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Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-

Einstein condensation process can always take place during the cosmic history of the Universe. In the

Bose-Einstein condensation model, dark matter can be described as a nonrelativistic, Newtonian

gravitational condensate, whose density and pressure are related by a barotropic equation of state, with

a barotropic index equal to one. In the present work, we study the Bose-Einstein condensation process in a

cosmological context by assuming that this process can be described (at least approximately) as a first-

order phase transition. We analyze the evolution of the physical quantities relevant for the physical

description of the early universe, namely, the energy density, temperature, and scale factor, before, during,

and after the Bose-Einstein condensation (phase transition). We also consider in detail the epoch when the

Universe evolved through a mixed condensate—normal dark matter phase—with a monotonically

growing Bose-Einstein dark matter component. An important parameter characterizing the Bose-

Einstein condensation is the condensate dark matter fraction, whose time evolution describes the time

dynamics of the conversion process. The behavior of this parameter during the cosmological condensation

process is also analyzed in detail. To study the cosmological dynamics and evolution we use both

analytical and numerical methods. The presence of the condensate dark matter and of the Bose-Einstein

phase transition could have modified drastically the cosmological evolution of the early universe, as well

as the large scale structure formation process.
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I. INTRODUCTION

At very low temperatures, particles in a dilute Bose gas
can occupy the same quantum ground state, forming a
Bose-Einstein condensate (BEC), which appears as a sharp
peak over a broader distribution in both coordinates and
momentum space. The possibility to obtain quantum de-
generate gases by a combination of laser and evaporative
cooling techniques has opened several new lines of re-
search at the border of atomic, statistical, and condensed
matter physics (for recent reviews on the Bose-Einstein
Condensation see [1–3]).

An ideal system for the experimental observation of the
Bose-Einstein condensation is a dilute atomic Bose gas
confined in a trap and cooled to very low temperatures.
BECs were first observed in 1995 in dilute alkali gases
such as vapors of rubidium and sodium [4]. In these experi-
ments, atoms were confined in magnetic traps, evapora-
tively cooled down to a fraction of a microkelvin, left to
expand by switching off the magnetic trap, and subse-
quently imaged with optical methods. A sharp peak in
the velocity distribution was observed below a critical
temperature, indicating that condensation has occurred,
with the alkali atoms condensed in the same ground state.
Under the typical confining conditions of experimental
settings, BECs are inhomogeneous, and hence condensates

arise as a narrow peak not only in the momentum space but
also in the coordinate space [4].
Since in the terrestrial experiments Bose-Einstein con-

densation is a well-known phenomenon, the possibility that
a similar condensation may have occurred during the cos-
mological evolution of the Universe cannot be excluded
a priori. In fact, once the critical temperature of the boson
gas is less than the critical temperature, BEC can always
take place at somemoment during the cosmic history of the
Universe. Different aspects of the BEC cosmological tran-
sition were considered in [5–7]. The critical temperature

for the condensation to take place is Tcr < 2�ℏ2n2=3=mkB,
where n is the particle number density, m is the particle
mass, and kB is Boltzmann’s constant [1–3]. On the other
hand, cosmic evolution has the same temperature depen-
dence, since in an adiabatic expansion process the density

of a matter dominated universe evolves as � / T3=2 [7].
Therefore, if the boson temperature is equal, for example,
to the radiation temperature at a redshift z ¼ 1000, the
critical temperature for the Bose-Einstein condensation is
at present Tcr ¼ 0:0027K [7]. Since the matter temperature
Tm varies as Tm / a�2, where a is the scale factor of
the Universe, it follows that during an adiabatic evolution
the ratio of the photon temperature T� and of the matter

temperature evolves as T�=Tm / a. Using for the

present day energy density of the Universe the value
�cr ¼ 9:44� 10�30 g=cm3, BEC takes place provided
that the boson mass satisfies the restriction m< 1:87 eV
[6]. On the other hand, we expect that the Universe is*harko@hkucc.hku.hk
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always under critical temperature, if it is at the present
time [7].

Despite the important achievements of the � cold dark
matter (�CDM) model [8], at galactic scales�10 kpc, the
standard cosmological model meets with severe difficulties
in explaining the observed distribution of the invisible
matter around the luminous one. In fact, N-body simula-
tions, performed in this scenario, predict that bound halos
surrounding galaxies must have very characteristic density
profiles, called the Navarro-Frenk-White (NFW) profiles,
which feature a well-pronounced central cusp �NFWðrÞ ¼
�s=ðr=rsÞð1þ r=rsÞ2, where rs is a scale radius and �s is a
characteristic density [9]. On the observational side, high-
resolution rotation curves show, instead, that the actual
distribution of dark matter is much shallower than the
above, and it presents a nearly constant density core [10].
The core-cusp problem of standard CDM models can be
solved by assuming that dark matter is composed of ultra-
light scalar particles, with masses of the order of 10�22 eV,
initially in a cold Bose-Einstein condensate (‘‘fuzzy dark
matter’’) [11]. The wave properties of the dark matter
stabilize gravitational collapse, providing halo cores. On
the other hand, dark matter models with pressure, satisfy-
ing a polytropic equation of state, give an excellent fit to
the observed galactic rotational curves [12]. The polytropic
equation of state can describe extended theories of dark
matter involving self-interaction, nonextensive thermosta-
tistics, or boson condensation (in a classical limit). In such
models, the flat-cored mass profiles widely observed in
disc galaxies are due to innate dark physics, regardless of
any baryonic motion. The fine structure in the observed
inner mass distribution of the MilkyWay can be explained
only if the infalling dark matter particles, from which such
galactic halos formed, had a net overall rotation, causing a
tricusp caustic ring of dark matter [13]. For standard,
noninteracting CDM models, however, one expects the
infall to be irrotational. Bose-Einstein condensate dark
matter can form vortices, thus leading to a net overall
rotation of the galactic halos. Hence Milky-Way observa-
tions may have already detected some specific signatures
of the Bose-Einstein condensate dark matter [14].

