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Testing the Predictive Ability of Technical Analysis Using
A New Stepwise Test without Data Snooping Bias

Abstract

In the finance literature, statistical inferences for large-scale testing problems usually
suffer from data snooping bias. In this paper we extend the “superior predictive ability”
(SPA) test of Hansen (2005, JBES) to a stepwise SPA test that can identify predictive
models without potential data snooping bias. It is shown analytically and by simulations
that the stepwise SPA test is more powerful than the stepwise Reality Check test of
Romano and Wolf (2005, Econometrica). We then apply the proposed test to examine
the predictive ability of technical trading rules based on the data of growth and emerging
market indices and their exchange traded funds (ETFs). It is found that technical trading
rules have significant predictive power for these markets, yet such evidence weakens after

the ETFs are introduced.
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1 Introduction

Technical analysis has been widely applied in stock markets since W. P. Hamilton wrote
a series of articles in The Wall Street Journal in 1902. Tts predictive power (or profitabil-
ity), however, remains a long-debated issue in both industry and academia. A recent
article in The Wall Street Journal observes: “Some brokerage firms have eliminated
their technical research departments altogether. Still, when the markets begin to sag, in-
vestors rediscover technical analysis” (Browning, July 30, 2007). Indeed, the same article
reports that some technical analysts did foresee and warn their clients right before the
stock market plunge on July 23, 2007. There are also numerous empirical results in the
literature that support technical analysis, such as Sweeney (1988), Blume, Easley, and
O’Hara (1994), Brown, Goetzmann, and Kumar (1998), Gencay (1998), Lo, Mamaysky,
and Wang (2000), and Savin, Weller, and Zvingelis (2007). Such evidences, however,
may be criticized for their data snooping bias; see, e.g., Lo and MacKinlay (1990) and
Brock, Lakonishok, and LeBaron (1992).

Data snooping is common in the finance and economics literature. In practice, only
a few financial data sets are available for empirical examination. Data snooping arises
when researchers rely on the same data set to test the significance of different models
(technical trading rules) individually. As these individual statistics are generated from
the same data set and hence related to each other, it is difficult to construct a proper joint
test, especially when the number of models (rules) being tested is large. White (2000)
proposes a large-scale joint testing method for data snooping, also known as Reality
Check (RC), which takes into account the dependence of individual statistics. Sullivan,
Timmermann, and White (1999) apply the RC test and find that technical trading rules

lose their predictive power for major U.S. stock indices after the mid 80’s.

White’s RC test suffers from two drawbacks. First, Hansen (2005) points out that the
RC test is conservative because its null distribution is obtained under the least favorable
configuration, i.e., the configuration that is least favorable to the alternative. In fact,
the RC test may lose power dramatically when many poor models are included in the
same test. To improve on the power property of the RC test, Hansen (2005) proposes
the “superior predictive ability” (SPA) test that avoids the least favorable configuration.
Empirical studies, such as Hansen and Lunde (2005) and Hsu and Kuan (2005), also show



that the SPA test is more powerful than the RC test. Second, the RC test checks whether
there is any significant model but does not identify all such models. Note that Hansen’s
SPA test shares the same limitation. Romano and Wolf (2005) introduce a RC-based
stepwise test, henceforth Step-RC test, that is capable of identifying as many significant
models as possible. Nonetheless, Romano and Wolf’s Step-RC test is conservative because
its stepwise critical values are still determined by the least favorable configuration, as in

the original RC test.

In this paper, the SPA test is further extended to a stepwise SPA (Step-SPA) test
that can identify predictive models in large-scale, multiple testing problems without data
snooping bias. This is analogous to the extension of White’s RC test to Romano and
Wolf’s Step-RC test. It is shown that the Step-SPA test is consistent, in the sense that it
can identify the violated null hypotheses (models or rules) with probability approaching
one, and its familywise error (FWE) rate can be asymptotically controlled at any pre-
specified level, where FWE rate is defined as the probability of rejecting at least one
correct null hypothesis. This paper makes additional contribution by showing analytically
and by simulations that the Step-SPA test is more powerful than the Step-RC test, under
any power criterion defined in Romano and Wolf (2005).

In our empirical study, the proposed Step-SPA test is applied to evaluate the pre-
dictive power of 9,120 moving average rules and 7,260 filter rules in several growth and
emerging markets. Unlike many existing studies on technical analysis, we examine not
only market indices but also their corresponding Exchange Traded Funds (ETFs). Con-
sidering ETFs is practically relevant because ETFs have been important investment
vehicles since their inception in late 90’s. Moreover, due to the tradability and low
transaction costs, ETF's help to increase market liquidity and hence may improve market
efficiency (e.g. Hegde and McDermott, 2004). Our empirical study thus enables us to
assess whether the predictive power of technical rules, if any, is affected after ETF's are

introduced.

Our empirical results provide strong evidence that technical rules have significant
predictive ability in pre-ETF periods, yet such evidence weakens in post-ETF periods.
In particular, we find many technical rules with significant predictive power prior to the

inception of ETFs in U.S. growth markets but none when the ETFs that track these



market indices become available. For emerging markets, we find technical rules have
predictive ability for 4 (out of 6) index returns but for only 2 ETF returns. For these
two predictable ETFs, far fewer rules with significant predictive power can be identified
by the proposed stepwise test. The high break-even transaction costs associated with
the top rules in those predictable ETFs further suggest that some technical rules may
be exploited to make profit in certain emerging markets. Our findings therefore indicate
a negative impact of the inception of ETFs on the predictive ability of technical trading
rules. This is compatible with the intuition that ETFs allow arbitrageurs to trade away

most potential profits in young markets.

To summarize, this paper makes the following contributions to the literature. First,
we develop a new test for empirical testing problems in finance that require correction
of data snooping bias. Second, we provide new evidence of technical predictability (and
potential profitability) of growth and emerging stock markets based on recently available
data of ETFs. Last, but not least, this study supports the adaptive market efficiency hy-
pothesis of Lo (2004). Using technical predictability as a barometer of market efficiency,

our results suggest that the existence of ETFs effectively improves market efficiency.!

