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Abstract

Background: Non-coding RNAs (ncRNAs) are known to be involved in many critical biological processes, and identification
of ncRNAs is an important task in biological research. A popular software, Infernal, is the most successful prediction tool and
exhibits high sensitivity. The application of Infernal has been mainly focused on small suspected regions. We tried to apply
Infernal on a chromosome level; the results have high sensitivity, yet contain many false positives. Further enhancing
Infernal for chromosome level or genome wide study is desirable.

Methodology: Based on the conjecture that adjacent nucleotide dependence affects the stability of the secondary structure
of an ncRNA, we first conduct a systematic study on human ncRNAs and find that adjacent nucleotide dependence in
human ncRNA should be useful for identifying ncRNAs. We then incorporate this dependence in the SCFG model and
develop a new order-1 SCFG model for identifying ncRNAs.

Conclusions: With respect to our experiments on human chromosomes, the proposed new model can eliminate more than
50% false positives reported by Infernal while maintaining the same sensitivity. The executable and the source code of
programs are freely available at http://i.cs.hku.hk/,kfwong/order1scfg.
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Introduction

A non-coding RNA (ncRNA) is a RNA molecule which is not

translated into a protein. It has been shown to be involved in many

biological processes [1–3]. The number of ncRNAs was

underestimated before, but recently some databases reveal over

200K ncRNAs [4] and more than 1,300 ncRNA families [5].

Large discoveries of ncRNAs and their families show the

possibilities that ncRNAs may be as diverse as protein molecules.

Identifying ncRNAs is an important problem in biological study.

Since ncRNAs do not translate into protein, it is more difficult

to detect and identify these molecules in laboratories. Also, the

process is usually time-consuming and expensive. On the other

hand, it is known that the structure (both the primary and the

secondary structure) of an ncRNA molecule usually plays an

important role in its biological functions. Computational ap-

proaches provide an alternative to identify potential ncRNA

candidates. In general, computational methods work as follows

(e.g. [6–8]). For each ncRNA family, we build a structural model.

Then, scan the entire genome and align every region of the

genome with the structural model of the family. The region which

results in high score will be regarded as a potential member of the

family. The structural model is the core of the computational

method as it should capture the characteristics of a given ncRNA

family and should be powerful enough to distinguish members in

the family from other sequences.

To capture both the primary and secondary structure of an

ncRNA molecule, a popular method is to use stochastic context

free grammar (SCFG). This was first suggested by [9]. Examples of

computational tools that are based on SCFG model for predicting

ncRNA family members are tRNAScan-SE [10], Infernal [11,12]

and RSEARCH [13]. Among these tools, Infernal is the most

successful tool and exhibits high sensitivity. Infernal was used to

develop Rfam [5], one of the most comprehensive and popular

ncRNA databases. The application of Infernal was often limited to

small suspected regions. Using a small computer cluster, we

conducted an experiment of using Infernal to identify ncRNAs on

a human chromosome level. The sensitivity remains very high, yet

Infernal gives quite many false positive candidates. In our

experiment, we select all the human chromosomes. There are

about 8,000 known ncRNA members in these chromosomes;

Infernal reports more than 45,000 candidates. It is likely that

many of these are false positives. To further justify this

observation, we generate random DNA sequences and use

Infernal to scan through the sequences. Although it is unlikely to

have many real ncRNAs in these random sequences, Infernal still

reports quite a number of candidates (see the Results and

Discussions Section for more details). Due to large number of

false positives, it is time-consuming and expensive to verify each of

predicted candidates in order to identify the true positives. It also

reveals that the SCFG model may not be powerful enough to

differentiate the false positives from the real ncRNA members.
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After studying this issue in details, we found that the SCFG

model used in all these software tools does not consider the

dependence between the nucleotides in the ncRNA sequence.

However, the dependency of adjacent nucleotides does affect the

stability of the pairing structure of an ncRNA as the free energy of

a structure depends on what the adjacent nucleotides are. Most of

the recent free-energy models capture this dependence when

computing the free energy of a given secondary structure [14–16].

It is likely that considering adjacent nucleotide dependency when

identifying ncRNAs can increase the accuracy.

In this study, the objective is two-fold. First, we want to

investigate if the signal based on the dependence of adjacent

nucleotides in a human ncRNA sequence is strong enough for us

to differentiate real ncRNAs from false positives. Recently, [17]

has independently raised a similar concern on the nucleotide

dependence in ncRNA sequences and conducted a primitive study

on a relatively smaller AT-rich Dictyostelium discoideum genome.

Second, we try to incorporate adjacent nucleotide dependence

into the SCFG model, which is technically non-trivial. We propose

a new order-1 SCFG model and based on this model, we develop

a more effective tool to find ncRNAs. The aim is to maintain high

sensitivity while removing most false positives.

