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Unlike local transmission of pandemic influenza A (H1N1-2009), which was frequently driven by school children, most cases
identified in long-distance intranational and international travelers have been adults. The present study examines the relationship
between the probability of temporary extinction and the age-dependent next-generation matrix, focusing on the impact of
assortativity. Preferred mixing captures as a good approximation the assortativity of a heterogeneously mixing population. We
show that the contribution of a nonmaintenance host (i.e., a host type which cannot sustain transmission on its own) to the
risk of a major epidemic is greatly diminished as mixing patterns become more assortative, and in such a scenario, a higher
proportion of non-maintenance hosts among index cases elevates the probability of extinction. Despite the presence of various
other epidemiological factors that undoubtedly influenced the delay between first importations and the subsequent epidemic,
these results suggest that the dominance of adults among imported cases represents one of the possible factors explaining the
delays in geographic spread observed during the recent pandemic.

1. Introduction

Since it was first identified in early 2009, a novel strain
of influenza A (H1N1-2009) has caused a global pan-
demic. Although the rapid international spread created
various epidemiological challenges, such as quantifying the
strain’s transmission potential and virulence during the very
early stages of the pandemic [1, 2], many key insights
have been obtained to date [3]. Prior to the pandemic,
the importance of contact networks in elucidating the
epidemiological dynamics of infectious diseases has been
emphasized with applications to severe acute respiratory
syndrome (SARS), sexually transmitted infections and other
directly transmitted diseases [4, 5]. The age specificity in the
transmission of the H1N1-2009 indicates the relevance of
contact heterogeneity [6–9]. Although the differential attack
rates in different age groups by H1N1-2009 have multiple
explanatory factors, including age-specific susceptibility and

pre-existing immunity [10–12], age-dependent contact is
also thought to be associated with a higher susceptibility to
infection and greater infectiousness once infected in children
[13]. The consequences of this are that community-wide
epidemics have been frequently driven by school outbreaks
[7], while attack rates of H1N1-2009 were highest among
school-age children in various parts of the world [8, 11]. A
network model was used to describe the temporal variations
in the age-specific composition of cases during the course of
the pandemic and found that attack rates for a novel strain
of influenza tend to be initially biased towards children and
then shift towards adults [14].

A parsimonious simplification of the complexity of
an age-structured contact network can be obtained by
approximating the network by an appropriately quantified
age-dependent next-generation matrix. This is accomplished
by using the next-generation matrix, the square matrix
with generic entry Rij , the average number of secondary
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cases in age-group i generated by a single primary case in
age-group j in a fully susceptible population. Discretizing
chronological age into a small number of age groups, the
matrix, K = {Rij}, for H1N1-2009 has been quantified
using age-stratified epidemic data [2, 6, 7, 15]. The age-
dependent K has two important properties in understanding
epidemiological dynamics. First, the dominant eigenvalue of
K corresponds to the basic reproduction number, R0 [16],
which frequently yields a threshold condition, that is, a major
epidemic is possible if and only if R0 > 1. Second, the
final proportion of hosts of type i that become infected, zi,
is given by the solution to 1 − zi = exp(−∑ j Ri jz j) [17].
One important use of Rij is to the development of optimal
vaccination strategies before a pandemic [18, 19] and during
a pandemic [20].

The present study investigates the relationship between
the age-dependent next-generation matrix, K, and the
invasion of a novel virus into a large population, which
has not been well clarified to date. Whereas this subject
has been partly explored via percolation theory [5], it is
important from an epidemiological perspective to address
this using a simpler model that can more readily be fitted
to observational data from the outbreak in question. More
specifically, we examine the impact of assortativity, that is,
preferential mixing of different host types (here, age), on the
probability of epidemic extinction, because age-dependent
human contact networks have been shown to be highly
assortative in contact surveys [21, 22]. Such an assortative
network is known to allow disease percolation more easily
than disassortative ones [23], echoed by the finding that
increasing the preferential mixing component of simpler
models such as ours tends to allow an epidemic to grow more
easily [24].

In addition to these issues, the present study investigates
the role of the age of cases importing infection to a
local area by long-distance travel either intranationally or
internationally on the resulting growth of a local epidemic.
As a practical example, the age-dependent transmission of
the H1N1-2009 pandemic is considered, and we first present
our study motivations in the next section.