This paper proceeds as follows. We summarize the existing tests and introduce the
Step-SPA test in Section 2. The simulation results for the Step-SPA test are reported in
Section 3. The data and performance measures are discussed in Section 4. The empirical
results are presented in Section 5. Section 6 concludes the paper. The proofs and some

details of the technical rules considered in the paper are deferred to Appendices.

2 Tests without Data Snooping Bias

Given m models for some variable, let d, , (k=1,2,...,mand t =1,2,...,n) denote their
performance measures (relative to a benchmark model) over time. Suppose that for each
k, I8(dy, ;) = py, for all ¢, and for each ¢, dj , may be dependent across k. We wish to
determine whether these models can outperform the benchmark and would like to test

the following inequality constraints:

HY:p, <0, k=1,..,m. (1)

!Neely, Weller, and Ulrich (2007) also suggest that the weakening technical predictability in foreign

exchange markets can be explained by the adaptive market efficiency hypothesis.



For example, we may test if there is any technical trading rule that can generate positive
return for an asset. Let 7, be the return of this asset at time ¢ and d;,_; be the trading
signal generated by the k-th trading rule at time t—1, which takes the values of 1, 0, or —1,
corresponding to a long position, no position, and a short position, respectively. Then,
d+ = O 417 is the realized return of the k-th trading rule, and (1) is the hypothesis
that no trading rule can generate positive mean return. Note that d; ;, depend on each

other because they are based on the same return r,.

Following Hansen (2005), we impose the following condition on d;, = (dy 4, ..., d,, )’

which allows d, to exhibit weak dependence over time.

Assumption 2.1 {d,} is strictly stationary and a-mixing of size —(2+4n)(r+n)/(r—2),
for some r > 2 and 7 > 0, where E|d,|"*" < oo with | - | the Euclidean norm, and
var(dy ;) > 0 for all k.

Under this condition, the data obey a central limit theorem:

Va(d - p) 2 N(0,9), (2)

where d = n7' >} d,, p = [E(d,), Q = lim,,_,, var(y/n(d — p)), and 2, stands for
convergence in distribution. Moreover, Assumption 2.1 ensures the validity of the sta-
tionary bootstrapping procedure and the consistency of the covariance matrix estimator

of Politis and Romano (1994).

2.1 Existing Tests

Data snooping arises when the inference for (1) is drawn from the test of an individual
hypothesis H(’f. One may circumvent the problem by controlling the significance level of
each individual test based on the Bonferroni inequality. This approach is, however, not
practically useful when the number of hypotheses, m, is large. In many applications,
m is typically very large; for example, Sullivan et al. (1999) evaluate 7,846 technical
trading rules, and Hsu and Kuan (2005) study a total of 39,832 simple technical rules

and complex trading strategies.

Alternatively, one may conduct a joint test of (1) with a properly controlled signifi-

cance level. A leading example is the RC test of White (2000) with the statistic:

RC, = max +/ndy,

" k=1,....m



where d}, is the k-th element of d. Given that (1) is a collection of composite hypothesis,
White (2000) chooses the least favorable configuration (LFC), i.e., p = 0, to obtain the
null distribution. It follows from (2) that v/nd 2N (0,€) under the LFC. The limiting
distribution of RC,, is thus max{N (0, 2)} which may be approximated via a (stationary)
bootstrap procedure. The null hypothesis (1) would be rejected when the bootstrapped
p-value is smaller than a pre-specified significance level or, equivalently, when the test

statistic RC,, is greater than the bootstrapped critical value.

The LFC of the RC test is convenient but also renders this test relatively conservative.
Hansen (2005) shows that under the null, when there are some p; < 0 and at least one
u; = 0, RC, 2, max{N(0,9Q,)}, where €, is a sub-matrix of Q with the j-th row
and j-th column of 2 deleted when p; < 0. That is, the limiting distribution depends
only on the models with a zero mean but not on those poor models (i.e., the models
with a negative mean). It is also conceivable that including very poor models may
artificially increase the empirical p-value of the RC test. This motivates the SPA test of
Hansen (2005) with the statistic:

SPA,, = max (k:nllaxm Vnd,, O),

which is virtually the same as the RC test.

A novel feature of the SPA test is that it avoids the LFC by re-centering the null
distribution, as described below. Let Q denote a consistent estimator for € with the
(4,7)-th element @;;. Also let 6% = Qyy, and A,k = —0v2loglogn. We define f1 as the

vector with the k-th element:

fi, = di1(vnd, < A, ),

where 1(B) denotes the indicator function of the event B. It can be seen that fi;, = 0
almost surely when p, = 0. Moreover, when p, < 0, \/nd), < A, With probability
approaching one, so that ji, converges in probability to u;. Noting that \/nd = /n(d —
@) + /np, Hansen (2005) suggests to add /nft to the bootstrapped distribution of
V/n(d—p). Re-centering the bootstrapped distribution thus yields a better approximation
to the null distribution of SPA,,: max{N(0,),0}. The SPA test is a more powerful test
than the RC test because the bootstrapped SPA p-value is smaller than the corresponding
RC p-value.



Another drawback of the RC test is that it does not identify all models that signif-
icantly deviate from the null hypothesis. Rejecting the null hypothesis by the RC test
only suggests that there exists at least one model with p;, > 0. Basing on the RC test,
Romano and Wolf (2005) propose a stepwise procedure that can identify as many models
with p; > 0 as possible, while asymptotically controlling the FWE rate, the probability
of rejecting at least one of the correct hypotheses. This test, also known as the Step-RC
test, is practically more useful than the RC test. For example, a fund-of-fund manager
ought to be more interested in finding out the funds that can beat the benchmark, rather

than just knowing the best performed fund.