The possibility that the galactic dark matter is in the
form of a (cold) Bose-Einstein condensate was considered
in detail in [15]. The density distribution � of the
static gravitationally bounded single component dark
matter Bose-Einstein condensate is given by �ðrÞ ¼
�c sinkr=kr, where �c is the central density of the conden-
sate, �c ¼ �ð0Þ, and k is a constant. At the boundary of the
dark matter distribution �ðRÞ ¼ 0, giving the condition
kR ¼ �, which fixes the radius of the condensate dark

matter halo as R ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2la=Gm

3
p

, where la is the s-wave
scattering length, andm is the particle mass. The total mass
of the condensate dark matter halo M can be obtained as

M ¼ 4�2ðℏ2la=Gm3Þ3=2 �c ¼ 4R3�c=�, giving for the
mean value h�i of the condensate density the expression

h�i ¼ 3�c=�2. The mass of the particle in the condensate
is given by

m ¼
�
�2ℏ2la
GR2

�
1=3

� 6:73� 10�2 � ½la ðfmÞ�1=3½R ðkpcÞ��2=3 eV: (1)

The global cosmological evolution and the evolution of
the density contrast in the Bose-Einstein condensate dark
matter model, in the framework of a post-Newtonian cos-
mological approach, were investigated in [16,17]. The
global cosmological evolution as well as the evolution of
the perturbations of the condensate dark matter shows
significant differences with respect to the pressureless
dark matter model considered in the framework of standard
cosmology. Therefore, the presence of condensate dark
matter could have modified drastically the cosmological
evolution of the early universe, as well as the large scale
structure formation process. The core/cusp problem and
the dark halo properties of the dwarf galaxies were recently
analyzed in [18]. Different properties of the dark matter
condensate have been extensively studied in the physical
literature [19].
It is the purpose of the present paper to investigate the

cosmological Bose-Einstein condensation process of dark
matter. The condensation process is interpreted as a phase
transition taking place some time during the cosmic history
of the Universe. A Bose-Einstein condensation process of
the dark matter in the expanding universe can be described
generically as follows. As the normal bosonic dark matter
cools below the critical temperature Tcr of the condensa-
tion, it becomes energetically favorable to form a conden-
sate, in which all particles are in the same quantum state.
However, the new phase does not appear instantaneously
and the two phases coexist for some time. The transition
ends when all normal dark matter has been converted to a
condensed state. During the transition phase the global
cosmological evolution of the Universe is changed. By
assuming that the phase transition is of the first order, we
study in detail the evolution of the relevant cosmological
parameters (energy density, temperature, scale factor, etc.)
of the normal dark matter and Bose-Einstein condensed
dark matter phase and the condensation process itself.
An important parameter to describe the Bose-Einstein
condensation is the condensate dark matter fraction, whose
time evolution describes the time dynamics of the conver-
sion process. The behavior of this parameter is also ana-
lyzed in detail.
The present paper is organized as follows. In Sec. II, we

briefly outline, for self-completeness and self-consistency,
the basic properties of the normal and Bose-Einstein
condensed dark matter. We also lay down the equations
of state and the relevant physical quantities that are ana-
lyzed in the remaining sections. The cosmological dynam-
ics of the Bose-Einstein condensation of dark matter is
analyzed in Sec. III. We discuss and conclude our results in
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Sec. IV. In the present paper we use the centimeter-gram-
second system of units.

II. COSMOLOGICAL DARKMATTER IN NORMAL
AND BOSE-EINSTEIN CONDENSED STATES

In the present section we outline the relevant
physical processes and quantities of the Bose-Einstein
Condensation, which will be used in the following sections
to study the dynamics of the condensation and some of its
cosmological implications.

We assume that the space-time geometry is the flat
Friedmann-Robertson-Walker metric, given by

ds2 ¼ �c2dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (2)

where a is the scale factor describing the cosmological
expansion. For the matter energy-momentum tensor we
restrict our analysis to the case of the perfect fluid
energy-momentum tensor,

T�� ¼ ð�c2 þ pÞu�u� þ pg��: (3)

The Hubble functionHðaÞ is defined asH ¼ _a=a. As for
the matter content of the Universe, we assume that it
consists of radiation, with energy density �rad and pressure
prad, pressureless (pb ¼ 0) baryonic matter, with energy
density �b, and dark matter, with energy density ��, and

pressure p�, respectively. In the following, we neglect any

possible interaction between these components by assum-
ing that the energy of each component is individually
conserved. Thus, the gravitational field equations, corre-
sponding to the line element (2) become

3
_a2

a2
¼ 8�Gð�b þ �rad þ ��Þ þ�; (4)

2
€a

a
þ _a2

a2
¼ � 8�G

c2
ðpb þ prad þ p�Þ þ�; (5)

_� i þ 3

�
�i þ pi

c2

�
_a

a
¼ 0; i ¼ b; rad; �: (6)

The cosmological evolution of the energy density of
the baryonic matter and radiation are given by �b ¼
�b;0=ða=a0Þ3 and �rad ¼ �rad;0=ða=a0Þ4, respectively,

where �b;0 and �rad;0 are the energy densities of the matter

corresponding to the value a ¼ a0 of the scale factor. For
the dark matter we consider a general density evolution
of the form �� ¼ ��;0=fða=a0Þ, where ��;0 is the value

of the energy density of the dark matter at a ¼ a0, and
fða=a0Þ is an arbitrary function of the scale factor, depend-
ing on the particular dark matter model. By introducing
the critical density at a ¼ a0 as �cr;0 ¼ 3H2

0=8�G, where

H0 ¼ Hða0Þ, and the density parameters �i;0 ¼ �i;0=�cr;0,

i ¼ b; rad; �, we obtain the basic equation describing the
dynamics of the cosmological models as

_a2

a2
¼ H2

0

�
�b;0

ða=a0Þ3
þ �rad;0

ða=a0Þ4
þ ��;0

fða=a0Þ þ��

�
; (7)

where�� is the density parameter of the dark energy. The
density parameters satisfy the relation �b;0 þ�rad;0 þ
��;0 þ�� ¼ 1.

