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Abstract—Recently a network-constraint regression model[1]
is proposed to incorporate the prior biological knowledge to
perform regression and variable selection. In their method,
a l1-norm of the coefficients is defined to impose sparse,
meanwhile a Laplacian operation on the biological graph is
designed to encourage smoothness of the coefficients along
the network. However the grouping effect of their Laplacian
smoothness operation only exits when the two connected genes
both have positive or negative effects on the response. To
overcome this problem, we proposed to apply the Laplacian
operation on the absolute values of the coefficients to take
account of the positive and negative effects. Here, we call
the presented method as graph-based elastic net (GENet)
because the proposed method has similar grouping effect with
elastic net(ENet)[2] except the smoothness of two coefficients
are specified by the network in GENet. Further, an efficient
algorithm which has same spirit with LARS [3] is developed to
solve our optimization problem. Simulation studies showed that
the proposed method has better performance than network-
constrained regularization without absolute values. Applica-
tion to Alzheimer’s disease(AD) microarray gene-expression
dataset identified several subnetworks on Kyoto Encyclopedia
of Genes and Genomes(KEGG) transcriptional pathways that
are related to progression of AD. Many of those findings are
confirmed by published literatures.
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I. INTRODUCTION

As more and more biological data such as microarray and
SNParray available, linking high-dimensional genomic data
with biological processes and diseases to build a prediction
model for interpretation and diagnosis are becoming the
central problem in genomic research. Generally the prob-
lem can be formulated as a linear regression model with
responses vector y = (y1, y2, . . . , yn)T and p predictors
xj = (x1j , . . . , xnj)T ,j = 1, . . . , p. The response can be
binary to represent the two conditions such as ’disease’
and ’control’ or quantitative to indicate the progress of the
disease. We consider the classic linear regression model
where the response y is predicted by

ŷ = β̂0 + x1β̂1 + . . . + xpβ̂p (1)

The vector of coefficients β̂ = (β̂0, . . . , β̂p) can be estimated
by a model fitting procedure. In genomic data analysis,
n � p always holds. To address the curse of dimensionality,
many new regularized methods have been developed to
identify the predictors that are involved in the biological
process, such as lasso [4] and elastic net [2]. Among these
methods, the elastic net and the fused-lasso are particularly
suitable for analysis of genomic data which both accounted
the biological fact that genes involve the same pathway have
more similar contributions to the response and should be
selected/discarded together with higher probability.

One limitation of all these popular approaches is that
those methods are developed purely from computational
or algorithmic points without delivering any prior biologi-
cal knowledge or information. Some well-known pathway
databases include KEGG, Reactome (www.reactome.org).
These pathways are often interconnected and form a net-
work, which can be represented as graphs, where the vertices
of the graphs are genes or gene products and the edges
of the graphs indicate some regulatory relationship between
the genes. Several statistical methods have been developed
to utilize the pathways or network information[5]. Further,
[1] proposed a network-constrained regularization procedure
for fitting linear-regression models and for variable selection
where the regularization is a combination of the lasso penalty
and a penalty induced by Laplace matrix of the graph. Such
a procedure can select subnetworks of correlated features
along the network connection instead of the whole pairwise
correlation of elastic net. However, the grouping effect of
their Laplacian smoothness operation does not work in the
condition, where one of the two connected genes has positive
effect and the other one has negative effect on the response.
Here we utilize the Laplacian operation on the absolute
values of the coefficients which can cope with this problem
appropriately. Our proposed procedure is a generalization of
elastic net (ENet) to address cases with the prior network
available. The biological network is used to constraint the
difference between the absolute values of coefficients of two
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connected genes.
The network constraint on the absolute values of the

coefficients renders the optimization solute difficult because
absolute operation is not differentiable. At the time of this
writing, we notice [6] proposed a novel constraint term
which also render |β̂i| and |β̂j | of the two linked nodes
similar. However, they used boosted lasso [7] to solve their
optimization problem which can not get the exact whole
entire regularization path. We can also turn our problem into
a quadratic programming by decomposing the coefficients
into the summation of the positive and negative parts. The
shortcoming of the decomposition is there will be 2 ∗ p
parameters to be estimated while the small sample number
is not incread, which is problematic in n � p case. Here, we
developed an efficient algorithm to solve the GENet problem
which follows the same spirit of homotopy method LARS
[3] to give the entire regularization path.