To implement the stepwise procedure, we re-arrange d;, in a descending order. A top
model k& would be rejected if /nd,, is greater than the bootstrapped critical value, where
bootstrapping is computed as in the RC test. If none of the null hypotheses is rejected,
the process stops; otherwise, we remove d, of the rejected models from the data and
bootstrap the critical value again using the remaining data. In the new sample, a top
model i would be rejected if \/nd; are greater than the newly bootstrapped critical value.
The procedure continues until no more model can be rejected. Note that Hansen (2005)
and Romano and Wolf (2005) also suggest that using studentized statistics, /ndy /6y,
would render the test more powerful. To ease the expression, our discussion below is still

based on non-studentized statistics.

2.2 The Stepwise SPA Test

Analogous to the extension from the RC test to the Step-RC test, it is natural to extend
the SPA test to the Step-SPA test. The stepwise procedure enables us to identify signif-
icant models, as in the Step-RC test, yet it ought to be more powerful because its null
distribution does not depend on the LFC. The proposed Step-SPA test is based on the
following statistics: \/ﬁczl, cen \/ﬁczm, and a stepwise procedure analogous to that of the
Step-RC test.

For the Step-SPA test, we adopt the stationary bootstrap of Politis and Romano (1994)
which is computed as follows. Let d;(b) = d,, ,, t = 1,...,n, be the b-th re-sample of

d,, where the indices ny, q,...,n;, , consist of blocks of {1,...,n} with random lengths de-

termined by the realization of a geometric distribution with the parameter @ € [0, 1).



First, ny,; is randomly chosen from {1,...,n} with an equal probability assigned to each
number. Second, for any ¢ > 1, n,, = n;,,_4 + 1 with probability Q;% otherwise, Nyt 18
chosen randomly from {1,...,n}. A re-sample is done when n observations are drawn;
let d"(b) = S°1, d;(b)/n denote the sample average of this re-sample. Repeating this
procedure B times yields an empirical distribution of d* with B realizations. Given the

pre-specified level o, the bootstrapped SPA critical value is determined as
Gao = max(da,, 0), (3)

with §,, = inf{q | P*[y/nmax,_, ., (df —dj, + fip) < q] > 1 —ap}, the (1 — ag)-th
quantile of the re-centered empirical distribution, and P* is the bootstrapped probability

measure.

The Step-SPA test with the pre-specified level o then proceeds as follows.

1. Re-arrange dj, in a descending order.

2. Reject the top model k if \/nd,, is greater than ¢, (all), the critical value boot-
strapped as in (3) using the complete sample. If no model can be rejected, the

procedure stops; otherwise, go to next step.

3. Remove Jk of the rejected models from the data. Reject the top model i in the
sub-sample of remaining observations if \/nd; is greater than G4, (sub), the critical
value bootstrapped as in (3) from the sub-sample. If no model can be rejected, the

procedure stops; otherwise, go to next step.

4. Repeat the third step till no model can be rejected.

When the critical values in the procedure above are bootstrapped as in the RC test, we
obtain a version of Step-RC test, which is in the spirit of Romano and Wolf (2005) but

implemented differently.?

2If np+—1 = n, we use the wrap-up procedure and set np ¢ = 1.
3The original Step-RC test of Romano and Wolf (2005) differs from our procedure in the following

ways. First, they use circular block bootstrap, rather than stationary bootstrap. Second, they rely on a
data-dependent algorithm to determine the block size of bootstrap, rather than using an ex ante fixed
value. Third, they use bootstrapped standard errors, rather than heteroskedasticity and autocorrelation
consistent (HAC) estimators based on sample data; see also footnote 5. These differences may affect the

finite sample performance of the Step-RC test.



The results below show that the Step-SPA test is consistent while asymptotically
controlling the FWE rate at a pre-specified level, analogous to Theorem 4.1 of Romano

and Wolf (2005). All proofs of theorems are collected in Appendix A.
Theorem 2.2 The following results hold under Assumption 2.1 and oy < 1/2.

1. The hypothesis H(]f with py, > 0 will be rejected by the Step-SPA test with probability

approaching 1 when n tends to infinity.

2. Given the pre-specified level oy, the FWE rate of the Step-SPA test is oy when n
tends to infinity if and only if there is at least one p;, = 0.

Note that the FWE rate of the Step-RC test is less than or equal to ¢y, in contrast with
the second result above. This is due to the fact that the RC test relies on the LFC and
hence yields a conservative test. If there is no u; = 0, it can also be shown that the

FWE rate is zero asymptotically,? so that no null hypothesis will be incorrectly rejected.
As far as power is concerned, our key result below shows that the Step-SPA test is

superior than the Step-RC test.

Theorem 2.3 Given Assumption 2.1, the Step-SPA test is more powerful than the Step-
RC test under the notions of power defined in Romano and Wolf (2005).

3 Simulations

In this section, we evaluate the finite-sample performance of the Step-SPA and Step-RC
tests using Monte Carlo simulations. We are mainly concerned with the FWE rate and
the rejection frequency of the models with significant returns. This is similar to the

examination of the empirical level and power of a test.

We first generate m return series:

xi,t:Ci+7xi,t—1+€i,ta i:1,...,m, tzl,,T

“When p, < 0, v/ndy would diverge to negative infinity in probability. Given that the critical value is
always non-negative, Hy would be rejected with probability approaching zero, which implies that FWE

rate is zero in the limit.



where ¢; ; are i.i.d. noises distributed as N (0,02), ¢; and v are parameters such that c;
is a constant a for ¢ = 1,...,my, ¢;, = 0 for i = my +1,...,m; + my, and ¢; = —a
for i = my +my+1,...,m. We first set a = 0.0008 (8 basis points), v = 0.01, and
o = 0.005. Thus, each sample contains m; “outperforming” returns that have a positive
mean 0.0008/0.99 = 0.00081, m, “neutral” returns with a zero mean, and m —m; — my
“poor” returns with a negative mean —0.00081. The numbers of return series are m = 90,
900 and 9000, the sample size is n = 1000, and the number of simulation replications is
R = 500. For each m, there are three cases: (1) m; = my = m/3 so that there are 3 equal
groups of returns, (2) m; = my = m/9 so that there are unequal groups of returns with
a much larger group of “poor” returns, and (3) my = m so that there are only neutral
returns. In the stationary bootstrap, we set the number of bootstraps B = 500 and the
parameter of the geometric distribution Q = 0.9. To estimate the covariance matrix €},

we use the consistent estimator of Politis and Romano (1994) in the simulations and

subsequent empirical study.’