A. Normal dark matter in the early universe

We assume that in the early stages of the evolution of the
Universe dark matter consisted of bosonic particles of mass
m� and temperature T, originating in equilibrium and

decoupling at a temperature TD or chemical potential
� � m�. By assuming that the dark matter forms an

isotropic gas of particles in kinetic equilibrium, the spatial
number density is given by

n ¼ g

h3

Z
4�fðpÞp2dp; (8)

where h is Planck’s constant, g is the number of helicity
states, and

fðpÞ ¼ fexp½ðE��Þ� � 1g�1; (9)

where p is the momentum of the particle and E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�c
4

q
is the energy. A particle species that decou-

ples in the early universe from the remaining plasma
at temperature TD redshifts its momenta according to
pðtÞ ¼ pDaD=aðtÞ, where aðtÞ is the cosmological scale
factor and aD is the value of the scale factor at the decou-
pling. The number density of the particles n evolves as
n� � a�3ðtÞ [20]. The distribution function f at a time t

after the decoupling is related to the value of the distribu-
tion function at the decoupling by fðpÞ ¼ fðpa=aDÞ.
The distribution function keeps an equilibrium shape in
two regimes. In the extreme-relativistic case, when
E � pc, T ¼ TDaD=a, and � ¼ �DaD=a, respectively,
the distribution function is given by fERðpÞ ¼
fexp½ðpc��Þ� � 1g�1. In the nonrelativistic decoupling
case E�� � p2=2m� ��kin, where we have defined

�kin � ��m�c
2, the distribution function is fNRðpÞ ¼

fexp½ðp2=2m� ��kinÞ� � 1g�1. In the nonrelativistic

case �kin and T evolve as �kin ¼ �kin;DðaD=aÞ2 and

T ¼ TD=ðaD=aÞ2, respectively [20].
The kinetic energy-momentum tensor T�

� associated to
the frozen distribution of dark matter is given by

T
�
� ¼ g

h3

Z p�p�

p0
fðpÞd3p: (10)

The energy density � of the system is defined as

� ¼ g

3h3

Z
EfðpÞd3p; (11)

while the pressure of a system with an isotropic distribu-
tion of momenta is given by
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P ¼ g

3h3

Z
pvfðpÞd3p ¼ g

3h3

Z c2p2

E
fðpÞd3p; (12)

where the velocity v is related to the momentum by
v ¼ pc2=E [21]. In the nonrelativistic regime, when
E � m�c

2 and p � m�v�, the density �� of the dark

matter is given by �� ¼ m�n�, while its pressure P� can

be obtained as [20]

P� ¼ g

3h3

Z p2c2

E
fðpÞd3p � 4�

g

3h3

Z p4

m�

dp; (13)

giving

P� ¼ ��c
2�2; (14)

where �2 ¼ h ~v2
�i=3c2, and h ~v2

�i is the average squared

velocity of the particle. � is the one-dimensional velocity
dispersion. The cosmological dynamics of the dark matter
density is described by the equation

_� � þ 3��ð1þ �2Þ _a

a
¼ 0; (15)

with the general solution given by

�� ¼ ��;0

ða=a0Þ3ð1þ�2Þ ; (16)

where ��;0 is the density of the dark matter at a ¼ a0. The

dynamics of the Universe with a normal dark matter com-
ponent is described by the equation

_a2

a2
¼H2

0

�
�b;0

ða=a0Þ3
þ �rad;0

ða=a0Þ4
þ ��;0

ða=a0Þ3ð1þ�2Þ þ��

�
: (17)

In the following we consider that a ¼ a0 is the present
day scale factor. Therefore, for the Hubble constant we
adopt the value H0 ¼ 70 km=s=Mpc ¼ 2:27� 10�18 s�1,
giving for the critical density a value of �cr;0 ¼
9:24� 10�30 g=cm3. The present day dark matter density
parameter is ��;0 � 0:228, �b;0 ¼ 0:045, �rad;0 ¼
8:24� 10�5, and �� ¼ 0:73, respectively [22]. We also
introduce the Hubble time, defined as tH ¼ 1=H0 ¼
4:39� 1017 s. Since dark matter is nonrelativistic, the
global cosmological evolution of the Universe is very little
influenced by the variation of the numerical values of �2.