The results
(1) We conduct a systematic study on the dependence of

adjacent nucleotides of the known members in all ncRNA families

and compare the dependence with that of the candidates reported

by Infernal, but not found in known databases (although there

should be real ncRNAs among these candidates, most of them will

probably be false positives). We examine the dependency of

adjacent single bases as well as adjacent base pairs. We found that

the adjacent nucleotide dependence of those candidates reported

by Infernal is much smaller than that of the known members of an

ncRNA family (See Table 1 for more details). This motivates us to

use the nucleotide dependence of the candidates to distinguish

false positives from real human ncRNAs. (2) We enhance the

SCFG model to take into account the dependency of adjacent

nucleotides and come up with a new order-1 SCFG model. We

provide an algorithm to build the production rules of the order-1

SCFG for a given set of ncRNA sequences in a family. We

Table 1. Analysis of the adjacent nucleotide or base pair dependency of known ncRNAs and other candidates reported by Infernal.

LA MA

Family

All known
human
members in
Rfam

Other
candidates
reported by
Infernal

All known
members of all
species (X )

Other
candidates (Y )

Difference
(X{{Y )

All known
members of all
species (X )

Other
candidates (Y )

Difference
(X{{Y )

RF01382 0 8985 2.7 0.5 2.2 8.85 2.4 6.44

RF00017 0 4704 1.02 0.71 0.32 2.14 1.45 0.7

RF00037 33 1552 0.74 0.72 0.02 3.96 2.12 1.84

RF00825 0 1415 1.64 0.24 1.4 5.14 1.69 3.45

RF00711 3 1019 1.32 0.31 1.01 4.4 1.63 2.77

RF00736 18 1012 1.23 0.35 0.88 4.67 1.43 3.24

RF00651 2 913 1.37 0.52 0.85 5.44 2.21 3.23

RF00647 0 906 1.38 0.44 0.95 5.98 2.16 3.81

RF00464 2 887 1.13 0.31 0.82 5.15 1.92 3.23

RF00031 20 687 1.28 0.57 0.71 2.6 2.06 0.54

RF00876 32 613 0.81 0.5 0.31 5.73 2.15 3.58

RF00693 5 548 1.14 0.53 0.61 4.35 1.67 2.68

RF00951 744 521 0.44 0.72 20.28 1.41 2.06 20.65

RF00131 3 485 1.71 0.3 1.41 6.24 4.04 2.2

RF00001 431 287 0.66 0.78 20.11 1.23 1.83 20.6

RF00646 2 270 1.52 0.41 1.11 6.02 3.15 2.87

RF00027 12 247 1.16 0.43 0.74 5.57 3.16 2.42

RF00685 0 243 1.06 0.51 0.55 4.41 2.94 1.47

RF00239 3 192 1.83 0.57 1.26 4.99 2.36 2.63

RF00140 0 190 2.31 0.65 1.66 3.34 1.46 1.89

Average 1.32 0.5 0.82 4.58 2.19 2.39

The second and the third columns show the number of known members and other candidates reported by Infernal for some families. The column 4,5,6 (or 7,8,9) show
the comparison of the dependence of adjacent nucleotides along single-stranded regions (or adjacent base pairs along stacking pair regions) between all known ncRNA
members (i.e. full members) in Rfam and the other candidates reported by Infernal of each family. Larger value of LA (or MA) indicates the higher level of dependence
between the adjacent single-stranded columns (or paired columns) within the multiple sequence alignment A. The table lists the top 20 families with the highest
number of candidates reported by Infernal. As we can see, in most of the cases, the level of adjacent dependence along both single-stranded regions and stacking pair
regions in known ncRNAs is higher than that in other candidates reported by Infernal. The % of difference between the dependence levels with respect to the values of
other candidates are 164% and 109% along single-stranded regions and stacking pair regions respectively. This provides evidence to support our conjecture that the
adjacent dependence in human ncRNA molecules should be useful to distinguish real ncRNAs from false positives.
doi:10.1371/journal.pone.0012848.t001
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implement our model for all the known human ncRNA families

and use it to filter the results from Infernal. From our experiments

on the same set of chromosomes, our approach can reduce the

total number of candidates by more than 50% reported by

Infernal while maintaining the same sensitivity.

Results and Discussion

Scanning chromosomes by Infernal
We selected all human chromosomes and used Infernal to scan

through each entire chromosome to locate possible ncRNA

members. We check the reported candidates against the listed

ncRNAs of each corresponding human chromosome in Rfam 9.1

database. Rfam was first developed using Infernal and it was then

curated and maintained by a group of researchers in Wellcome

Trust Sanger Institute from time to time. This ncRNA database

has now becoming one of the most comprehensive and trustable

ncRNA database. We found that apart from the known members

in these chromosomes, Infernal reported many other candidates.

There are around 8,000 known ncRNAs in all human chromo-

somes. Infernal reports more than 45,000 candidates. The second

and the third columns in Table 1 show the number of known

members and other candidates reported by Infernal for some

families. Some of these other candidates, which are not known

ncRNAs, may be novel ncRNAs. However, there should not be

that many novel ncRNAs, so most of them are probably false

positives.