The simulation results based on non-studentized and studentized statistics are sum-
marized in Tables 1 and 2, respectively. Here, d;, = T, the sample average of the k-th
return series. For Table 1, the k-th return would be rejected if \/nZ;, is greater than the
5% bootstrapped critical value. For Table 2, we base the test decisions on studentized
statistics \/nZ; /o, where 64, is as discussed in Section 2.1 and computed from the sam-
ple data.b In each replication, the rejection rate of these tests is the number of correctly
rejected returns divided by m;, the total number of outperforming returns. Averaging

these rejection rates over R, the number of replications, yields the average rejection (AR)

®Following Hansen (2005), the following estimator due to Politis and Romano (1994) is used:

n—1

Q=000+ Zﬁ(j7n)[ﬁj + Qz],

Jj=1

where ; =n~! Doty (de = d)(di—; — d)" and the weight function x(j, n) is defined as

s =""Ja-@i+la-qr,

where @ is the parameter of the geometric distribution. This HAC estimator is similar to that of Newey

and West (1987) but with a different weight function.
SFor the studentized method, the bootstrapped statistics are computed as /nz;/6x, k = 1,...,m.

That is, 6 from the sample data is also used in bootstrap. One could also compute the bootstrapped

statistics as \/nZj, /67, with 6;, estimated from bootstrapped samples; see, e.g., Romano and Wolf (2005).



rate, which is also the “average power” defined in Romano and Wolf (2005). The FWE
rate is computed as the relative frequency of the replications in which at least one neutral
or poor return is incorrectly rejected. In Tables 1 and 2 we report the average rejection
rates in the first step, the average rejection rates in all steps, and the FWE rates of the
Step-SPA and Step-RC tests. Note that case 3 contains only the FWE rates, because

there is no outperforming return (m; = 0).

Table 1 shows that, for the first two cases, the FWE rates of the Step-SPA test are
controlled properly and closer to the nominal level 5% than those of the Stpe-RC test.
Note that case 3 is exactly the LFC considered by the RC test. Thus, it is not surprising
to see that the Step-SPA and Step-RC tests have the same FWE rates in this case (the
last column of Table 1) becasue the Step-SPA test has no advantage here. Moreover, we
find that the FWE rate of the Step-SPA test is much smaller than 5% when m is large,
but it is closer to 5% when m = 90. This shows that the second result of Theorem 2.2 is
relevant in finite samples when m is small relative to the sample size n. When m is too

large, the test becomes more conservative.

Moreover, we can see that the Step-SPA test is more powerful than the Step-RC test
in terms of average rejection rate. For each m, the improvement of the Step-SPA test
over the Step-RC test is greater when there are unequal groups of returns (with a larger
number of poor models). Such improvement becomes more significant when m is large.
The greatest improvement is about 16% (81.4% for the Step-SPA test vs. 65.4% for the
Step-RC test) which occurs for m = 9000 with unequal groups of returns. All the results
support the argument of Hansen (2005) that the RC test is adversely affected by the
number of poor models included in the test. It is also clear that the stepwise procedure
does identify more significant returns than its one-step counterpart. Yet, the power gain is
quite marginal for the Step-RC test. For example, when m = 900 with unequal groups of
returns, further steps of the Step-SPA test identify 2.3% more significant returns (91.9%
vs. 94.2%), whereas the Step-RC test only finds extra 0.6% significant returns (83.8% vs.
84.4%).

From Table 2 it is readily seen that the Step-SPA and Step-RC tests are marginally
improved when studentized statistics are used and that all the conclusions based on

Table 1 carry over. We also note that these simulation results are quite robust to different

10



a values for ¢;. In Figure 1, we plot the average rejection rates and FWE rates for
a = 0.0005, 0.00055, . ..,0.001 and m = 90, 900, and 9000 with unequal groups of returns.
We can see that the rejection frequencies and FWE rates increase with a; that is, these
tests reject the null more easily when the return has a larger mean. More importantly,
the Step-SPA test uniformly dominates the Step-RC test across a values in all 3 panels of
Figure 1. Similar findings are obtained in unreported simulations with various settings,
such as correlated ¢; and different . All the results support the theoretical properties
established in Section 2.2 and unambiguously indicate that the Step-SPA test ought to
be preferred to the Step-RC test in practice.

4 Empirical Data and Performance Measures

In our empirical study, we evaluate the predictive ability of technical trading rules based
on the data of market indices and corresponding ETFs. When an index is found to
be predictable, one may question whether it can be easily traded by (U.S.) investors.
This concern is practically relevant, especially for the indices of emerging markets, but
it can be mitigated to a large extent when ETF's are available. Indeed, ETF's have been
powerful investment tools for arbitrageurs and hedge funds because they track market
indices closely and can be conveniently traded at low transaction costs. Thus, it makes

practical sense to also examine the predictability of ETFs.

4.1 Index and ETF Data

We consider three indices of U.S. growth markets: S&P SmallCap 600/ Citigroup Growth
Index (SP600SG), Russell 2000 Index (RUT2000), and NASDAQ Composite Index (NAS-
DAQ), and the ETFs that track these indices: SmallCap 600 Growth Index Fund (IJT),
Russell 2000 Index Fund (IWM), and NASDAQ Composite Index Tracking Fund (ONEQ).
We also consider the indices of six emerging markets, including MSCI Emerging Mar-
kets Index, MSCI Brazil Index, MSCI South Korea Index, MSCI Malaysia Index, MSCI
Mexico Index, and MSCI Taiwan Index.” The corresponding ETFs are: MSCI Emerging

"Note that the MSCI indices are evaluated in U.S. dollars and reflect the holding returns on these
markets for U.S. investors. These MSCI indices are important references to institutional investors, and
they mitigate the liquidity and tradability issues in emerging markets because they include only investable

larger stocks (Chang, Lima, and Tabak, 2004).
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Markets Index Fund (EEM), MSCI Brazil Index Fund (EWZ), MSCI South Korea Index
Fund (EWY), MSCI Malaysia Index Fund (EWM), MSCI Mexico Index Fund (EWW),
and MSCI Taiwan Index Fund (EWT). All ETFs are issued by iShares, except that
NASDAQ Composite Index Tracking Fund is issued by Fidelity.