B. Bose-Einstein condensed dark matter

At very low temperatures, all particles in a dilute Bose
gas condense to the same quantum ground state, forming a
BEC. Particles become correlated with each other when
their wavelengths overlap, that is, the thermal wavelength
	T is greater than the mean interparticles’ distance l. This

happens at a temperature Tcr � 2�� ℏ2�2=3=m5=3kB,
where m is the mass of the particle in the condensate, �
is the density, and kB is Boltzmann’s constant [1]. A
coherent state develops when the particle density is enough
high, or the temperature is sufficiently low. We assume that

the dark matter halos are composed of a strongly coupled
dilute Bose-Einstein condensate at absolute zero. Hence,
almost all the dark matter particles are in the condensate. In
a dilute and cold gas, only binary collisions at low energy
are relevant, and these collisions are characterized by a
single parameter, the s-wave scattering length la, indepen-
dently of the details of the two-body potential. Therefore,
one can replace the interaction potential with an effective
interaction VIð ~r0 � ~rÞ ¼ 	
ð ~r0 � ~rÞ, where the coupling
constant 	 is related to the scattering length la through
	 ¼ 4�ℏ2la=m� [1]. The ground state properties of the

dark matter are described by the mean-field Gross-
Pitaevskii (GP) equation. The GP equation for the dark
matter halos can be derived from the GP energy functional,

E½c � ¼
Z �

ℏ2

2m�

jrc ð ~rÞj2 þU0

2
jc ð~rÞj4

�
d~r

� 1

2
Gm2

�

ZZ jc ð ~rÞj2jc ð~r0Þj2
j~r� ~r0j d~rd~r0; (18)

where c ð~rÞ is the wave function of the condensate,
and U0 ¼ 4�ℏ2la=m� [1]. The first term in the energy

functional is the quantum pressure, the second is the inter-
action energy, and the third is the gravitational potential
energy. The mass density of the condensate dark matter is
defined as

��ð ~rÞ ¼ m�jc ð ~rÞj2 ¼ m��ð~r; tÞ; (19)

and the normalization condition is N ¼ R jc ð ~rÞj2d~r,
where N is the total number of dark matter particles. The
variational procedure 
E½c � ��


R jc ð ~rÞj2d~r ¼ 0 gives
the GP equation as

� ℏ2

2m�

r2c ð ~rÞ þm�Vð ~rÞc ð ~rÞ þU0jc ð~rÞj2c ð ~rÞ

¼ �c ð~rÞ; (20)

where � is the chemical potential, and the gravitational
potential V satisfies the Poisson equation r2V ¼ 4�G�.
In the time-dependent case the generalized Gross-
Pitaevskii equation describing a gravitationally trapped
rotating Bose-Einstein condensate is given by

iℏ
@

@t
c ð~r; tÞ ¼

�
� ℏ2

2m�

r2 þm�Vð~rÞ þU0jc ð ~r; tÞj2
�

� c ð~r; tÞ: (21)

The physical properties of a Bose-Einstein condensate
described by the generalized Gross-Pitaevskii equation
given by Eq. (21) can be understood much more easily
by using the so-called Madelung representation of the
wave function [1–3], which consists in writing c in the
form

c ð~r; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð~r; tÞ

q
exp

�
i

ℏ
Sð ~r; tÞ

�
; (22)
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where the function Sð~r; tÞ has the dimensions of an
action. By substituting the above expression of c ð ~r; tÞ
into Eq. (21), it decouples into a system of two differential
equations for the real functions �� and ~v, given by

@��

@t
þr � ð�� ~vÞ ¼ 0; (23)

��

�
@ ~v

@t
þ ð ~v � rÞ ~v

�
¼ �rP�

�
��

m�

�
� ��r

�
V

m�

�
�rVQ;

(24)

where we have introduced the quantum potential VQ ¼
�ðℏ2=2m�Þr2 ffiffiffiffiffiffi

��
p

=
ffiffiffiffiffiffi
��

p
, and the velocity of the quantum

fluid ~v ¼ rS=m�, respectively. The effective pressure of

the condensate is given by

P�

�
��

m�

�
¼ u0�

2
�; (25)

where

u0 ¼ 2�ℏ2la
m3

�

: (26)

The Bose-Einstein gravitational condensate can be de-
scribed as a gas whose density and pressure are related
by a polytropic equation of state, with index n ¼ 1 [15].
When the number of particles in the gravitationally
bounded Bose-Einstein condensate becomes large enough,
the quantum pressure term makes a significant contribution
only near the boundary of the condensate. Thus, the quan-
tum stress term in the equation of motion of the condensate
can be neglected. This is the Thomas-Fermi approxima-
tion, which has been extensively used for the study of the
Bose-Einstein condensates [1–3]. As the number of parti-
cles in the condensate becomes infinite, the Thomas-Fermi
approximation becomes exact. This approximation also
corresponds to the classical limit of the theory. From its
definition it follows that the velocity field is irrotational,
satisfying the condition r� ~v ¼ 0.

The cosmological evolution of the energy density of the
Bose-Einstein condensate is determined by the equation

_� � þ 3��

�
1þ u0

c2
��

�
_a

a
¼ 0; (27)

with the general solution given by

�� ¼ C�

ða=a0Þ3 � ðu0=c2ÞC�

; (28)

where C� is an arbitrary constant of integration. By using

the condition that �� ¼ ��;0 for a ¼ a0, we obtain the

density of the condensate in the form

�� ¼ c2

u0

�0�

ða=a0Þ3 � �0�

; (29)

where we have denoted

�0� ¼ ��;0u0=c
2

1þ ��;0u0=c
2
¼ �cr;0��;0u0=c

2

1þ �cr;0��;0u0=c
2
: (30)

III. COSMOLOGICAL DYNAMICS OF THE
BOSE-EINSTEIN CONDENSATION

The order of the phase transition of the Bose-Einstein
condensation in an interacting Bose systems, i.e, the
passage from the normal to the condensed phase where
all particles occupy a single-particle state, has been
intensively discussed in the recent physical literature.
According to some results the Bose-Einstein condensation
shows a spontaneous Uð1Þ gauge symmetry breaking, with
the condensate fraction N0=N playing the role of the order
parameter [23]. That would suggest a second-order phase
transition. However, by analyzing the dependence of the
chemical potential � on the temperature T and particle
density � in the framework of several theoretical models,
describing the thermodynamical transition from the normal
to the BEC phase in weakly interacting Bose gases, it was
shown that none of them predicts a second-order phase
transition, as required by symmetry-breaking general
considerations [24]. These results would imply that the
Bose-Einstein condensation represents a first-order phase
transition [24,25]. On the other hand, by definition, first-
order phase transitions in thermodynamics feature a genu-
ine mathematical singularity. Whether finite systems in
nature can literally exhibit such a behavior is a long-
standing controversial question in physics [26]. However,
a rigorous investigation into the thermodynamic instability
of an ideal Bose gas, confined in a cubic box, has shown
that a system consisting of a finite number of particles can
exhibit a discontinuous phase transition that features a
genuine mathematical singularity, provided that not the
volume, but the pressure is kept constant [25]. This result
was obtained without assuming a thermodynamic limit or a
continuous approximation. Hence, it seems currently that
the best possible description of the intrinsic dynamics of
the Bose-Einstein condensation can be obtained within the
framework of a first-order phase transition.