Analysis on adjacent nucleotide dependence along
ncRNAs

We conduct a statistical analysis to investigate if the dependence

between the adjacent nucleotides in human ncRNA sequences can

help to differentiate the false positives from the real ncRNAs. We

consider two types of dependence: (1) the dependence of adjacent

nucleotides inside the single-stranded region and (2) the depen-

dence of adjacent base pairs inside the stacking pair region. For

each family, we compare these two types of dependences in the

known members with those in other candidates (most are

suspected to be false positives) reported by Infernal to see if there

is a significant difference which enables us to distinguish real

ncRNAs from false positives.

After studying several possible methods to measure the

dependence level between the adjacent nucleotide and the

adjacent base pairs, we come up with an intuitive statistical

measure for our study defined as follows. We obtain the multiple

sequence alignment and the corresponding consensus secondary

structure of all the members (i.e. full members) for each family

from the Rfam database. For the candidates reported by Infernal,

we deduce the multiple sequence alignment and the corresponding

consensus secondary structure of them according to the alignment

between each of these candidate sequences and the structure

model reported by Infernal. Given a multiple sequence alignment

A of a set of sequences, first considering the calculation of

dependence between two adjacent columns i and iz1 which are

single-stranded in the consensus structure (single-stranded col-

umns), let Ri
x be the observed ratio of nucleotide x appearing in

column i and Ri,iz1
x,y be the observed ratio of nucleotide x and y

appearing in position i and iz1. Based on probability theory, if

there is no dependence between nucleotide x and y in column i
and iz1, respectively, the value of Ri,iz1

x,y would be more or less

the same as the product of Ri
x and Riz1

y . The value
Ri,iz1

x,y

Ri
xRiz1

y

would

capture the dependence of the nucleotides x and y in column i and

iz1. Since there are 42 possible cases (i.e. x [ fa, c, g, ug and

y [ fa, c, g, ug), we compute an average of the values. So, we

define the value of dependence level (Li,iz1) between the ith

column and the iz1th column as:

Li,iz1~

P
x,y[fa, c, g, ug log

R
i,iz1
x,y

Ri
xRiz1

y

����
����

42
ð1Þ

If there is no adjacent nucleotide dependence for columns i and

iz1, Li,iz1 would tend to zero. A larger value of Li,iz1 would

imply the higher dependence level between the ith column and the

iz1th column. Let S be the set of pairs of adjacent single-stranded

columns (i.e. S~f(i,iz1)Dcolumns i, i+1 are single-strandedg).
The level of dependence (LA) along all single-stranded regions in

the consensus structure for the set of multiple sequence alignment

A is defined as the average of the value of adjacent dependence

level in all pairs of adjacent single-stranded columns along A:

LA~

P
(i,iz1)[S Li,iz1

DSD
ð2Þ

Similarly, to calculate the level of dependence between two

adjacent base pairs, for two adjacent pairs of columns (i, j) and

(iz1, j{1) forming base pairs in consensus structure (paired

column), let Ri,j,iz1,j{1
x1,y1,x2,y2

be the observed ratio of (x1, y1) and

(x2, y2) appearing in positions (i, j) and (iz1, j{1). Then the

value of dependence level (Mi,j,iz1,j{1) between the adjacent

paired columns (i, j) and (iz1, j{1) is defined as:

Mi,j,iz1,j{1~

P
x1,y1,x2,y2[fa, c, g, ug log

R
i,j,iz1,j{1
x1,y1,x2,y2

R
i,j
x1,y1

R
iz1,j{1
x2,y2

�����
�����

44
ð3Þ

Let T be the set of pairs of adjacent paired columns, the level of

dependence (MA) along all stacking pair regions in the consensus

structure for the set of multiple sequence alignment A is defined as:

MA~

P
((i,j),(iz1,j{1))[T Mi,j,iz1,j{1

DT D
ð4Þ

Larger value of LA (or MA) indicates the higher level of

dependence between the adjacent single-stranded columns (or the

adjacent paired columns) within the multiple sequence alignment

A. The comparison of the LA and MA between all known ncRNA

members (i.e. full members) in Rfam and the other candidates

reported by Infernal of each family is shown in Table 1. The table

lists the top 20 families with the highest number of candidates

reported by Infernal. As we can see, in most of the cases, the level

of adjacent dependence along both single-stranded regions and

stacking pair regions in known ncRNAs is higher than that in

other candidates reported by Infernal. The % of difference

between the dependence levels with respect to the values of other

candidates are 164% and 109% along single-stranded regions and

stacking pair regions respectively. So, in the following, we try to

make use of the adjacent nucleotide dependence in human

ncRNA molecules to distinguish real ncRNAs from false positives.

Identify ncRNA by Order-1 SCFG
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Filtering candidates from Infernal based on adjacent
nucleotide dependence

Existing SCFG model does not consider adjacent nucleotide

dependence. We propose a new order-1 SCFG model to

incorporate this dependence (both the adjacent dependence of

single bases and adjacent dependence of base pairs) in the model.