The SP600SG and all MSCI indices are taken from Global Insight, while the other
two U.S. indices and all ETFs are taken from Yahoo Finance with dividend adjustment.
These data are partitioned into pre- and post-ETF periods, i.e., the periods before and
after the inception of the corresponding ETF. Table 3 summarizes the pre-ETF periods
for all indices (upper panel), the post-ETF periods for all ETFs up to the end of the
year 2005 (lower panel), and the inception dates of the ETFs. All pre-ETF periods have
more than 2,000 observations, yet the numbers of observations in post-ETF periods are
quite different. For example, MSCI Malaysia and Mexico Index Funds have more than
2,000 observations, but NASDAQ Composite Index Tracking Fund and MSCI Emerging
Markets Index Fund have only 508 and 566 observations, respectively.

Table 4 contains the descriptive statistics of daily holding returns on the indices and
ETF's considered in the paper. We can see that, for U.S. markets, NASDAQ Composite
Index yields the highest daily return (7.4 basis points) and the largest standard deviation
in the pre-ETF period, but its ETF has the smallest mean and standard deviation in
the post-ETF period. For emerging markets, MSCI Mexico Index enjoys the largest
mean return of 12.5 basis points in the pre-ETF period, and the MSCI South Korea
Index Fund has the largest mean return of 9.3 basis points in the post-ETF period. The
Ljung-Box @ statistics indicate that, at 5% level, all index returns have significant first-
order autocorrelations, and all ETFs but MSCI Taiwan Index Fund have insignificant
autocorrelations. Moreover, all index and ETF returns are leptokurtic; in particular, the

index and ETF returns for Malaysia and Mexico have very large kurtosis coeflicients.

4.2 Technical Trading Rules and Performance Measures

We study two leading classes of technical trading rules: moving averages (MA) rules and
filter rules (FR). There is a total of 16,380 rules, among them 9,120 are MA rules and
7,260 are filter rules.® The details of all trading rules are summarized in Appendix B. The

8These rules encompass 2,049 MA rules and 497 filter rules used in Brock et al. (1992) and Sullivan
et al. (1999).
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trading signals are generated from the technical rules operated on market indices. The
performance of technical rules are evaluated using three performance measures: mean

return, Sharpe ratio (Sharpe, 1966 and 1994), and x-statistic (Sweeney, 1986 and 1988).

Specifically, let ¢, , denote the trading signal generated by the k-th trading rule at
the end of time ¢, where 45, = 1,0, or —1 corresponds to the signal of taking a long,
neutral, or short position at time ¢ + 1. Also let r, denote the return of an index and 7{
be a risk free rate.” The first performance measure of the k-th trading rule is based on

the following mean return:

T T
dy) = g @ (14 0pyr (e — 1) = TC), k=1,...,m,

’ﬂ \

where TC is one unit of transaction cost when there is a buy or sell and TC is zero when

no action is taken. The performance measure based on Sharpe ratio is:

J(2 r In(14 64417, — 7"{ —TC)

1 ) _
Z £y , k=1,...,m,

=
where G, is the estimated standard deviation of the summand in the numerator, ln(l +
Opt—1Tt— rt TC) based on the examined sample. The measure based on the z-statistic
is

7 _ gv_ S 101 =1 S 10 = -1\ S, r — 7
k k T T T ’

where 1(A) denotes the indicator function of the event A. Note that the third measure
can be understood as the measure based on mean return adjusted for a proportion of
market risk premium: Zthl(Tt - r{ )/T. We also consider studentized mean return as a

performance measure:

d(4

T O

ZT: ZT:In(l—i-(Sm_l(i”t_r{)_TC)’ k=1,....,m,
—1 t:l

where &, is the estimated standard deviation of the summand of the numerator from the

examined sample.

9The risk free rate in this study is the effective federal funds rate from Federal Reserve Economic Data
(http:/ /research.stlouisfed.org/fred2/). The daily risk free rate r¥(d) is converted from the annual rate
r/(a) as r/(d) = In(1 4 ¥ (a))/250.
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What we examine here is the absolute performance of technical rules, because zero is
the benchmark in these measures. We could, of course, examine the relative performance
by taking the buy-and-hold return as the benchmark. In the empirical study, we impose
a one-way transaction cost of 0.05% on each trade of all market indices and ETFs. This
choice is based on the literature and personal correspondence with other researchers and
industry practitioners.!® For the U.S. stock markets, the earliest estimate of minimum
transaction costs could be Fama and Blume (1966). They point out that the floor traders’
costs are roughly 0.05% of asset values one-way. Such costs could be even lower (e.g.
Sweeney, 1988). The costs of trading index ETF's in large volume are also known to be
very low. Note, however, that the trading cost for the indices of emerging markets could
be much larger (e.g. Ratner and Leal, 1999; Chang, Lima, and Tabak, 2004). We still
impose 0.05% transaction cost for those trades so as to make all results directly com-
parable. In addition, we compute the break-even transaction costs, i.e., the transaction
cost that eliminates all positive returns or performance (Bessembinder and Chan, 1995).

Such costs in effect suggest potential “margins” for profitability in ETF transactions.