A. Cosmological parameters at the condensation point

Generally, the chemical potential � of a physical
system is a function of the temperature and particle density
n ¼ N=V,� ¼ �ðn; TÞ, where N is the total particle num-
ber, and V is the volume. The extensivity property of the
Helmholtz free energy F ¼ FðN;V; TÞ allows us to either

write F ¼ Vfðn; TÞ or F ¼ N ~fðv; TÞ, with v ¼ V=N ¼
n�1, such that f ¼ n~f. Hence, both forms carry the same
physical information. From the Helmholtz free energy we
can obtain the chemical potential as �ðn; TÞ ¼ ð@f=@nÞT
and the pressure as pðn; TÞ ¼ �ð@~f=@vÞT . Therefore,
� ¼ �ðn; TÞ and p ¼ pðv; TÞ carry the same information.

COSMOLOGICAL DYNAMICS OF DARK MATTER BOSE- . . . PHYSICAL REVIEW D 83, 123515 (2011)

123515-5



The laws of thermodynamics require that both the chemi-
cal potential and the pressure are single valued, that is, for
any given values of n and T, or v and T, there must only
exist a single value of � or p, respectively [24].

Therefore, a first thermodynamic condition that must
be satisfied during the cosmological Bose-Einstein con-
densation process is the continuity of the pressure at the
transition point. With the use of Eqs. (14) and (25) the
continuity of the pressure uniquely fixes the critical tran-
sition density �cr

� from the normal dark matter state to the

Bose-Einstein condensed state as

�cr
� ¼ c2�2

u0
¼ c2�2m3

�

2�ℏ2la
: (31)

The numerical value of the transition density depends
on three unknown parameters, the dark matter particle
mass, the scattering length, and the dark matter particles
velocity dispersion, respectively. By assuming a typical
mass of the dark matter particle of the order of 1 eV
(1 eV ¼ 1:78� 10�33 g), a typical scattering length of
the order of 10�10 cm, and a mean velocity square of the
order of h ~v2i ¼ 81� 1014 cm2=s2, the critical transition
density can be written as

�cr
� ¼ 3:868� 10�21

�
�2

3� 10�6

�
�

�
m�

10�33 g

�
3

�
�

la
10�10 cm

��1
g=cm3: (32)

The critical temperature at the moment of Bose-Einstein
condensate transition is given by [1–3]

Tcr � 2�ℏ2

�ð3=2Þ2=3m5=3
� kB

ð�cr
� Þ2=3

¼ ð2�ℏ2Þ1=3c4=3
�ð3=2Þ2=3kB

ð�2Þ2=3m1=3
�

l2=3a

; (33)

where �ð3=2Þ is the Riemann zeta function, or

Tcr � 6:57� 103 �
�

m�

10�33 g

�
1=3 �

�
�2

3� 10�6

�
2=3

�
�

la
10�10 cm

��2=3
K: (34)

The critical pressure of the dark matter fluid at the
condensation moment can be obtained as

Pcr ¼ 1:04� 10�5

�
�2

3� 10�6

�
2 �

�
m�

10�33 g

�
3

�
�

la
10�10 cm

��1
dyne=cm2: (35)

The critical value acr of the scale factor of the Universe
at the moment of the condensation can be obtained from
Eq. (31) as

acr=a0 ¼
�
��;0u0

c2�2

�
1=3ð1þ�2Þ

¼
�
2�ℏ2la�cr;0��;0

c2�2m3
�

�
1=3ð1þ�2Þ

; (36)

giving for the critical redshift of the transition the
expression

1þ zcr ¼
�
2�ℏ2la�cr;0��;0

c2�2m3
�

��1=3ð1þ�2Þ
: (37)

By using the adopted numerical values of the constants
we obtain for the critical scale factor and for the critical
redshift the values

acr=a0 ¼ 8:17� 10�4 �
�

m�

10�33 g

��ð1þ�2Þ

�
�

�2

3� 10�6

��1=3ð1þ�2Þ �
�

la
10�10 cm

�
1=3ð1þ�2Þ

;

(38)

and

1þ zcr ¼ 1:22� 103 �
�

m�

10�33 g

�ð1þ�2Þ

�
�

�2

3� 10�6

�
1=3ð1þ�2Þ �

�
la

10�10 cm

��1=3ð1þ�2Þ
;

(39)

respectively.

