibrium or stochastic 

user equilibrium) of network users for a given design vector with uncertainty (v(u). In this 

section, we provide the mathematical formulations of the upper-level subprogram used in 

different transport network design models. The lower-level subprogram using the user 

equilibrium concept is provided in Eqs. (4a) to (4d). 
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A.3.1 Expected value model 

The expected value model is to optimize the expected value of a system-wide performance 

measure (e.g., total travel time) in Eq. (A.5) subject to the budget constraint in Eq. (A.6) and 

the limit constraints on the design variables in Eq. (A.7). 

   εuvu ,,min FE
u

         (A.5) 

s.t.   Bug
Aa

aa 


,        (A.6) 

 Aauu aa  ,0 max .       (A.7) 

 

A.3.2 Mean-variance model 

The mean-variance model is to optimize the expected value and variance of a system-wide 

objective function in Eq. (A.8) subject to the budget constraint in Eq. (A.6) and the limit 

constraints on the design variables in Eq. (A.7). 

 
   
   




εuvu

εuvu

,,

,,
min

FV

FE
u

        (A.8) 

s.t.      Eq. (A.6) and Eq. (A.7). 

The mean-variance model involves two objectives. It belongs to a general class of multi-

objective optimization problems. When the objectives are conflicting, there is, in general, no 

single optimal solution that can simultaneously optimizes all aspects.  A solution may be best 

in one objective, but worst in the others.  It is difficult to distinguish the best solution in a 

multi-objective problem unless a preference structure of all objectives is explicitly defined.  

According to Gen and Cheng (2000), there are two main approaches to handle this problem: 

the preference-based approach and the generating approach. The preference-based approach 

simply converts the multiple objectives into a single objective according to the preference 

structure supplied by the decision makers. The weighted-sum method is one of the most 

widely adopted methods used in the preference-based approach. In this method, the 

objectives are transformed into a composite objective function with predefined weights. Most 

of the mean-variance NDP models presented in Table 1 adopted the weighted-sum method 

(see Karroonsonntawong and Waller (2007); Ukkusuri et al. (2007), Gardner et al., 2008; Li 

et al., 2008; Ng and Waller (2009), Sumalee et al. (2009), and Yin et al. (2009)). For the 
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generating approach, the concept of Pareto optimality is adopted.  The solution is “Pareto 

optimal” or “non-dominated” if there were no other feasible solutions that could improve 

some objectives without worsening at least one other objective.  A set of non-dominated 

solutions generally forms the so-called “Pareto front” or “efficient frontier”, which represents 

the relationship (tradeoff) among multiple objectives. Chen et al., 2003b, 2006b, and Sharma 

et al. (2009) adopted the generating approach, albeit using different Pareto filters (distance-

based method and non-dominated sorting genetic algorithm method), to generate the non-

dominated solutions of the mean-variance NDP model. For additional information about two 

approaches for handling multi-objective optimization problems, see Gen and Cheng (2000) 

and Chootinan et al. (2005a). 

 

A.3.3 Chance constrained model 

The chance constrained model is to optimize the expected value of a system-wide 

performance in Eq. (A.9) subject to the chance constraint in Eq. (A.10), the budget constraint 

in Eq. (A.6), and the limit constraints on the design variables in Eq. (A.7). 

   εuvu ,,min FE
u

         (A.9) 

s.t.      FF εuvu ,,Pr ,       (A.10) 

 Eq. (A.6) and Eq. (A.7). 

Eq. (A.10) is the chance constraint specified to guarantee the probability that the system-wide 

performance measure less than the threshold F  is greater than or equal to the predefined 

confidence level . Note that the threshold F and the confidence level  in the chance 

constraint (A.10) are both defined by the users. Charnes and Cooper (1959) also suggested 

using the variance of a system-wide performance measure or the probability of satisfying an 

aspiration level of the performance measure as the objective function.  

 

A.3.4 Probability model 

The probability model is to optimize the probability of a system-wide performance measure 

under uncertainty in Eq. (A.11) subject to the budget constraint in Eq. (A.6) and the limit 

constraints on the design variables in Eq. (A.7). 
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   FF
u

εuvu ,,Prmax         (A.11) 

s.t.      Eq. (A.6) and Eq. (A.7). 

Eq. (A.11) is the objective function that maximizes the probability that the system-wide 

performance measure less than the threshold F  (a user defined value). 

 

A.3.5 Min-max model 

The min-max (or max-min) model is to optimize the worst case of a system-wide 

performance measure under uncertainty in Eq. (A.12) subject to the budget constraint in Eq. 

(A.6) and the limit constraints on the design variables in Eq. (A.7). 

  εuvu
ε

,,maxmin F
u

        (A.12) 

s.t.      Eq. (A.6) and Eq. (A.7) 

In the robust NDP models by Lou et al. (2009) and Yin et al. (2009), the network 

improvement scheme is to determine design variables that minimizes the total travel time for 

the worst-case demand scenario among all realizations of the uncertain demand set. Min-max 

solutions are known to be conservative by giving up a large amount of efficiency for 

robustness. 

 

A.3.6 Alpha reliable model 

The alpha reliable NDP model is to optimize F
~

 in Eq. (A.13) required to satisfy the chance 

constraint in Eq. (A.14), the budget constraint in Eq. (A.6), and the limit constraints on the 

design variables in Eq. (A.7). 

F
u

~
min           (A.13) 

s.t.      FF
~

,,Pr εuvu ,       (A.14) 

 Eq. (A.6) and Eq. (A.7) 

F
~

 is a decision variable defined as the minimum system-wide performance measure required 

to satisfy the chance constraint at least  times. The alpha reliable NDP model is considered 

as a variant of the chance constrained model since only the confidence level in Eq. (A.14) is 
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user-defined. This model can also be considered as a relaxed min-max model by using the 

confidence level to control the risk of not sacrificing too much efficiency for reliability (or 

robustness). 
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