2. Materials and Methods

2.1. Study Motivation. Figure 1(a) shows the time delay from
the introduction of first imported case on 1 May 2009 to
the subsequent increase in local transmission in Hong Kong
[25]. Despite the number of imported cases, it took 39 days
to observe the first locally acquired case. The interpretation
of Figure 1(a) is affected by several factors, such as case
ascertainment, ecological factors such as seasonality, and
disease control [27], but as with many other countries
exponential growth in the local epidemic did not start
for some time after the first imported case. Hong Kong
instigated particularly stringent quarantine measures, but a
recent study comparing the time delay in local transmission
between countries with and without entry screening has
shown that the entry screening measures were not associated
with a substantial delay in the start of local transmission [28].

Figure 1(b) shows weekly hospitalization rates due to
H1N1-2009 in three coastal areas in the Netherlands [26]. A
surge in hospitalizations is first seen in Amsterdam followed
by Rotterdam. The peak hospitalization rate in Zeeland
occurs three weeks later than that in Amsterdam. There may
be various interpretations for the delay before exponential
growth, and, in particular, the spatial heterogeneity in
Figure 1(b) is likely to have been associated with differing
inflows of infected individuals and intrinsically differing
patterns of spread within each region. Despite the presence
of various possible factors explaining Figure 1(b), it is clear
that the spatio-temporal dynamics are not synchronized even
in this geographically limited country, and thus, Figure 1(b)
at least indicates that stochastic effects may not have
been insignificant for the intranational spread. A similar
substantial delay in interregional spread has also been seen
in the results of seroepidemiological study in England [29].

Both Figures 1(a) and 1(b) indicate a delay in causing
international or interregional spread, but from a sufficiently
high number of homogeneous index cases that repeated
stochastic extinction is unlikely as an explanation. A more
plausible reason is the contrast in age distributions between
local and imported cases: whereas imported cases have been
predominantly adults [30], local transmissions are frequently
driven by school children. That is, adults were more likely
to travel than children, and those aged 25 years and older
accounted for more than half of the imported cases in Japan
[30]. Similarly, adults may also more likely be the source
of spread within a country, especially as the movement
distance becomes longer. However, adults are less likely to
cause secondary transmissions than children in a local setting
[2, 6, 13, 15], making it critically important to understand
the differential probability of extinction of the infection tree
emerging from a typical child index and a typical adult
index case. Because assortativity regulates the frequencies
of within- and between-group transmissions, examining the
effects of assortativity provides a natural avenue for assessing
this. Accordingly, in this paper we use a simple stochastic
model to clarify the different roles of children and adults in
causing a major epidemic and its relevance to assortativity.

2.2. A Model for Clade Extinction. We employ a multi-
type branching process to approximate the probability of
extinction of the clade of infection emanating from a single
index case [31]. Consider a large population which is fully
susceptible, and let there be two subpopulations, that is,
children and adults. For simplicity, we ignore pre-existing
immunity among adults. Throughout this paper, we label
children as type 1 and adults as type 2. Let γi (i = 1, 2)
be the recovery rate of infectious individuals of type i and
βi j(1 ≤ i, j ≤ 2) be the birth rate (i.e., the rate of new
infection) of type i infected individuals caused by a single
type j infected individual during the initial stage of an
epidemic. We consider the case when a small number of ai
infected individuals of type i invades a fully susceptible large
population. Given the large and (assumed) fully susceptible
population, and the small initial number of infectives, deple-
tion of the susceptible stock can be ignored and the initial
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Figure 1: Epidemiology of the pandemic influenza A (H1N1-2009) in Hong Kong and the Netherlands. (a) Introduction of imported
confirmed cases in Hong Kong followed by an increase in local (indigenous) confirmed cases from May–June, 2009 [25]. (b) The
hospitalization rates of the influenza A (H1N1-2009) in Amsterdam, Rotterdam and Zeeland from August–December, 2009 [26]. Weekly
numbers of hospitalizations are divided by the population size in each locality.

stages of the outbreak interpreted as a multivariate birth-
and-death process [32]. For mathematical convenience, we
assume that the generation time is exponentially distributed,
and thus, Rij = βi j /γj . This assumption is common to many
compartmental models, although its realism is dubious. The
proposed approach considers a linearized system for the early
epidemic period with a crude approximation of host types,
but the similar approach of mapping next generation with
the use of a square matrix can be employed for explicit
network models [33]. In addition to the aforementioned
assumptions, we assume that the age-specificity of Rij is fully
attributable to the infection rate βi j , and thus the infectious
period γj is assumed to be a constant γ, independent of
host type. Consequently, if we further ignore the age-specific
susceptibility and infectiousness, Rij is determined only by
the frequency of contact within- and between-age groups.