B. Cosmological evolution during the Bose-Einstein
condensation phase

During a first-order phase transition, the temperature
and the pressure are constants, T ¼ Tcr and P ¼ Pcr,
respectively. The entropy S ¼ sa3 and the enthalpy W ¼
ð�þ pÞa3 are also conserved quantities. After the begin-
ning of the phase transition the density of the dark matter
��ðtÞ decreases from �cr

� ðTcrÞ � �nor
� (when all the dark

matter is in a normal, noncondensed form) to ��ðTcrÞ �
�BEC
� , corresponding to the full conversion of dark matter

into a condensed state. It is convenient to replace ��ðtÞ by
hðtÞ, the volume fraction of matter in the Bose-Einstein
condensed phase, which is defined as

hðtÞ ¼ ��ðtÞ � �nor
�

�BEC
� � �nor

�

: (40)

Therefore, the evolution of the dark matter energy density
during the transition process is given by

��ðtÞ ¼ �BEC
� hðtÞ þ �nor

� ½1� hðtÞ� ¼ �nor
� ½1þ n�hðtÞ�;

(41)

where we have denoted

T. HARKO PHYSICAL REVIEW D 83, 123515 (2011)

123515-6



n� ¼ �BEC
� � �nor

�

�nor
�

: (42)

At the beginning of the Bose-Einstein condensation pro-
cess hðtcrÞ ¼ 0, where tcr is the time corresponding to the
beginning of the phase transition, and ��ðtcrÞ � �nor

� . At

the end of the condensation hðtBECÞ ¼ 1, where tBEC is the
time at which the phase transition ends, corresponding to
��ðtBECÞ � �BEC

� . For t > tBEC the Universe enters in the

Bose-Einstein condensed dark matter phase.
From Eq. (6) we obtain

_a

a
¼ � 1

3

ð�BEC
� � �nor

� Þ _h
�nor
� þ Pcr=c

2 þ ð�BEC
� � �nor

� Þh

¼ � 1

3

r _h

1þ rh
; (43)

where we have denoted

r ¼ �BEC
� � �nor

�

�nor
� þ Pcr=c

2
¼ n�

1þ Pcr=�
nor
� c2

: (44)

Since �BEC
� < �nor

� , generally r < 0, r 2 ð�1; 0Þ, and

n� < 0, respectively. Equation (43) immediately leads to

the expression of the scale factor of the Universe during the
Bose-Einstein condensation phase as

aðtÞ ¼ acr½1þ rhðtÞ��1=3; t 2 ðtcr; tBECÞ; (45)

where we have used the initial condition hðtcrÞ ¼ 0 and we
have denoted acr ¼ aðtcrÞ. At the end of the phase transi-
tion the scale factor of the Universe has the value

aBEC ¼ aðtBECÞ ¼ acrð1þ rÞ�1=3: (46)

The Bose-Einstein condensation modifies the overall
expansion rate of the Universe. Consequently, during the
phase transition, the pressureless baryonic matter and the
radiation density evolve according to

�b ¼ �b;0

ðacr=a0Þ3
½1þ rhðtÞ�; t 2 ðtcr; tBECÞ; (47)

and

�rad ¼ �rad;0

ðacr=a0Þ4
½1þ rhðtÞ�4=3; t 2 ðtcr; tBECÞ; (48)

respectively. The evolution of the fraction of the condensed
matter hðtÞ during the Bose-Einstein condensation process
is described by the equation

dh

d�
¼ �3

�
1

r
þ h

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b;0

ðacr=a0Þ3
ð1þ rhÞ þ �rad;0

ðacr=a0Þ4
ð1þ rhÞ4=3 þ��;norð1þ n�hÞ þ��

s
; (49)

where we have introduced a dimensionless time variable
� ¼ H0t, and we have denoted��;nor ¼ �nor

� =�cr;0, respec-
tively. Since Pcr=�

nor
� c2 ¼ �2 	 1, from Eq. (44) it fol-

lows that r � n�, an approximation we adopt in the
following. If the energy density contribution of the radia-
tion to the total energy density of the Universe can be
neglected, Eq. (49) can be integrated exactly to give

hðtÞ ¼ �2
�

r�tr

�
�
1þ�cond � exp½�ð3��=tHÞðt� tcrÞ�
1��cond � exp½�ð3��=tHÞðt� tcrÞ�

�
2

��� þ�tr

r�tr

; (50)

where we have denoted

�tr ¼ �b;0

ðacr=a0Þ3
þ��;nor; (51)

and

�cond ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr þ��

p ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr þ��

p þ��

; (52)

respectively.
The time interval necessary to convert the entire existing

normal dark matter to the Bose-Einstein condensed phased
is given by

�tcond

¼ tBEC � tcr

¼ 1

3��

ln
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tr þ��

p ����½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�trð1þ rÞ þ��

p þ���
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tr þ��

p þ���½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�trð1þ rÞ þ��

p ����
� tH: (53)

If the dark energy density can also be neglected, the
volume fraction of matter hðtÞ in the Bose-Einstein con-
densed phase evolves as

hðtÞ ¼ 1

r

�
1þ 2

3
H0

ffiffiffiffiffiffiffi
�tr

p ðt� tcrÞ
��2 � 1

r
: (54)

In this approximation the conversion of the entire dark
matter of the Uuniverse to the BEC phase is given by

�tcond ¼ 2

3
½ð1þ rÞ�1=2 � 1� tHffiffiffiffiffiffiffi

�tr

p : (55)

By assuming the standard values la ¼ 10�10 cm,
m ¼ 1 eV, and �2 ¼ 3� 10�6 we obtain �tr ¼
5:02� 108, giving for the total condensation time an
approximate value of

�tcond ¼ 1:31� ½ð1þ rÞ�1=2 � 1� � 1013 s: (56)
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The time evolution of hðtÞ, as given by Eq. (49) is
represented, for several values of r, in Fig. 1.