5 Predictive Ability of Technical Rules

We apply the Step-SPA test to evaluate the predictive power of technical rules in U.S.
growth markets and emerging markets. The rules with significant predictive power will
be referred to as significant rules or outperforming rules in what follows. Of particular
interest to us is, for each market, whether the predictive power of technical rules may be
affected after the ETF is introduced. In the application of this test, we set the number of
stationary bootstrap B = 500 and the parameter of the geometric distribution ¢ = 0.9,
as in Sullivan et al. (1999) and Hsu and Kuan (2005). We also consider @ = 0.5 as in Qi

and Wu (2006) and obtain similar results; these results are not reported to save space.

0We thank Huifeng Chang, Shantaram Hegde, Charles Jones, and Pedro Saffi for useful discussions

on this issue.
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5.1 U.S. Market Indices and ETFs

The numbers of significant rules in the U.S. growth markets identified by the Step-SPA
test are summarized in Table 5.'1 It can be seen that technical rules are quite powerful in
predicting U.S. indices in pre-ETF periods, especially for S&P SmallCap 600/Citigroup
Growth Index. There are as many as 269 significant rules in terms of mean return,
136 rules in terms of Sharpe ratio, 220 rules in terms of z-statistic, and 230 rules in
terms of studentized mean return. Yet, the evidence for the predictability of NASDAQ
Composite Index is relatively weaker; there are 33 and 7 significant rules in terms of
mean return and studentized mean return, respectively, and there is only one significant
rule in terms of Sharpe ratio. For Russell 2000 Index, there are more than 100 significant
rules under all four measures. The existence of a “thick” set of outperforming rules
under these measures constitutes a strong evidence of the predictability of index returns
(Timmermann and Granger, 2004). Note that Hsu and Kuan (2005) also find technical
rules may be exploited to predict the indices of relatively young markets (Russell 2000
Index and NASDAQ Composite Index) during the period of 1990-2000.

On the other hand, it is interesting to observe from Table 5 that the predictability
of market indices found in pre-ETF periods does not carry over to corresponding ETFs
in post-ETF periods. Indeed, the Step-SPA test identifies zero significant rule for all
three U.S. ETFs under any performance measure. While MSCI indices usually contain
nonsynchronous prices and hence may not be readily tradeable, ETFs are different and
can be easily traded at very low transaction cost. Thus, ETF's help to enhance market
liquidity and improve market efficiency (Hegde and McDermott, 2004). The result here
can be interpreted as (indirect) evidence that market efficiency affects the predictive

power of technical rules. More discussions are given in Section 5.3.

5.2 Emerging Market Indices and ETF's

The empirical findings for emerging markets are consistent with those for U.S. growth
markets. There are significant rules for 4 out of 6 emerging market indices in pre-ETF

periods, namely, MSCI Emerging Markets Index, MSCI Brazil Index, MSCI Malaysia

"This table is based on one-way transaction cost of 0.05% on each trade of all market indices and

ETFs. We obtained similar results when no transaction cost is imposed.
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Index, and MSCI Mexico Index. As far as the number of outperforming rules is concerned,
some indices in emerging markets seem to be more predictable than U.S. indices. Taking
MSCI Emerging Markets Index in its pre-ETF period as an example, we find as many
as 797 significant rules in terms of mean return, 414 rules in terms of Sharpe ratio, and
917 rules in terms of x-statistic. There are also more than 300 significant rules identified
for MSCI Mexico Index in its pre-ETF period. These again constitute a “thick” set of

trading rules with significant predictive power.

In post-ETF periods, we find significant rules only for 2 out of 6 ETFs: MSCI Malaysia
Index Fund and MSCI Mexico Index Fund. Note that MSCI Emerging Markets Index
Fund is not predictable, even though there are the most outperforming rules identified for
its index before ETF is introduced. Moreover, the numbers of identified significant rules
for the two predictable ETFs are far less than those for the corresponding indices. For
example, in terms of mean return, we find 559 significant rules for MSCI Mexico Index
in its pre-ETF period but only 241 rules for MSCI Mexico Index Fund in the post-ETF
period. The number of identified rules also drops from 331 in the pre-ETF period to 285
in the post-ETF period under z-statistic.

Table 6 collects the mean returns, annualized Sharpe ratios, z-statistics, and studen-
tized mean returns of the best rules identified for the market indices and their ETFs.
When a best rule is found significant by the Step-SPA test, we compute its break-even
transaction cost. We find that the break-even transaction costs for the best identified
rules in emerging market ETF's are lower than the costs for corresponding indices, except
for Malaysia. This, together with the results in Table 5, again supports the argument
that the predictive ability of technical rules may be affected by the introduction of ETFs.
It can also be seen that the largest break-even transaction cost may be as large as 66 basis
points for mean return, 23 basis points for Sharpe ratios, 67 basis points for x-statistic,
and 25 basis points for studentized mean return. These margins are much larger than
the transaction cost imposed in this study. Hence, it seems plausible to generate profit

from proper technical trading rules.

Another interesting finding is that the predictive power of technical rules need not
be a consequence of the serial correlation in the data, in contrast with the viewpoint of

Fama and Blume (1966) and Allen and Karjalainen (1999). The Step-SPA test identifies
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significant rules for MSCI Malaysia and Mexico Index Funds whose returns are serially
uncorrelated, but it does not find any outperforming rules for MSCI Taiwan Index Fund
which has significant first-order autocorrelation. Note that the predictable ETFs are two
early ETFs (since 1996) that are leptokurtic and with more than 2,000 daily data. As
demonstrated in the simulations, the performance of the Step-SPA test is affected by
the sample size (relative to the number of models being tested). The fact that the other
ETF's have smaller samples may be a reason why the Step-SPA test fails to identify out-
performing rules. We also note that the autocorrelation may not be precisely estimated
when the data are leptokurtic. This may also explain why some ETFs are predictable

even the data do not have significant autocorrelation.