II. METHODS

Let X = [x1, . . . ,xp] be the predictor matrix. Without
loss of the generality we assume the predictors are stan-
dardized and the response is centered. Consider a network
that is represented by a weighted graph G = (V,E,W ),
where V is the set of vertices that correspond to the p
predictors, E = {u ∼ v} is the set of edges indicating that
the predictors u and v are linked on the network and there is
an edge between u and v and W is the weights of the edges,
where w(u, v) denotes the weight of edge e = (u ∼ v).
Define the degree of the vertex v as dv =

∑
u∼v w(u, v)

where
∑

u∼v denotes the sum over all connected pairs on
the network. We say u is an isolated vertex if du = 0. We
define the normalized Laplacian matrix L for G with the
uvth element defined by

L(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

1 − w(u, v)/du if u = v and du �= 0,

−w(u, v)/
√

dudv if u and v are adjacent,

0 otherwise.

The matrix L is always non-negative definite and its corre-
sponding set of the eigenvalues or spectrum reflects many
properties of the graph [8].
For fixed λ1 and λ2, [1] defined their network-constrained
regularization criterion.

Lnk(λ1, λ2,β)

= (y − Xβ)T (y − Xβ) + λ1||β||1
+ λ2

∑
u∼v

(
βu√
du

− βv√
dv

)2w(u, v)
(2)

where ||β||1 =
∑p

j=1 |βj | is the l1-norm, which induces a
sparse solution [4], and the third term induces a smooth
solution of β on the network. The biological motivation
of this regularization is the assumption that genes that
are linked on the networks to have similar functions and

therefore smoothed. However,the effects of two connected
genes on response y will have similar amplitudes but dif-
ferent directions (positive or negative). [1] did not take
account of the positive and negative effects. To overcome
this shortcoming, we propose the following GENet model
with regularization on the absolute value of the coefficients.

L(λ1, λ2,β)

= (y − Xβ)T (y − Xβ) + λ1

p∑
j=1

|βj |

+ λ2

∑
u∼v

(
|βu|√

du

− |βv|√
dv

)2w(u, v)

= (y − Xβ)T (y − Xβ) + λ1||β||1 + λ2|β|T L|β|

(3)

where |β| = (|β1|, . . . , |βp|)T . The absolute value network-
constrained regularized estimator β̂ is defined as the mini-
mizer of Equation (3)

β̂ = arg min
β

{L(λ1, λ2,β)} (4)

Let λ = λ1 + λ2 and α = λ2/λ, the last two regularization
terms can be written as

λPα(β) = λ

(
(1 − α)||β||1 + α

∑
u∼v

(
|βu|√

du

− |βv|√
dv

)2w(u, v)

)

We call Pα(β) the absolute value network-constrained regu-
larization, in which the second term imposes smoothness of
the absolute values of coefficients β over the network. The
coefficients β is re-scaled in order to account for different
degrees of the vertices on the network, allowing the genes
with more connections (e.g. the hub genes) to have larger
coefficients so that small changes of expressions of such
genes can lead to large changes in the response. Our regu-
larization term constrains the coefficients of the connected
genes have similar amplitude effects to the response y
but allowing different directions: positive or negative. The
weight w(u, v) can be binary or quantitative value to cope
with the weighted interaction network such as STRING . In
this paper, we just discuss the network with binary weight
of edges w(u, v) ∈ {0, 1}.

Figure 1 shows contours for four penalty functions for
a bivariate argument β = (β1, β2),where α = 0.1 for
the elastic net,network-constraint and our absolute value
network-constraint penalties. From Fig. 1, we can see that
network-constrain penalty has no group effect in the second
and fourth quadrant where the shapes are very similar with
the lasso. The elastic net and our proposed method have the
group effect on the all four quadrants and our method has
larger group effect than elastic net with the same α.