C. The post-condensation phase

At t ¼ tBEC and aBEC ¼ acrð1þ rÞ�1=3, all the dark
matter in the Universe has been converted to a Bose-
Einstein condensate phase. At this moment the cosmologi-
cal density of the dark matter is given by

�BEC
� ¼ c2

u0

�0�ð1þ rÞ
ðacr=a0Þ3 � �0�ð1þ rÞ ; (57)

where the constant �0� can be represented as

�0� ¼ 1:63� 10�15 � ðla=10�10 cmÞðm=10�33 gÞ�3

1þ 1:63� 10�15 � ðla=10�10 cmÞðm=10�33 gÞ�3
:

(58)

The condition of the positivity of the density imposes

the constraint ðacr=a0Þ> �1=3
0� ð1þ rÞ1=3 on the model

parameters.
The equation determining the time evolution of the scale

factor of the dark matter in the Bose-Einstein condensate
phase is given by

dða=a0Þ
dt

¼ H0

ffiffiffiffiffiffiffiffiffiffi
�BE

p a=a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=a0Þ3 � �0�

q ; (59)

where we have denoted

�BE ¼ ��;0

1þ ��;0u0=c
2
; (60)

and can be integrated exactly to give

ffiffiffiffiffiffiffiffiffiffi
�BE

p
H0ðt� CÞ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a

a0

�
3 � �0�

s

� 2

3

ffiffiffiffiffiffiffiffi
�0�

p � arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=a0Þ3 � �0�

�0�

vuut �
;

(61)

where C is an arbitrary constant of integration, which can
be determined from the condition a ¼ aBEC at t ¼ tBEC.
Thus, we obtain

C ¼ tBEC � 2

3
ffiffiffiffiffiffiffiffiffiffi
�BE

p
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aBEC
a0

�
3 þ �0�

s

� 2

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�

�BEH
2
0

s
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaBEC=a0Þ3 � �0�

�0�

vuut �
: (62)

In the case of a universe filled with dark energy, radia-
tion, baryonic matter with negligible pressure, and Bose-
Einstein condensed dark matter, respectively, the time
evolution of the scale factor is given by the differential
equation

1

ða=a0Þ
dða=a0Þ

dt

¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b;0

ða=a0Þ3
þ �rad;0

ða=a0Þ4
þ �BE

ða=a0Þ3 � �0�

þ��

s
;

t 
 tBEC; (63)

which must be integrated with the initial condition
aðtBECÞ ¼ að0Þ ¼ aBEC. The time evolutions of the scale
factors for universes containing BEC dark matter are rep-
resented, for different values of the BEC parameter �0�, in

Fig. 2.
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h
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FIG. 1 (color online). Time evolution of the condensed dark
matter fraction hðtÞ for different values of r: r ¼ �0:10 (solid
curve), r ¼ �0:15 (dotted curve), r ¼ �0:20 (dashed curve),
r ¼ �0:25 (long dashed curve), and r ¼ �0:3 (ultra-long
dashed curve), respectively.
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FIG. 2 (color online). Time evolution (in a logarithmic scale)
of the scale factor of the Universe in the post–Bose-Einstein
condensation phase, for aBEC ¼ að0Þ ¼ 8:1� 10�4 (z � 1200),
and for different values of �0�: �0� ¼ 10�11 (solid curve),

�0� ¼ 5� 10�11 (dotted curve), �0� ¼ 10�10 (dashed curve),

and �0� ¼ 5� 10�10 (long dashed curve), respectively.
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The presence of the condensate dark matter changes the
global cosmological dynamics of the Universe in the post-
condensation phase, and the magnitude of the changes
increases with the increase of the BEC parameter �0�.

IV. DISCUSSIONS AND FINAL REMARKS

The Bose-Einstein condensation process has been ex-
tensively studied (especially for the case of scalar fields) in
the physical literature. However, many important questions
have yet to be answered. For example, one would like to
know more precisely if the condensation process of the
dark matter takes place (almost) instantaneously, or if it
evolves during a long time interval. Many details of the
thermodynamics of the Bose-Einstein condensation are not
yet conclusively understood. Even the order of the phase
transition (crossover?) is still a matter of debate. And, of
course, from a cosmological point of view, one would like
to know more precisely in what cosmological epoch the
condensation did occur, what were the values of the cos-
mological parameters at that time, how long the transition
lasted, and what were its implications on the global evo-
lution of the Universe. In the present paper we have tried to
give some preliminary and qualitative answers to these
questions.

Once the Bose-Einstein condensation occurs, dark mat-
ter becomes a mixture of two phases, the normal and the
condensed phase, respectively. From a general thermody-
namic point of view the coexistence of these two phases
requires the continuity of the pressure of the two phases at
the beginning of the condensation (phase transition). This
thermodynamical condition uniquely fixes the value of the
dark matter density at the condensation moment, as well as
the values of all the other thermodynamical parameters
(temperature and pressure). The concrete numerical values
of the condensation parameters depend on the mean square
velocity of the normal dark matter �2, and of the scattering
length la and mass m� of the dark matter particle. Since

the values of �2, la, and m� are not known for the dark

matter particles, or are very uncertain (like m� and �, for

example), it is difficult to predict the exact cosmological
moment of the Bose-Einstein condensation and the corre-
sponding values of the cosmological parameters. However,
by adopting some ‘‘standard’’ numerical values, one can
obtain a qualitative picture of the transition. Thus, the mass
of the dark matter particle was assumed to be of the order
of 1 eV [7,27], while the mean velocity of the nonrelativ-
istic dark matter particles was taken to be of the order of
900 km=s, which is somewhat larger than the values in-
ferred from the study of the galactic dark matter halos
[20,27]. The numerical value of the scattering length la
for dark matter particles is very uncertain. As can be
inferred from present experiments in ultracold gases,
the scattering length is a quantity that determines the
thermodynamic state of the gas. Terrestrial experiments
on Bose-Einstein atomic condensates give a value of