Letting the random vector Xn = (X1n, X2n ) represent
the number of child and adult infected individuals in the
population in the nth generation, we consider the process
{Xn} as a multitype branching process. Assuming that an
individual of type j has probability pj(x) of infecting, in
the next generation, x1 children and x2 adults, we define the
probability generating function as

Fj(s1, s2) =
∑

x

pj(x1, x2)sx1
1 s

x2
2 , j = 1, 2. (1)

Following foregoing studies [32, 34], the generating function
Fj(s) with an exponentially distributed generation time is
known to be given by

Fj(s) = γj

γj +
∑2

k=1 βk j(1− sk)
(2)

for j = 1, 2. Since γj is assumed to be independent of host
type j, Rij = βi j /γ, (2) simplifies to

Fj(s) = 1
1 + R1 j(1− s1) + R2 j(1− s2)

. (3)

The clade of infections, {Xn}, emanating from the initial
index cases becomes extinct with probability 1 if and only
if the dominant eigenvalue of K is less than or equal to unity,
that is, ρ(K) ≤ 1 [34].

Let πi be the probability of extinction given that a single
infected individual of type i is introduced to the population.
The extinction probability is the nonnegative root of the
equations

πj = Fj(π), j = 1, 2. (4)

As is standard in branching process models, each of the
secondary cases of type i generated by a primary case
becomes an ancestor of an independent subprocess (which
restarts with a type i individual) behaving identically among
the same type i [31, 35]. Because of this multiplicative nature,
we have the probability of extinction

p(a) =
2∏

j=1

{
π
aj
j

}
(5)

of the entire clade with initial vector a = (a1,a2).
In the two-host population, that is, a population con-

sisting of children and adults, the probabilities of extinction
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θ = 0 (random)

(a)

θ = 0.5 (half assortative)
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(c)

Figure 2: Preferential mixing given a single child index case. The hypothetical population consists of 10 children (left) and 10 adults (right)
with equal susceptibility and infectiousness. We consider an introduction of a single child index case who has a potential to cause 8 secondary
transmissions. Panels (a)–(c) illustrate contacts generated by the child index case with different θ, proportion of within-group contacts, being
0, 0.5 and 1.0, respectively. With θ = 0 (i.e., random mixing), four edges extend to child susceptibles and the other four to adult susceptibles.
Nevertheless, with θ = 0.5, additional two edges are reserved for within-child mixing and only the remaining two are connected to adult
susceptibles. With θ = 1 (i.e., fully assortative mixing), all edges are connected with child susceptibles.
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Figure 3: Probability of extinction given an introduction of single child or adult index case. The probabilities of extinction are calculated,
assuming that a single child or adult index case is introduced into a fully susceptible large population. The probability approximately accounts
for heterogeneous transmission among and between child and adult populations. The estimates of the next-generation matrices are extracted
from A. Fraser et al. [6] based on an analysis in Mexico and B. Nishiura et al. [2] in Japan. The basic reproduction numbers in the original
studies in Mexico and Japan are estimated at R0 = 1.58 and 1.22, respectively, and both panels rescales the next-generation matrix by
multiplying each entry with R/R0 where R measures the horizontal axis.

given a single child or adult infected individual, π1 and π2,
satisfy

π1 = 1
1 + R11(1− π1) + R21(1− π2)

,

π2 = 1
1 + R12(1− π1) + R22(1− π2)

.

(6)

In other words, given that the next-generation matrix Rij
is known, the problem of calculating the probability of
extinction given a certain number of infected individuals
of host i and j in the zero generation is replaced by

the problem of solving two quadratic equations with two
unknown parameters. There are four possible combinations
of the solutions for (6) including complex numbers, but we
iteratively find the only nonnegative real numbers in the
range of 0 ≤ π1,π2 ≤ 1 (see [31, page 18]), except for a
combination (π1,π2) = (1, 1).