III. OPTIMIZATION ALGORITHM

Inspired by the LARS [3] and its extended general piece-
wise linear solution strategy [9] ,we develop an efficient
algorithm to solve the absolute value network-constrained
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Figure 1. Contours for four penalty functions for a bivariate argument
β = (β1, β2). The upper left shows contours of the lasso penalty. The
upper right shows contours of the elastic net penalty. The lower left shows
the contours of the network-constrainted penalty and the lower right shows
the contours of our proposed term, both for α = 0.1.

regularization problem on the whole solute path for every
possible value of λ1. There are two parameters λ1 and λ2

to be tuned. In this section,we propose an efficient algo-
rithm,which solves the entire solute path for every possible
vale of λ1 with λ2 fixed. The algorithm is based on the fact
that the solution β̂ is a piecewise linear function with respect
with λ1.

Let’s first define the active set A = {j : βj �= 0, j =
1, 2, . . . , p}. The solution of problem (3) satisfies the fol-
lowing equations.

∂L

∂βj
=
∑

i

(xT
i.β − yi)xij

+ λ2sgn(βj)Lj.|β| + λ1sgn(βj) = 0, for j ∈ A
(5)

where xi. is the ith row of the prediction matrix X , Lj.

indicates the jth row of Laplacian matrix L and |β| is a
vector with each component |β|j = |βj |. When set A is
fixed, the solution βj , j ∈ A are linear functions of λ1.
However the set A will eventually change as λ1 decreases.
The structure of linear system (6) will also change to become
another system. The algorithm decrease λ1 from ∞ to 0
and solve the solutions along this path. When λ1 = ∞
all the βj = 0 and A = ∅. Reducing λ1 implies the
magnitude of β will increase. Keeping reducing λ1, a critical
point λ0

1 will occur where exactly one βj(j = 1, . . . , p)
will become non-zero to join A. Since Equation (6) must
hold for any j ∈ A, the critical point λ0

1 is determined
by:λ0

1 = maxj∈{1,...,p} |yixij |. The first element of A can
be identified as: ĵ = arg maxj∈{1,...,p} |yixij | and the sign
for βĵ is : sgn(βĵ) = −sgn(yixiĵ). We use k to represent
the iteration number. Now the state in the initial (k = 0)
stage is A0 = {ĵ},λk

1 = λ0
1 and βj = 0(j = 1, . . . , p).

A. Solution path

Now we have the initial state. The algorithm continuously
decreases λ1 until it reaches 0 and give the solutions along
this path. Let λ1 = λk

1 + ∆λ1, where ∆λ1 < 0. When λ1

is reduced by a small enough amount, the active set A will
not change due to the linear change of β with respect to
λ1 in a small region. Therefore, based on the system, the
derivative of βj(j ∈ A) with respect to λ1 can be solved
from the following equations:

∑
i

(
∑
l∈A

xil
∆βk

∆λ1
xij) + λ2sgn(βj)

∑
l∈A

Ljlsgn(βl)
∆βk

∆λ1

+ sgn(βj) = 0, for j ∈ A
(6)

The |A| unknown ∆βj

∆λ1
(j ∈ A) can be uniquely determined

by the above |A| linear equations as long as the system is
non-singular. Then in this linear change region, the solutions
are linear in λ1

βj = βk
j +

∆βj

∆λ1
(λ1 − λk

1), for j ∈ A

If λ1 is kept reducing, the active set A will change. Here
the change refers to the following two events.

• Event A: a non-zero coefficient βj leaves A (becomes
zero)

• Event B: a zero-valued coefficient βj joins A (becomes
non-zero)

The event A will appear when a non-zero βj approaches to
0. The step size to become zero for each βj(j ∈ A) can be
calculated by: ∆λj

1 = −βk
j /

∆βj

∆λ1
. So the step size for the

event A to occur is:

∆λ1,A = max{∆λj
1 : j ∈ A, ∆λj

1 ≤ 0}

To determine the step size of event B. Let’s first make some
transformation on the Equation.