10�7 cm [1–3]. For simplicity we have adopted for this
parameter a value of la ¼ 10�10 cm.
The general analysis of the condensation process shows

a distinct three-phase cosmological history of the Universe.
In the first phase, the Universe evolved according to the
standard � cold dark matter (�CDM) model. The con-
densation process of the dark matter did start when the
temperature of the bosonic gas did fall below the critical
value, and the equality of the pressure allowed the two
phases to coexist simultaneously. With the adopted nu-
merical values of the dark matter parameters the conden-
sation began at a redshift of around z ¼ 1200. The
condensation process took place gradually, the normal
and condensed phases coexisting for around 106 yr. To
describe this transition period we have introduced the
fraction hðtÞ of the condensed dark matter, and studied its
time evolution. After the transition phase the Universe
entered in the condensed dark matter phase. Depending
on the moment of its occurrence in the cosmological
history, the presence of the condensate dark matter and
of the Bose-Einstein phase transition could have modified
drastically the cosmological evolution of the early uni-
verse, as well as the large scale structure formation pro-
cess. Of course, even small changes in the numerical values
of the parameter set ð�2; la; m�Þ could lead to significant

changes in the values of the critical redshift or duration of
the condensation phase.
Immediately after the phase transition the presence

of a Bose-Einstein condensate may drastically change the
cosmological dynamics of the Universe. As one can see
from Eq. (63), if for some time interval ða=a0Þ is very close
to �1=3

0� , the cosmological dynamic of the Universe is

determined by the condensed dark matter. In this case
the condensed dark matter energy density �BEC

� ¼
�BE=½ða=a0Þ3 � �0�� is very large, and dominates all the

other cosmological energy terms. When this condition is
fulfilled, the expansion of the Universe enters in an accel-
erated phase. For the time interval for which �BE

� can be

approximated as a constant, �BE
� � constant, the expansion

of the Universe can be described as a de Sitter one.
The presence of an accelerating expansion period
after the phase transition can also be seen from the
analysis of the deceleration parameter q ¼ �a €a= _a2 ¼
dð1=HÞ=dt� 1 of the Universe. For ða=a0Þ ! �1=3

0� , the

scale factor of the Universe with Bose-Einstein condensate
dark matter, given by Eq. (62), can be approximated as

a

a0
�

�
9

4
�BEH

2
0ðt� CÞ2 þ �0�

�
1=3

: (64)

During this phase the deceleration parameter q is given by

q � 1

2
� 2�0�

3�BEH
2
0ðt� CÞ2 : (65)

During the time interval given by t < Cþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4=3Þ�0�=�BEH

2
0

q
the deceleration parameter satisfies
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the condition q < 0. However, in the limit of large times,
the expansion of the Universe decelerates, with the decel-
eration parameter given by q � 1=2.

Therefore, the Bose-Einstein condensation of the dark
matter may also provide the explanation for the observed
recent acceleration of the Universe, which could be just a
transient phenomenon related to the recent entering of the
Universe in the post–Bose-Einstein condensation phase.
Hence BEC could also provide an alternative, physically
realistic solution to the dark energy problem (for reviews of
the dark energy problem see [8]). However, such a model
would require that the cosmological BEC phase transition
took place very recently, at z � 1–2, on a global cosmic
scale. Currently there is no astrophysical evidence for such
a scenario.

A central problem in the theory of the Bose-Einstein
condensation is the nature of the dark matter particle, as
well as its physical properties. The core/cusp problem can
be solved if the dark matter is composed of ultralight scalar
particles with mass m ¼ 10�22 eV, initially in a (cold)
Bose-Einstein condensate [11]. The wave properties of
the dark matter stabilize gravitational collapse, providing
halo cores and sharply suppressing small-scale linear
power. Ultralight dark matter particles with masses
of the order of m� 10�23 eV and with Compton
wavelengths of the order of galactic scales have tem-
peratures of about 0.9 K, a temperature substantially
lower than the temperature of CMB neutrinos. Therefore,
such a mass would guarantee that big bang nucleosynthesis
remains unaffected. In addition, the temperature is
consistent with WMAP observations without fine-tuning
[28]. It was shown that axions with mass m �
6� 10�6 eV 1012 GeV=f also form a BEC, where
f * 109 GeV [14]. This would imply an axion mass of
the order of m � 10�3 eV. The axions were postulated
shortly after the standard model of elementary particles
was established to explain why the strong interactions

conserve the discrete symmetries P and CP (for more
details see [14] and references therein). A cosmological
bound on the mass of the condensate particle can be
obtained as m< 2:696ðgd=gÞðTd=TcrÞ3 eV [27], where g
is the number of internal degrees of freedom of the particle
before decoupling, gd is the number of internal degrees of
freedom of the particle at the decoupling, and Td is the
decoupling temperature. In the Bose condensed case
Td=Tc < 1, and it follows that the BEC particle should be
light, unless it decouples very early on, at high temperature
and with a large gd. Therefore, depending on the relation
between the critical and the decoupling temperatures, in
order for a BEC light relic to act as cold dark matter, the
decoupling scale must be higher than the electroweak scale
[27]. On the other hand, from Eq. (1) for la � 1 fm and
R � 10 kpc, it follows that the typical mass of the
condensate particle is of the order of m � 14 meV. For
la � 106 fm, corresponding to the values of a observed in
terrestrial laboratory experiments, m � 1:44 eV. These
values are consistent with the limit m< 1:87 eV obtained
for the mass of the condensate particle from cosmological
considerations [6].
A better understanding of the numerical values of the

Bose-Einstein condensation parameters (scattering length
and dark matter particle mass), would be very helpful
in obtaining accurate cosmological conclusions in the
framework of the BEC model. Such an advance may also
provide a powerful method for observationally testing on a
cosmological scale the theoretical predictions of the Bose-
Einstein condensation model and the possible existence of
the condensed dark matter.
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