The details of the model and how to construct the model (in

particular, the production rules) from a family of ncRNA

sequences will be given in ‘‘Materials and Methods’’ Section. In

this section, we present the performance of using our new model to

filter candidates from Infernal. For each candidate reported by

Infernal, we go through our order-1 SCFG model which will give

a score indicating the likelihood of the candidate being a member

of the family. Since the number of parameters inside the order-1

SCFG model are much more than Infernal SCFG model and we

used seed member (i.e. a small set of reliable known members) in

Rfam 9.1 to build the model, in order not to overfit the model, we

only consider the family with at least 30 seed members in the

experiment.

In general, setting a threshold to distinguish real members from

false positives is not a trivial task. Setting the threshold too high

may decrease the sensitivity while a low threshold may include

many false positives. However, using our order-1 SCFG model,

from some empirical results (see below for details), the gap between

the scores for real ncRNA members and those of false positives is

large. This enables us to pick a threshold easily to ensure that all

known members will not be considered as false positives. This also

makes sure that we maintain the same sensitivity as Infernal, that

is, all known members that can pass through SCFG model will also

pass through our order-1 SCFG model. Moreover, the suggested

thresholds listed in Rfam 9.1 was designed for the previous version

of Infernal (v. 0.72) which is much slower compared with the new

version of Infernal (v. 1.0) we used. Thus, using those thresholds

for Infernal (v. 1.0) may not be appropriate. In order to have a fair

comparison between Infernal and order-1 model, we pick three

thresholds for Infernal and order-1 SCFG model respectively as

follows. For each family, let the lowest score resulted by Infernal

(or order-1 SCFG model) of all the known members (of all species)

in the Rfam database be T0 (or T1). Setting the threshold to be T0

(or T1) would give the full power of eliminating false positives, but

without omitting any existing real members. We define T0 (or T1)

as an optimal threshold (opt-thres) for Infernal (or order-1 model).

Yet to include possible novel members whose scores are lower than

T0 (or T1), we also select two thresholds: T0 � 0:9 and T0 � 0:8
(or, T1 � 0:9 and T1 � 0:8) to compare the robustness of the

filtering power of Infernal and our models. We select the families

with at least 30 seed members. After using Infernal to identify the

ncRNAs along all the human chromosome, we found that Infernal

performs well and exhibits high sensitivity. From now on, we refer

the candidates that reported by Infernal but not found in known

databases as false positives for ease of discussion. Note that some of

these candidates should be true positives, but the majority of them

are probably false positives. As we can see in Table 2, the new

order-1 SCFG model is able to filter more than 50% of those false

positives reported by Infernal in all three thresholds. For the other

families which are not shown in the list, the order-1 model can also

filter over 50% of the false positives.

Since there is no other method to evaluate whether a candidate is

indeed an ncRNA or a false positive unless laboratory approach is

used, we use another popular software RNAz [8] to further evaluate

the candidates filtered by our order-1 method. Only 3% are

estimated to be ncRNAs by RNAz (see Table 3). We perform a

similar test on the candidates that kept by our order-1 method.

About 18–33% are estimated to be ncRNAs by RNAz. Although

RNAz may not give an accurate result, it provides some evidence

that most of the filtered candidates may be false positives. On the

other hand, the candidates that kept by our order-1 method but

cannot be confirmed by RNAz should be further evaluated.

We remark that we have conducted another experiment to

further justify that many of the candidates reported by Infernal are

likely to be false positives. We generated a set of random sequences

based on the human chromosomes as follows. We first checked all

the existing short repeated sequences (with length less than 10) along

the real chromosomes and then placed these set of repeated

sequences in the same positions on the artificial sequence. Then for

the rest of the positions, along every region of length 1000, we

randomly generate the nucleotides with the same percentage of

composition of different types of nucleotides (i.e. A, C, G, T) as the

corresponding region in the real chromosome. We used Infernal

scan through all the sequences and check how many candidates

Infernal would report. Since it is unlikely to have a lot of real

ncRNAs in these randomly generated sequences, so if Infernal still

output a lot of candidates, many of them are likely to be false

positives. Table 4 shows the result of Infernal and the proposed

order-1 SCFG model on the simulated artificial sequence. As one

can see, Infernal still reports quite an amount of regions as potential

RNAs. The order-1 model also can filter out around 50% of them.

Gap between scores of known members and false
positives

The improved filtering power is due to the fact that our order-1

SCFG model can enlarge the difference between the score of the

false positives and that of the true positives. As shown in Figure 1,

we select family RF00017 and plot the distribution of the scores of

all the known ncRNA members in Rfam and the false positives

based on the original SCFG model and our order-1 SCFG model.

From the figure, we see that the average scores of the false positives

and the true positives are 69.7 and 157.7 respectively for the

original SCFG model while the corresponding scores are 104.6

and 344.6 respectively for the order-1 SCFG model. The

difference between the scores of the false positives and the true

positives is significantly larger in our order-1 SCFG model than

that of the original SCFG model. The order-1 SCFG model seems

to characterize real ncRNAs in a better way than the original

SCFG model, thus have a better filtering power to remove the

false positives.

Materials and Methods

The following subsection will define the order-1 stochastic

context free grammar and the next subsection will describe how to

build the order-1 SCFG model to represent a set of ncRNA

sequences.