2.3. Quantitative Illustrations. The probability of extinction
is investigated for the following three different scenarios.
First, to gain an overview of the extinction probabilities π1

and π2 for the H1N1-2009, (6) are solved using published
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Figure 4: Assortativity and the probability of extinction. The
probability of extinction in a fully susceptible population given a
single adult or child index case is measured as a function of θ, the
proportion of within-group mixing. The next-generation matrix,
parameterized by Fraser et al. [6] with the dominant eigenvalue
R0 = 1.58, is rescaled by multiplying each entry with R/R0 where
R is set to be 1.2, 1.4 and 1.6, respectively.

estimates of K from Mexico [6] and Japan [2]. Approximat-
ing the original K into a two-host population, we use

Ka =
⎛

⎝
1.41 0.34

0.35 0.87

⎞

⎠ (7)

for Mexico, and

Kb =
⎛

⎝
1.14 0.25

0.21 0.45

⎞

⎠ (8)

for Japan. The originally estimated dominant eigenvalues
are 1.58 and 1.22, respectively. It should be noted that the
child group in Mexico is assumed to be up to age 14 years
while that in Japan is up to age 19 years. Assuming that the
reproduction number, R possibly ranges from 1.2–1.6 [2, 36],
we rescale the next-generation matrices by

K′
q =

R

ρ
(

Kq

)Kq, q = a,b, (9)

where R is the reproduction number to be examined.
Second, Ka in Mexico is further examined in relation to

the assortativity. The element Rij of Ka has been parameter-
ized as

Rij ∼
⎧
⎨

⎩

(1− θ)αiβjni, for i /= j,

θαiβj + (1− θ)αiβjni, for i = j,
(10)

where ni is the relative size of the subpopulation i (i.e.,
n1 + n2 = 1). αj and βj are originally described as the
age-specific susceptibility and infectiousness [6], and these
can also be regarded as the so-called proportionate mixing
components. The biological interpretation of proportionate
mixing is that irrespective of its own type, an individual
can acquire infection from any given individual (i.e., the
secondary transmission from host j to i is determined by
host j). Introduction of the most important parameter in
the present study, θ is classically referred to as “preferred”
or “preferential” mixing [37, 38]. Although the original
definition of the term preferred mixing has a broader
meaning, θ in (10) represents the proportion of contacts
reserved for within-group mixing, and (1− θ) represents the
proportion of contacts subject to proportionate mixing. If
θ = 1, the mixing is referred to as fully assortative (Figure 2).
If θ = 0, the mixing corresponds to random mixing (though
it should be noted that the mixing matrix still includes a
proportionate mixing component). An empirical estimate of
θ from Mexico is 0.50, although the 95% confidence interval
is broad: 0–0.72 [6]. Therefore, we examine the sensitivity of
the probabilities of extinction, π1 and π2, to different θ in the
range of 0-1 and R in the range of 1.2–1.6. Other parameters
are fixed at n1 = 0.32, α1 = 2.06, α2 = β1 = β2 = 1 [6].

Third, to clarify the practical implications of the predom-
ination of adults among travelers, we examine the sensitivity
of the probability of extinction to the proportion of adult
travelers over various θ and R. Specifically, we consider
the probability of extinction given a small importation of
ten cases in the zero generation independently entering a
large susceptible population at their infection-age 0 (i.e.,
immediately after their own infections: for simplicity, we
ignore the infection-age distribution of imported cases at the
time of invasion in the present study, because its realistic
incorporation enforces us to account for the epidemic
dynamics in exporting countries and thus, the exporting
country and travel distance for each imported case would
be required [39]). Among the 10 cases, we vary the number
of adult cases from 0 to 10, and examine the probability of
extinction given by (5).