5.3 Discussions

Why can some technical rules predict the stock markets? This is an important albeit
tough question for researchers in this field. There are several explanations in the lit-
erature. An explanation is due to Fama and Blume (1966) which conjectures that the
predictive ability of filter rules is due to serial correlations in the data. Our results on
the predictability of some ETFs suggest that it is not necessarily the case. Another
explanation is that technical rules in fact capture some information contained in the
movements of prices, volumes, and order flows (Treynor and Ferguson, 1985; Brown and
Jennings, 1990; Blume, Easley, and O’Hara, 1994; Kavajecz and Odders-White, 2004).
The third one argues that market maturity matters (Ready, 2002; Hsu and Kuan, 2005;
Qi and Wu, 2006). It is conceivable that there are more arbitrage opportunities in
younger markets than in mature ones. When a young market attracts more investors
and arbitrageurs, the availability of ETFs allows them to exploit possible profitability
using trading rules and eventually trade away all profitability. This is also known as
“self-destruction” of profitable trading rules (Timmermann and Granger, 2004) and ex-
plains why the predictive power of technical rules weakens when the market becomes

more efficient. Our empirical findings support this explanation.'?

Another practical question follows naturally: Can technical analysts transform the

predictive power of technical rules to profit? Although there is no definite answer for this

12This explanation can also be related to Lo’s (2004) adaptive market efficiency hypothesis and Hong,

Torous, and Valkanov’s (2007) limited information-processing capacity.
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question, we try to discuss the potential profitability of technical rules from different per-
spectives. The first issue is the availability of the closing prices in our ETF data. There
is no guarantee that technical analysts can trade those ETFs at the closing prices; never-
theless, they can always place limit orders to trade in prices close enough to the closing
prices. That way, technical analysts also prevent themselves from paying too much for
the bid-ask spread by placing market orders. Second, using x-statistic as a performance
measure, we have demonstrated that the potential profits from outperforming techni-
cal rules exceed associated risk premiums. As a result, with good executions and low
transaction costs, the technical analysts in large institutions may be able to make profits
in excess of risk premiums. Note, however, that our predictability /profitability findings
do not necessarily contradict perfect market efficiency because such predictability and
profitability may be attributed to tail risk (e.g. extreme events) and market frictions (e.g.

tradability, liquidity, and transaction costs).

6 Concluding Remarks

This paper makes two contributions to the literature. On the methodology side, we pro-
pose a new stepwise test (the Step-SPA test) for large-scale multiple testing problems
without data snooping bias. This test allows us to identify as many significant rules
as possible. Yet it is more powerful than the existing Step-RC test because it avoids a
conservative configuration used in the RC test. On the application side, we employ the
proposed test to obtain new evidence for the predictive ability of technical trading rules
in both growth and emerging markets. Our empirical results are practically informative
because they are based not only on market indices but also on ETFs which can be con-
veniently traded at low transaction costs. It is also worth mentioning that the proposed
Step-SPA test is readily applicable to other similar, multiple testing problems, such as
the performance of mutual funds (hedge funds), the performance of corporate managers,

and the forecasting ability of different econometric models.
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Appendix A: Proof of Theorems

Lemma A1: Suppose the hypotheses are re-labeled in the descending order of dj, and let
G (£) be the SPA critical value based on the subsample where we drop the data related
to the first £ — 1 hypotheses. Then, ¢} (£) is non-increasing in .

Proof: For k > ¢, g, (k) is determined by the distribution of the maximum of a smaller

number of observations and hence can not be greater than ¢, (¢). O

Lemma A2: Suppose the hypotheses are re-labeled in the descending order of d, and
G (£) is defined as in Lemma A1. Then H{ is rejected by the Step-SPA procedure defined
in Section 2.2 if and only if \/ﬁczj > qn,(j) for all j=1,... L

Proof: Suppose \/ﬁJj > G, (j) forall j =1,...,£. At the first stage of the Step-SPA test,
Vvnd; > @ (1), so H} is rejected at this stage and the procedure will continue. If Hf is
also rejected at this stage, then we are done. If not, suppose the first k; < £ hypotheses
are rejected at the first stage. In the second stage, we have \/ﬁdk1+1 > o (ky +1). As
a result, H(])“H is rejected and procedure will continue. If Hg is rejected at this stage,

then we are done; otherwise, HS will be rejected in finite steps by the same argument.

Suppose the statement that \/ﬁcij > Gho(j) for all j = 1,...,1 is not true and ky < ¢
is the first hypothesis such that \/ﬁcfko < Gny(kg). By the previous part, the Step-SPA
test continues until the first ky; — 1 hypotheses are rejected. It follows from Lemma Al
that /ndy, < @ (ko) < @4, (k) for all k = 1,...,ky — 1, so H(]f“ will not be rejected in
the previous stages no matter how the Step-SPA test procedure proceeds. After the first
kg — 1 hypotheses are all rejected, we have \/ﬁJkO < @, (ky) and the procedure stops.

Hence, Hg will not be rejected. O

Similarly, we define the bootstrapped RC critical value, 7, (£), as

Too (£) = max (7, (£),0),

ao
where 7, (¢) = inf{r|P*[\/nmaxy_s ;1 n(df —d) <] >1— g}

Lemma A3: 7, ({) > g, (¢) for all £.

Proof: Note that

di —d,) > di —d, + [
\/ﬁkzefenﬁ,(...,m( p—di) > \/ﬁk:ﬁfﬁ”m( e — d + i),
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since fi;, < 0. Hence, the pth quantile of the left-hand side is never smaller than that of
the right-hand side for p € (0,1). It follows that 7% (¢) > g5, (¢). O

Proof of Theorem 2.2: If y;, > 0, then \/nd;, — oo with probability 1. On the other
hand, g}, (1) is bounded in probability, since g}, (1) xat Qoo < 00 Where g, is the (1—ay)th
quantile of max{N (0, £,)} and €2 is the submatrix of €2 after we delete the jth row and
jth column of €2 if p; < 0. As a result, Vndy, > %, (1) with probability 1 which implies
H('f will be rejected in the first step with probability 1 based on the procedure defined in
Section 2.2.