How to incorporate adjacent nucleotide dependence
In the SCFG model used in Infernal, the transition from a state

to another state only depends on the current state without

considering the current nucleotide. To capture the dependence of

adjacent nucleotides, we introduce a new type of states labeled Xab

or Xa. The state Xab emits the pair of symbols a and b while Xa

emits only symbol a. Therefore, the probability of which state to

go depends on the current state, the current nucleotide(s), the state

to go, and the nucleotide(s) it emits. The adjacent dependence thus

has been captured. As the transition probability depends on the

current and the next state as well as the nucleotides they emit, we

refer it as an order-1 SCFG.

Formal definition. We define the order-1 SCFG as follows:

Order-1 SCFG = (V , S, Q, S, T) where

Identify ncRNA by Order-1 SCFG
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N S is a finite set of terminal symbols. In RNA, there are four

types of terminal symbols (i.e. A, C, G, U).

N V is a finite set of non-terminals (which are called states

here). There are seven types of states, which are P, L, R,

B, D, S and E. The description of each type is listed in

Table 5. Let X be any one of the types. Define Xab to be

a type-X state emitting two terminal symbols a and b, Xa

for emitting one symbol a, and X for emitting no

symbol.

N Q is a set of production rules of the form: Y?v where Y[V
and v [ (V|S)�

N S is the start variable, where S [V

N T(Y?Z) is transition score from state Y to state Z where

Y ,Z [ V . The value of transition score is defined based on the

transition probability from state Y to state Z.

The production rules are listed in Table 5 and Table 6 shows an

example of applying the production rules to generate a sequence

Table 3. Use RNAz to further verify whether any of those false positives filtered by order-1 method and those not filtered by
order-1 method is ncRNA.

Filtered by order-1 Not filtered by order-1

Threshold False positives Estimated as RNA Total % Estimated as RNA Total %

Opt 13578 221 8201 2.7% 1795 5377 33.4%

Opt * 0.9 20661 383 13708 2.8% 1633 6953 23.5%

Opt * 0.8 22431 417 13902 3.0% 1586 8529 18.6%

We use another popular software RNAz [8] to further evaluate the candidates filtered by our order-1 method. Only 3% are estimated to be ncRNAs by RNAz. We perform
a similar test on the candidates that kept by our order-1 method. About 18–33% are estimated to be ncRNAs by RNAz. Although RNAz may not give an accurate result, it
provides some evidence that most of the filtered candidates may be false positives. On the other hand, the candidates that kept by our order-1 method but cannot be
confirmed by RNAz should be further evaluated.
doi:10.1371/journal.pone.0012848.t003

Table 2. Detailed filtering power of order-1 SCFG model.

Opt Opt*0.9 Opt*0.8

Family False positives Infernal Order-1 Infernal Order-1 Infernal Order-1

RF01382 8985 3633 1667 8985 2314 8985 3211

RF00017 4704 4704 1124 4704 1359 4704 1652

RF00037 1552 1435 559 1552 682 1552 788

RF00825 1415 0 0 0 0 3 0

RF00711 1019 68 12 139 23 308 35

RF00736 1012 696 288 1012 343 1012 412

RF00651 913 4 1 15 3 54 9

RF00647 906 23 0 64 0 170 0

RF00464 887 391 83 750 93 887 109

RF00031 687 687 256 687 302 687 357

RF00876 613 613 53 613 66 613 82

RF00693 548 22 27 99 42 417 62

RF00951 521 520 518 521 520 521 520

RF00131 485 0 0 0 0 0 0

RF00001 287 287 280 287 278 287 274

RF00646 270 2 0 7 0 38 0

RF00027 247 11 1 38 2 154 2

RF00685 243 3 0 4 0 10 0

RF00239 192 19 32 53 32 152 36

RF00140 190 0 4 0 6 14 6

Total 25676 13118 4905 19530 6065 20568 7555

For each family, let the lowest score resulted by Infernal (or order-1 SCFG model) of all the known members (of all species) in the Rfam database be T0 (or T1). Setting
the threshold to be T0 (or T1) would give the full power of eliminating false positives, but without omitting any existing real members. We define T0 (or T1) as an
optimal threshold (Opt) for Infernal (or order-1 model). Yet to include possible novel members whose scores are lower than T0 (or T1), we also select two thresholds:
T0 � 0:9 and T0 � 0:8 (or, T1 � 0:9 and T1 � 0:8) to compare the robustness of the filtering power of Infernal and our models. This table shows the detailed filtering
power of order-1 SCFG model for the top 20 families in which Infernal reports the most number of false positives originally. As we can see in the table, the new order-1
SCFG model is able to filter more than 50% of those false positives reported by Infernal in all three thresholds. For the other families which are not shown in the list, the
order-1 model can also filter over 50% of the false positives.
doi:10.1371/journal.pone.0012848.t002

Identify ncRNA by Order-1 SCFG
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with corresponding structure. Because P-type state indicates the

pair-wise relationship between two symbols, the grammar can

produce not only a sequence of symbol, but also the corresponding

structure of the sequence.