3. Results

Figure 3 shows the probabilities of extinction, π1 and π2,
using published estimates of Ka and Kb in (7) and (8).
In both panels, using estimates from Mexico and Japan,
π2, the probability of extinction given a single adult case,
always appeared to be higher than π1, and thus the clade
of infections resulting from the introduction of an adult
index case is more likely to be self-limiting than from a child
index case. The estimates of π1 and π2 using the published
estimates of R0 were 61 and 73%, respectively, for Mexico
(with R0 = 1.58) and 81 and 93%, respectively, for Japan
(with R0 = 1.22), indicating that the reproduction number
R in the range of 1.2–1.6 is not far from the critical level
and the impact of variations in R0 on epidemic extinction
is large. The reader should note the crudeness of the
dichotomization of the population into two subpopulations,
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Figure 5: The impact of the age specificity of index cases on the probability of extinction. All panels, (a)–(c), examine the sensitivity of the
probability of extinction in a fully susceptible large population given 10 index cases with R = 1.2, 1.4 and 1.6, respectively, with different θ,
the proportion of within-group mixing and the proportion of adult index cases. Vertical grey bold line represents the empirically observed
proportion of adult imported cases in Japan (i.e., 63.4% were aged <15 years). The horizontal axis measures the proportion of adult index
cases among the total number of 10 index cases. The next-generation matrix, parameterized by Fraser et al. [6] with the dominant eigenvalue
R0 = 1.58, is rescaled by multiplying each entry with R/R0,.

and that incorporating more detailed network structure
(e.g., by dividing the population into many more types
of host) tends to yield higher probability of extinction
[2, 5]. Moreover, whereas the present study assumes an
exponentially distributed generation time, a more realistic
depiction, for example, gamma-distributed generation time,
tends to capture overdispersion of the offspring distribution
more appropriately [40, 41], and thus, again yields a higher
probability of extinction than is shown herein.

Figure 4 examines the probabilities of extinction, π1 and
π2, as a function of θ, the proportion of within-group mixing

and R. As expected from the randomly mixing interpretation,
π1 and π2 were equal to 1/R with θ = 0. However, for
populations with more within-group mixing, clades from
adults were more likely to go extinct, reaching 100% with
θ = 1. This is attributable to the next-generation matrices
(7) and (8) involving the typical reservoir dynamics [42]:
children act as a maintenance host (R11 > 1), among whom
transmission can be maintained by themselves, while adults
constitute a nonmaintenance host group (R22 < 1), and
thus, with little relative mixing between the two groups,
an adult index case would never lead to a major epidemic.
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The probability of extinction, π1, given a single child index
case, reached a minimum with θ in the range of 0.4-0.5,
although this probability was not very sensitive to θ. Such θ
may lead to a “well-mixed” population, thereby allowing the
child index case to involve both child and adult secondary
cases effectively.

Figure 5 examines the probability of extinction given
10 index cases as a function of θ and the proportion of
adult index cases. With random mixing, the probability of
extinction given a single index case is (100/R)% (e.g., 71%
with R = 1.4). The extinction probability given 10 index
cases in the randomly mixing population was independent
of the proportion of adults, (1/R)10 = 0.035 (with R = 1.4),
indicating that a major epidemic is almost unavoidable with-
out any intervention. However, as assortativity increased, the
increase in the proportion of adult index cases promoted
extinction. The vertical reference line of 63% indicates the
empirically observed proportion of adults (i.e., those aged
≥15 years in (7) as defined by [6]) among all imported cases
in Japan [30]. At around that proportion, the probability of
extinction was estimated to be 1%–58% over the full range
of θ from 0 to 1, for 10 index cases. Given 10 index cases
with θ = 1, the results were independent of the proportion
of adult index cases, because a1 + a2 = 10 and π2 = 1 (for
θ = 1), whatever the number of adults, a2, the extinction
probability is

p(a1,a2) = πa1
1 π

a2
2 = πa1

1 . (11)

That is, as mixing becomes more and more assortative, the
contribution of the initial number of adults, a2 to the risk
of a major epidemic becomes less important, and moreover,
an increase in the proportion of adults indirectly reduces
a1, leading to an increase in the probability of extinction.
Even when we divide the entire population into many more
subpopulations, this argument holds as long as the host type
of interest i is incapable of maintaining disease by itself, that
is, when the host-specific reproduction number, Rii < 1 [42].
Of course, if a2 = 10, p(0, 10) = 1 for θ = 1.