∑
i

(xT
i β − yi)xij + λ2Ljjβj

= −(λ2

∑
l �=j

Ljl|βi| + λ1)sgn(βj), for j ∈ A
(7)

Taking some parts from the above equation, we define

Cj =
∑

i

(xT
i β − yi)xij + λ2Ljjβj

Dj = λ2

∑
l �=j

Ljl|βl| + λ1

where j = 1, . . . , p. From Equation (7), we can infer that:

• sgn(βj) = −sgn(Cj)sgn(Dj), for j ∈ A
• |Cj | = |Dj |, for j ∈ A and |Cj | �= |Dj | for j ∈ Ac
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Notice that when ∆λ1 is sufficiently small, Cj and Dj are
also linear function of λ1:

Cj = Ck
j +

[∑
i

(
∑
l∈A

xil
∆βl

∆λ1
)xij + λ2Ljj

∆βj

∆λ1

]
(λ1 − λk

1)

Dj = Dk
j +

⎡
⎣λ2

∑
l∈A,l �=j

sgn(βl)Ljl
∆βl

∆λ1
+ 1

⎤
⎦ (λ1 − λk

1)

As λ1 decreases, the value for a |Cj |(j ∈ Ac) will first equal
|Dj | and then the corresponding βj will become non-zero
if we further reduce λ1.

To determine the step size for the event B, we have to
calculate the step size for each j ∈ Ac. Because |Cj | = |Dj |
we have Cj = +Dj or Cj = −Dj . From Cj = +Dj we
can derive

∆λj
1,+ =

Ck
j − Dk

j

1 + λ2

∑
l∈A sgn(βl)Ljl

∆βl

∆λ1
−∑i(

∑
l∈A xil

∆βl

∆λ1
)xij

Similarly the following equation is obtained according to
Cj = −Dj .

∆λj
1,− =

Ck
j + Dk

j

−1 − λ2

∑
l∈A sgn(βl)Ljl

∆βl

∆λ1
−∑i(

∑
l∈A xil

∆βl

∆λ1
)xij

The step size ∆1,B for the event B is:

∆λ1,B = max{∆λj
1,+, ∆λj

1,− : j ∈ Ac; ∆λj
1,+, ∆λj

1,− ≤ 0}

After ∆λ1,A and ∆λ1,B are calculated, the final step size
∆λ1 can be obtained by:

∆λ1 = max(∆λ1,A, ∆λ1,B)

Now we can update the active set A, λ1,Cj and Dj . The
next iteration k+1 consists of :solving the linear system (6)
, calculating ∆λ1 and updating A, λ1,Cj and Dj . This
entire process is repeated,until λ1 reaches 0.

Between any two consecutive events, the solutions are
linear in λ1, and after an event occurs, the derivative of
the solution with respect to λ1 is changed. Therefore, the
solution path is piecewise linear in λ1, where each event
corresponds to a kink on the path. The algorithm provides
solutions at these kinks, and for any λ1 between two
consecutive kinks the solutions can be calculated precisely
via linear interpolation. Following [2],to correct for potential
bias due to double shrinkage,we adjust the estimate β̂ by a
factor 1 + λ2.

Finally, if only training samples are available,10-fold
cross-validation (CV) can be used for estimating the predic-
tion error and for comparing models. For each fixed λ2,we
can use the number of steps for the lasso solution of the
optimization problem as the second tuning parameter besides
λ2, which is selected by 10-fold CV.

IV. PROPERTIES OF THE PROPOSED PROCEDURE

Given data set (y,X) and two fixed scalars (λ1, λ2),the
response y is centered and predictors X are standardized.
Let β̂(λ1, λ2) be the solution to equation (3). Suppose the
two vertices i and j are only linked to each other on the
network, di = dj = w(i, j). Then

||β̂i(λ1, λ2)| − |β̂j(λ1, λ2)||
≤ ‖y‖1

2λ2

√
2(1 − sgn(β̂i(λ1, λ2))sgn(β̂j(λ1, λ2))ρ)

where ||y||1 =
∑n

i=1 |yi| and ρ = xT
i xj is the sample

correlation.
The proof of this theorem can be derived easily from [1]

and [2]. The upper bound gives a quantitative description
for the grouping effect of our proposed absolute value
network-constrained regularization, which is half of the
upper bound in the elastic net model. That means our
regularization term has larger group effect than elastic net
which is also indicated in Figure 1. Note that in [1] the
group effect only exists in the first and third quadrants where
β̂i(λ1, λ2)β̂j(λ1, λ2) > 0 which also coincides with Figure
1.