Each production rule has its own transition score and the choice

of production rule depends on both the current and the next

emitted symbol(s). That means the transition score would be

depends on the adjacent emitted symbol(s). Therefore this order-1

stochastic context free grammar can capture the dependence

between the adjacent symbols (or called nucleotides for RNA

sequence).

Building an order-1 SCFG for an ncRNA family
In this subsection, we focus on building an order-1 SCFG model

to represent a given ncRNA family. The model includes a set of

states and edges, and each edge consists of a score. The set of states

is the set of non-terminals V that appear in the production rules in

the previous section and an edge connecting state Y and state Z if

Table 4. Result of Infernal and our order-1 SCFG model on simulated data.

Opt Opt*0.9 Opt*0.8

Family False positives Infernal Order-1 Infernal Order-1 Infernal Order-1

RF01382 14174 7115 2915 14174 4022 14174 5262

RF00037 797 734 315 797 371 797 430

RF00031 435 435 114 435 136 435 168

RF00559 316 25 0 112 0 316 0

RF00736 243 169 97 243 116 243 134

RF00693 179 8 9 26 18 139 24

RF00876 150 150 2 150 4 150 7

RF00825 86 0 0 0 0 0 0

RF00711 82 3 6 6 7 12 11

RF00239 73 4 15 10 16 55 16

RF00661 72 60 54 72 54 72 55

RF00379 59 0 0 2 0 16 0

RF00464 52 4 4 34 5 52 6

RF00001 44 43 37 44 34 44 30

RF00651 42 0 0 0 0 2 0

RF00188 39 1 0 4 1 24 2

RF00614 37 5 0 16 0 37 0

RF00131 36 0 0 0 0 0 0

RF00519 35 14 0 35 0 35 0

RF00468 30 0 0 0 0 4 0

Total 16981 8770 3568 16160 4784 16607 6145

doi:10.1371/journal.pone.0012848.t004

Figure 1. Comparison of the score distribution between false positives and all the known members (in Rfam) of the family RF00017
based on SCFG and order-1 SCFG model.
doi:10.1371/journal.pone.0012848.g001
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there exists a production rule in which state Y can be transited to

state Z. The score of the edge equals to the corresponding

transition score between the two states.

By given a multiple sequence alignment of a set of member

sequences of a ncRNA family and the corresponding consensus

secondary structure, our aim is to build an order-1 SCFG model to

represent the family. The consensus secondary structure is

assumed to be regular and have no pseudoknot. It is suggested

to use the multiple sequence alignment of the seed members and

the consensus secondary structure provided by Rfam 9.1 as an

input to build the order-1 SCFG model for the corresponding

ncRNA family.

Before building the order-1 SCFG model, we use a tree

structure to represent the consensus structure according to the

method stated in [9]. Figure 2 shows an example about the tree

representation for a ncRNA structure. In the consensus structure,

the black dots between the positions indicates the pairwise

relationship between them. In the resulting tree representation,

there are three kinds of nodes: L, R and P. The L-type and the R-

type node represent a single base in the ncRNA structure while the

P-type node represents a base-pair. The sequence of positions can

be regenerated by a traversal of the tree from root to leaves and

from left to right.

In Figure 3, we use a multiple sequence alignment of two

sequences and the consensus structure as an example to illustrate

the high-level idea of order-1 SCFG model. The model is

represented as a non-cyclic graph and the structure of the graph is

according to the tree representation of the consensus structure of

the input multiple sequence alignment. The circles indicate the

states and the arrows represent the edges connecting from one

state to another. The gray states do not represent any position in

the structure and emit no symbol, while the white states either

represent a single-base position in the structure and emit one

symbol for that position, or represent base-pair positions and emit

two symbols for the base-pair.

Consistent with the production rules, there are seven types of

states: Pcd (pair emitting symbol c and d), Lc (left emitting c), Rc

(right emitting c), B (bifurcation), D (delete), S (start) and E (end),

where c, d[fA, C, G, Ug. B-type state indicates a branch in the

graph, representing also a branch in the structure. S is the first

state of the graph and of each branch, and E is the end state of

each branch. Pcd represents a base-pair and Lc, Rc represents a

single base in the corresponding positions. The type of white state

is indicated beside the corresponding rectangular box. There may

be more than one state in the same single-base position or base-

pair positions, like PAU and PCG in (4,10), indicating more than

one possible sets of symbols appearing in the base-pair positions.

One may find that there exists a path (with branch) in the graph

such that each of the two given sequence with the corresponding

structure can be produced. As illustrated in the figure, the adjacent

dependence can be captured in the graph. For example, if one

choose to emit symbol A in the position 14, then symbol A would

also be the only choice for position 15 and 16.