4. Discussion

The present study investigated the relationship between the
next-generation matrix and the probability of extinction,
employing a simple model that may be viewed as an
approximation to a full network model. The modelled
heterogeneous mixing accounted for assortativity via an
assumption of preferred mixing, and the probability of
extinction was derived from a multidimentional branching
process model. As a practical example, the age dependency in
the transmission of pandemic influenza A (H1N1-2009) was
considered, dividing the population into children and adults.
Through quantitative illustrations, it has been shown that the
probability of extinction given an adult index case increases
with θ, at least for diseases with similar transmissibility as
influenza. Although this exercise employed several simpli-
fying assumptions, a formal hypothesis can be developed
for explaining a slow interregional and international spread
of the H1N1-2009 even in today’s highly mobile world

population. That is, whereas empirically observed delays
in local transmission can be influenced by a large number
of factors including pre-existing immunity, public health
interventions and seasonality, the dominance of adults
among travelers is one possible explanation for the high
probability of extinction, and may play an important role
in describing the underlying reason (Figure 1). Since the
present study adopted three simplifying assumptions (i.e.,
(1) the crude dichotomization of hosts into two different
types, (2) the adoption of exponentially distributed gen-
eration times, and (3) ignorance of infection-age among
imported cases), the probability of extinction is likely to have
been underestimated. The extinction probabilities become
higher with more precise network structure (e.g., due to
localized burnout of susceptible individuals) and more
detailed natural history of infection [5, 40, 41].

Three practical implications are drawn from our exer-
cise. First, the importance of assortativity in appropriately
capturing the probability of extinction highlights a critical
need to account for this aspect when quantifying the next-
generation matrix in an approximately modelled hetero-
geneous population. Whenever the statistical inference of
the next-generation matrix is made for directly transmitted
diseases, the estimation framework should ideally account
for assortative mixing. Whereas the social contact survey
revealed that the age-dependent contact pattern is highly
assortative [20, 21], the definition of a contact can be too
broad to be practical for all diseases, and more realistic incor-
poration of assortative mixing and its precise estimation
should be the subject of future studies.

Second, as was highlighted with an application, account-
ing for the age specificity in the surveillance of international
and interregional mobility patterns and its use for statistical
inference of epidemic dynamics are of utmost importance.
For example, global airline transportation is one of the most
well-studied networks, and this has been analyzed for H1N1-
2009 [43], but a full description of global dynamics should
better account for age-specific travel patterns. In addition,
whereas imported cases from Mexico have been utilized
to make statistical inference (e.g., spatial backcalculation)
of the incidence in Mexico [6, 44, 45], the present study
emphasizes a critical need to examine age-specificity in
relevant frameworks, so that ultimately, the global dynamics
can be described by a multihost metapopulation model [46,
47].

Third, as a disease control implication, although adults
dominate imported cases, it should be remembered that
the more important target host is still children. If stringent
border control measures, for example, travel reduction and
movement restrictions among all incoming passengers [48],
are adopted as containment strategies against a highly
virulent novel virus, the target host to promote radical
reductions in travel-induced illness would be children, at
least for diseases with a similar next-generation matrix to
that of the recent pandemic.

Although the role of heterogeneously mixing population
in the spread of infectious diseases has been examined
using stochastic modelling approaches, past studies tended
to focus on final epidemic size and its relevance to disease
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control policy [49, 50]. Moreover, a limited number of
studies examining the probability of extinction took an
average of the probabilities over different types of host
(e.g., by weighting the relative population size to the type
specific probability of extinction) [24, 49]. The present study
emphasized the importance of capturing type-specificity
of index cases in estimating the probability of extinction
and examining the impact of assortativity on extinction.
In conclusion, we believe our simple exercise successfully
illustrated the diminished role of nonmaintenance hosts
in causing a major epidemic when assortativity is high,
indicating a critical need to capture the assortativity in
modelling the initial invasion of an epidemic disease.

5. Conclusions

Unlike local transmission of the H1N1-2009 which was
frequently driven by school children, imported cases were
predominantly adults. This study examined the relation-
ship between the age-dependent next-generation matrix
and the probability of extinction, focusing on the role of
nonmaintenance hosts and the impact of assortativity on
the epidemic extinction. The preferred mixing assumption
captures assortativity in a much simpler way than full contact
network models, allowing analysis in place of Monte Carlo
calculations. The contribution of nonmaintenance hosts to
the risk of a major epidemic is diminished as the mixing
pattern becomes more assortative, so that an increase in
the proportion of nonmaintenance hosts among index cases
increases the probability of extinction, if temporary in the
face of repeat importations. These results helped us to
formulate a hypothesis that the dominance of adults in
imported cases was one of the possible causes of observing
substantial delay in interregional and international spread of
the 2009 influenza pandemic. The importance of capturing
the assortativity in estimating the next-generation matrix
was highlighted.
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