V. SIMULATION RESULTS

Here we present the simulation results to demonstrate
the performance of our proposed method which follows
the simulation setup as [1] did. There are 200 transcription
factors (TFs) in the simulated network and each TF regulates
10 genes. So the final network consists of 2200 genes and
2000 edges between the TFs and the corresponding regulated
genes. We assume the first four TFs (active TFs) along
with the genes they regulated contribute to the response y
while the others are noise genes which are not related with
response. The simulation data are generated by the following
steps:

• The expression of the tth TF is generated according to
XTFt ∼ N(0, 1) where t = 1, . . . , 200

• The expression levels of the TF and the genes regulated
by this TF are assumed to follow a bivariate normal
distribution with correlation ρ. In [1] the correlation
ρ is set as 0.7. To take account of the up-regulate or
down-regulate function of each TF, we assign ρ = 0.7
or ρ = −0.7 with probability 0.5 for each gene. So
conditioning on the expression level of the TF, the
expression level of each gene it regulates follows a
N(ρ ∗ XTFt

, 0.51).
• The response y is generated by a linear regression

model y = Xβ + ε where ε ∼ N(0,
∑

β2
j /4).

Four models are generated according to different scenarios.
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1)

β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

7

,
−5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

3

,

−5,
−5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

7

,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

3

,

3,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

7

,
−3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

3

,

−3,
−3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

7

,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

3

, 0, . . . , 0)

This model reflects that among the 10 genes regulated
by each active TF, the effects on the response of 7
genes are on the same direction (positive or negative)
with the corresponding active TF while the effects of
other 3 ones are not.

2)

β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

3

,
−5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

7

,

−5,
−5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

3

,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

7

,

3,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

3

,
−3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

7

,

−3,
−3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

3

,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

7

, 0, . . . , 0)

This scenario assumes that only 3 genes that regulated
by an active TF have same direction effect on the re-
sponse while 7 genes impose differen direction effects
from the TF.

3) The third and fourth models are adapted from model
1 and 2 by replacing the

√
10 in the denominators in

β with 10, respectively.
A training set with 100 samples and an independent

test set with 2000 samples are generated by simulation.
The tuning parameters can be determined by 10-fold cross-
validation. The simulation for each model is repeated 50
times. The prediction mean-squared errors (PMSE) on the
test dataset are obtained. Sensitivity and specificity which
indicate the ability of each method to select the relevant
genes correctly are also calculated. Table I summarize the
simulation results for these four different models. Our GEnet
method gave smaller PMSEs compared with other methods.
It is obvious that the PMSEs of network-constraint in model
2 and 4 are larger than that in model 1 and 3, respectively.

Table I
SIMULATION STUDY RESULTS BASED ON 50 SIMULATIONS AND

STANDARD ERRORS ARE GIVEN IN PARENTHESES. HERE LASSO[4]
,ENET:ELASTIC NET [2]; NETWORK: NETWORK CONSTRAINT OF

[1];GENET:THE PROPOSED METHOD.

Model 1 2 3 4

Se
ns

iti
vi

ty LASSO 0.21(0.12) 0.24(0.12) 0.22(0.07) 0.24(0.06)
ENet 0.33(0.23) 0.38(0.21) 0.39(0.17) 0.37(0.16)

Network 0.34(0.18) 0.35(0.19) 0.44(0.16) 0.34(0.13)
GENet 0.37(0.21) 0.40(0.22) 0.54(0.19) 0.52(0.21)

Sp
ec

ifi
ci

ty LASSO 0.31(0.18) 0.33(0.15) 0.34(0.13) 0.34(0.12)
ENet 0.32(0.19) 0.34(0.16) 0.39(0.14) 0.37(0.16)

Network 0.33(0.17) 0.32(0.18) 0.40(0.18) 0.35(0.14)
GENet 0.34(0.17) 0.35(0.18) 0.46(0.18) 0.48(0.16)