Suppose there exists some j with p; = 0. Let I, = {i|H{ is true} which is non-empty
and suppose ¢ (/) is calculated based on the data of I;. Those hypotheses with p; > 0
will be rejected in the first step with probability 1. Similar to the proof in Romano and
Wolf (2005), the familywise error rate in the limit is:

lim FWE = lim P(v/nd; > G (I) for at least one i € I;)
n—oo n—oo
= lim P(max{\/ﬁczi} > QZO(IO)>
n—00 iely

The last equality holds because when oy < 1/2, @3, (I) converges to the (1 — ag)th
quantile of the limiting distribution of max;¢ IO{\/HJZ} which is strictly greater than 0
since P(max;c; {v/nd;} <0) < P(y/nd; <0) =1/2 when n tends to infinity. O

Proof of Theorem 2.3: First, the Step-RC test is defined as follows:
1. Re-arrange Jk in the descending order.

2. Reject H} if \/nd; > T (1) If H} is not rejected, then stop; otherwise, go to next
step.

3. Given Hg for j =1, ..., ¢ are rejected, then reject Hg“ if /ndg,, > 75 (04 1). If

Hé“ is not rejected, then stop; otherwise, go to next step.
4. Repeat Step 3 till no hypothesis can be rejected.

By the same arguments of the proof of Lemma A2, we can show that Hé is rejected by
the Step-RC test procedure defined above if and only if \/ﬁczj > 75, (j) forall j =1,... L
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We prove the case of the average power which is defined as the average of the indi-
vidual probabilities of rejecting each false null hypothesis. The proofs for other power
definitions are similar. To show that the Step-SPA test is more powerful than the Step-
RC test in terms of the average power, it suffices to show that all hypotheses rejected by
the Step-RC test will also be rejected by the Step-SPA test. First, we define

K, ={i|H{ is rejected by the Step-SPA test}

K, ={i|H} is rejected by the Step-RC test}.

If K, is empty, it is obvious that K, C K,. If K is non-empty and the first k. > 0
hypotheses are rejected by the Step-RC test, then \/ﬁJj > 7h,(j) forall j = 1,..,k,
and it follows from Lemma A3 that \/ﬁdj > 75 (7)) > @5, (4) for all j =1,..., k.. Hence,
by Lemma A2, the first k, hypotheses are rejected by the Step-SPA test and we have

K, CK,.

Let I}, = {i|u; > 0} denote the set of the wrong null hypotheses. Let P, and P,
denote the average powers of the Step-RC test and the Step-SPA test respectively. If I;
is empty, P. = P, = 0. If I; is non-empty, then
Enumber of K, N 1]

number of I,

P =

9

and

P Enumber of K, N ;]

s —

number of I,

It follows that P, < P,, because K, N[, C K, NI;. O

Appendix B: The Collection of Technical Trading Rules

We consider in this study 9,120 moving average rules and 7,260 filter rules. These rules
are constructed by extending the rules studied in Sullivan et al. (1999); readers are
referred to their article for details. We describe these rules using the same notations.
Set m and n (the numbers of days for long and short moving averages) = 1, 2, 5, 10,
15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250 (16 values and m > n). So, m —n
combinations = 120, b (fixed band multiplicative value) = 0.001, 0.005, 0.01, 0.015, 0.02,
0.03, 0.04, 0.05 (8 values), d (number of days for the time delay filter) = 2, 3, 4, 5

(4 values), and ¢ (number of days a position is held, ignoring all other signals) = 2,
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3,4, 5, 10, 25, 50 (7 values). As a result, the total number of moving average rules is
[1+b+d+c+ (bxc)] xm—n combinations = 9,120. It can be observed that we basically
extend the nine rules in Brock et al. (1992) to 9,120 possibilities by considering different
combinations of fixed band multiplicative values, fixed holding days, and moving average

days.

Similarly, our filter rules are constructed as follows. We set x (change in security price
to initiate a position) = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.25, 0.3, 0.4, 0.5 (24 values), y (change in
security price to liquidate a position) = the same 24 values as x with y less than z, e (an
alternative definition of local extrema where a high (low) is defined as the most recent
closing price to be greater (less) than the e previous closing prices) = 1, 2, 3, 4, 5, 10, 15,
20 (8 values), k (the number of days to define local extrema) = 5, 10, 20, 40, 60, 80, 100,
150, 200, 250 (10 values), and ¢ (number of days a position is held, ignoring all other
signals) = 2, 3, 4, 5, 10, 25, 50 (7 values). Note that we consider another way to define
local maximum and minimum for the initiation of the first position. The maximum of the
first k& days is the “high” and the minimum of the first k& days is the “low”. As a result,
the total number of filter rules is x+(x x k) +(x xe)+(xxkxe)+(xxc)+(xxkxc)+x—y

combinations + (x — y combinations x k) = 7,260.
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Table 5: The numbers of outperforming rules in pre- and post-ETF periods.

Market Index/ETF  Period Outperforming rules

Mean return  Sharpe ratio z-statistic St. mean ret.

U.S. S&P600SG  pre-ETF 269 136 220 230
Indices RUT2000 pre-ETF 186 109 179 171
NASDAQ pre-ETF 33 1 5 7
U.S. T post-ETF 0 0 0 0
ETFs IWM post-ETF 0 0 0 0
ONEQ post-ETF 0 0 0 0
Emerging pre-ETF 797 414 917 758
Emerging Brazil pre-ETF 117 88 0 143
Market Korea pre-ETF 0 0 0 0
Indices Malaysia pre-ETF 81 2 70 68
Mexico pre-ETF 559 370 331 490
Taiwan pre-ETF 0 0 0 0
EEM post-ETF 0 0 0 0
Emerging EWZ post-ETF 0 0
Market EWY post-ETF 0 0
ETFs EWM post-ETF 55 0 66 0
EWW post-ETF 241 152 285 198
EWT post-ETF 0 0 0 0

Notes: (1) The last three columns are the numbers of outperforming rules identified by the Step-
SPA test under 5% level, based on mean return, Sharpe ratio, z-statistic, and studentized mean

returns, respectively. (2) We impose a 0.05% one-way transaction cost for all trades.
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Figure 1: Average rejection rates and familywise error rates of the Step-SPA and Step-RC

tests. 33