In order to check whether an input sequence is a member of a

ncRNA family, the model should be able to identify any type of

sequence. Therefore, the model should consider mutation,

insertion and deletion in all the positions. The insertion state,

deletion state and states of all possibilities should be included in

each position. For example, in a single-base position, there should

be four states representing four possibilities (i.e. A, C, G, U); in

base-pair positions, the possibilities include (i.e. AA, AC, … , UG

and UU). Figure 4 shows the details of order-1 SCFG model in

two consecutive base-pair positions. The edges between the states

indicate the possible choice of the states along the path and

different sequence will be produced for each path. The resulting

score of the path is the sum of the scores of all the edges passed

through along the path. In the next subsection, we will mention

about how to set up the score for each edge.

Table 5. The set of production rules of Order-1 SCFG.

State type Description Production rule Score

P pair emitting Pab?aXcd b T(Pab?Xcd )

Pab?aXcb T(Pab?Xc)

Pab?aX b T(Pab?X )

L left emitting La?aXcd T(La?Xcd )

La?aXc T(La?Xc)

La?aX T(La?X )

R right emitting Ra?Xcd a T(Ra?Xcd )

Ra?Xca T(Ra?Xc)

Ra?X a T(Ra?X )

B bifurcation B ?S S 0

D delete D ?Xcd T(D ?Xcd )

D ?Xc T(D ?Xc)

D ?X T(D ?X )

S start S ?Xcd T(S ?Xcd )

S ?Xc T(S ?Xc)

S ?X T(S ?X )

E end E ? 0

Note that P-type state indicates the pair-wise relationship between two
symbols, so the grammar can produce not only a sequence of symbol, but also
the corresponding structure of the sequence.
doi:10.1371/journal.pone.0012848.t005

Table 6. Example of applying production rules to generate a sequence with corresponding structure.

Position 1 2 3 4 5 6 7 8

Sequence U C A U C G U A

Structure v v w w v w

To generate the above sequence with corresponding structure, steps are:

S ?LU?UB ?US S ?UPCGPUA?U _CCRC
_GG €UUE €AA?U _CCPAU C _GG €UU €AA?U _CC �AAE �UUC _GG €UUA€AA?U _CC �AA �UUC _GG €UUA€AA:

Note that the single dots, the bars and the double dots at the top of the characters indicate the corresponding base-pairs emitted by state PCG , PAU and PUA .
doi:10.1371/journal.pone.0012848.t006
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Parameters setting
The purpose of the experiment is to evaluate whether after

considering the adjacent dependence in the SCFG model, there

would be any improvement in identifying the ncRNA family

members. In order to make the result sensible and meaningful, we

do not tune the parameters from scratch because it may change

Figure 2. Left: Consensus structure. Right: Tree representation of the consensus structure.
doi:10.1371/journal.pone.0012848.g002

Figure 3. A high-level picture of an order-1 SCFG model for the multiple sequence alignment of two sequences.
doi:10.1371/journal.pone.0012848.g003
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the condition of the entire model completely. We have to keep the

weighting of the scores the same as that of the SCFG model in

Infernal and we hope to make sure there is no other factor except

the incorporating of the adjacent dependence which will affect the

performance. In the following, we use SCFG to refer to the model

in Infernal, and order-1 SCFG for our new model.

Therefore, we derived the set of parameters for order-1 SCFG

model directly from the model built by Infernal mathematically.

Before we describe how to derive the parameters from SCFG

model, we first look into the method Infernal used behind to derive

the parameters.

In the SCFG model, for each edge from the state X to the state

Y , it has a transition score T(X?Y ). we can directly obtained the

value of T(X?Y ) from the model built by Infernal. The equation

of T(X?Y ) is as follows:

T(X?Y )~ log2 Pr(X?Y DX ) ð5Þ

where Pr(X?Y DX ) is the transition probability from state X to

state Y given X in SCFG.

For each state X in SCFG, we can find a set of states Q(X ) in

order-1 SCFG such that each state ~XX [ Q(X ) is a particular case of

X . For example, if X~L, then Q(X )~fLA, LC , LG, LUg, where

L, LA, …, LU are defined in the previous section. For each

transition from state ~XX to state ~YY in order-1 SCFG model where
~XX [ Q(X ) and ~YY [ Q(Y ),

Pr( ~XX? ~YY D ~XX )~
Pr( ~XX? ~YY DX?Y )

Pr( ~XX DX )

� �
Pr(X?Y DX ) ð6Þ

Equation 6 establishes the relationship between the transition

probability from state X to state Y in SCFG, and the transition

probability from state ~XX to state ~YY in order-1 SCFG where
~XX [ Q(X ) and ~YY [ Q(Y ). We can approximate the values of

Pr( ~XX? ~YY DX?Y ) and Pr( ~XX DX ) by the following equations:

Pr( ~XX? ~YY DX?Y )~observed ratio( ~XX? ~YY DX?Y ) ð7Þ

Pr( ~XX DX )~observed ratio( ~XX DX ) ð8Þ

where observed ratio( ~XX? ~YY DX?Y ) is the ratio of the traversal of

Figure 4. The details of order-1 SCFG model in two base-pair positions.
doi:10.1371/journal.pone.0012848.g004
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~XX? ~YY among the seed members (in Rfam 9.1, a small set of

known reliable members are referred as seed members) under the

condition of the traversal of X?Y . As mentioned in the previous

section, the choice of the traversal of ~XX? ~YY depends on the

current and the next emitted character(s). Therefore, for example

if ~XX is LA and ~YY is LG , then the traversal of ~XX? ~YY emits

A in column i and emits G in the column iz1, the

observed ratio( ~XX? ~YY )~observed frequency of AG in column i
and iz1 among the seed members divided by the total number of

instances where the characters in both column i and column iz1
are not space (i.e. L?L). Precisely, we add 0.1 more for each

possible case so that for those cases there is no instance,

their probability would not be zero. Computation of observed ratio

( ~XX DX ) is similar.

Consider a production rule (~qq) which transverse from state ~XX to

state ~YY in order-1 SCFG and will emit another set of symbol(s) ~CCy

at state ~YY , where D~CCyDƒ2. According to the formula used inside

the Infernal, the score of the production rule score(~qq) should be

defined as follows:

score(~qq)~ log2

Pr(~qq)

Pr(seqDnull)
ð9Þ

Pr(seqDnull) is the corresponding probability for a random-

sequence model. Infernal does not consider any bias among

different type of nucleotides, and so consider the probability for

each type of nucleotide is 0:25. Therefore, to calculate Pr(seqDnull)

for the production rule ~qq for the traversal of ~XX? ~YY , since when the

production rule is applied it is assumed to be in the state ~XX , we

should consider the emitted symbol(s) in the next state,

Pr(seqDnull)~0:25D~CCy D. Thus, by Equations 5,6,7,8 and 9, we set

the transition score of each production rule ~qq in order-1 SCFG as:

score(~qq)~ log2

Pr(~qq)

0:25D~CCy D
ð10Þ

~ log2

observed ratio( ~XX? ~YY DX?Y )

observed ratio( ~XX DX )0:25D~CCy D
2T(X?Y )
� � !

ð11Þ

Other details
To check whether there exists any region inside the sequence

such that the region is probably the member of a specific ncRNA

family, we can perform alignment between the order-1 SCFG

model of the family and the sequence. If there is a region such that

the resulting alignment score is high, then we can regard the

region as a potential member of the family.

A dynamic programming algorithm was introduced to align

a SCFG model with a sequence [9]. [11] also suggested

another memory-efficient algorithm which can further

decrease the memory usage. All of these methods can be

applied to the order-1 SCFG model directly. The time

complexity of the alignment algorithm is O(mn3), where m is

the length of the input sequence and n is the number of states

inside the model. Although the number of states in order-1

SCFG model is more than the number of states in SCFG

model, many of states in fact can be skipped when calculating

the score during the dynamic programming. For example, if

we are mapping Lx where x [ fA, C, G, Ug states to a

position of the input sequence and the nucleotide in that

position is A, then we do not need to consider the states like

LC , LG or LU , but only consider LA. The total number of

states required to scan through when calculating the scores

for each position of the sequence is the same. Therefore the

time required for aligning an order-1 SCFG model with a

sequence is also the same.

Regarding the details of the experiment, the version of the

human chromosomes downloaded from NCBI website is 36.3.

And the version of the Infernal software is 1.0. We downloaded all

the multiple sequence alignments of the seed members and full

members of all the ncRNA families from the Rfam 9.1 database.

For each family we used the corresponding multiple sequence

alignment of the seed members to build the models by using

Infernal with default parameters. When we performed scanning on

the human chromosomes, we executed the search program of

Infernal with an option ‘–ga’, which would perform filtering

according to the family-specific thresholds suggested in Rfam 9.1.

Regarding the small computer cluster, we use four nodes and each

node has 26core 2 quad CPU 2.4GHz with 32G memory. By

using the cluster, it takes around 1.5–2 weeks to finish scanning

one human chromosome for all around 1300 families. Regarding

the verification step using RNAz, we divided all the false positives

into two clusters - those filtered by order-1 method and those not

filtered by order-1 method. For each cluster, we computed the

corresponding multiple sequence alignment of the false positives

according to the resulting alignments outputted by Infernal and

divided them into groups of six as inputs to RNAz (since at most 6

sequences can be inputed to RNAz each time) for ncRNA

determination.

Concluding remarks
In this work, we showed that using dependency of adjacent

nucleotides in ncRNAs can improve the accuracy of identifying

ncRNAs and we developed a new order-1 SCFG model to

capture this dependency for identifying ncRNAs. The results

are promising. There are a few issues to be further investigated.

It is possible that the adjacent nucleotides in ncRNAs may show

a more significant dependence in regions (such as stems which

are more related to the functionalities of a ncRNA) than other

regions in the same ncRNA. A more detailed analysis can be

carried out to investigate along this direction and further

improve the model to capture this characteristics. Also, the

current order-1 SCFG model may not perform very well for

families with only a few seed members which may overfit the

model. To make it work well for these families may be

desirable. To conclude, we believe that with more in-depth

investigation on nucleotide dependency on ncRNAs, we may be

able to come up with better computational approach for

identifying ncRNAs.
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