PM
SE

LASSO 87.9(13.6) 86.6(11.7) 33.4(4.6) 35.5(6.5)
ENet 79.4(10.7) 78.1(9.4) 33.0(3.9) 35.2(6.6)

Network 78.6(9.6) 79.9(9.6) 31.0(2.4) 33.7(4.5)
GENet 75.9(9.6) 74.9(9.9) 30.4(2.4) 30.8(3.4)

This means the performance of network-constraint [1] will
degenerate when there are more genes whose directions of
effects on the respond are different from the TF which
regulates them. The proposed GEnet is better in dealing
with the fact that genes regulated by the same TF have both
positive and negative effects on the response.

VI. REAL DATA ANALYSIS

The performance of the proposed method is evaluated in a
microarray study of AD. The data set used here was gener-
ated from a microarray gene expression study of AD carried
out by [10] which consists of hippocampal gene expression
of 31 samples as well as MiniMental Status Examination
(MMSE) scores of each sample. We then test the correlation
of each gene’s expression with MMSE scores across all 31
subjects in a linear regression model. These tests revealed
several subnetworks that are related with the progression of
AD. In our analysis, we select the regularization parameters
λ1 and λ2 based on 10-fold cross-validation which are used
on the 31 samples to identify the related subnetworks. The
31 samples are split randomly into training and testing sets
for 100 times. In each split, 28 samples are used for training
and the remaining 5 samples for testing. For the network
term, we employ the interaction dataset which was obtained
from EntrezGene and 33 human pathways in KEGG. We
apply the network-constraint [1] and our proposed GEnet
on the training data. Ten-folds cross-validation is used to
select the tuning parameters λ1 and λ2.

Table II provides the results from the 50 experiments in
term of prediction errors on the testing data, the number of
genes selected based on the training data and the number of
genes selected more than 24 times in the 50 experiments.
We can see that the prediction performance and the number
of selected genes of the two methods are similar. But
our proposed GEnet method select more genes which are
selected by > 24 times in the 50 experiments than the
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network constraint method which indicates more consistent
genes are selected by our method. Further, our GEnet selects
more genes among the genes selected by > 24 times than
the network constraint method.

Fig. 2 depict the subnetworks with nodes larger than 3
identified by GEnet. In the top left subnetwork, HSPA2 and
HSPA8 [11] can stabilize tau to support its binding to micro-
tubules to avoid forming tangle. Uploading the genes in
this subnetwork to functional annotation tools in DAVID
Bioinformatics [12], we found the cell cycle pathway in
KEGG is most enriched and recent work indicates Abeta
oligomers induce neuronal cell cycle events in AD. The
down left subnetwork in Fig. 2 involves amyloid precursor
protein (APP), which gives rise to amyloid-β. It is well
known that accumulation of amyloid-β peptides will form
amyloid plaques ,which is the hallmark of AD. In the down
right subnetwork, MDK interacts with STAT1 associating
with JAK-STAT signaling pathway which affects the hyper-
phosphorylation of anomalous tau [13].

Table II
RESULTS ON 50 RANDOM SPLITS OF THE ORIGINAL DATA SETS.

Method Network GENet
Mean-squared error 66.9 ± 30.2 66.6 ± 29.5

number of selected genes 182.8 ± 82.3 186.4 ± 81.3
number of genes selected 124 153by >24 times

Figure 2. The identified sub-networks from the 153 most frequently
selected genes by the proposed GEnet.

VII. CONCLUSION AND DISCUSSION

We have generalized the elastic net by incorporating prior
network constraint on the absolute value of the coefficients.
If we define L(u, v) = 1 when u = v and du = 0 and all the
nodes have no connections with one another, the Laplacian
term L = I and GENet will turn into the standard elastic
net. So elastic net is the extreme instance of GENet with
no nodes connected. The regularization term in [1] only
impose the group effect in the first and third quadrants while
our GENet expands the group effect to second and fourth
quadrants.

An efficient optimization algorithm was developed for
our GENet with the same spirit of LARS. Recently the
coordinate descent attracts much attention. We will explore
this new optimization procedure to solve our optimization
problem in the future. And, we will use weighted network to
replace the current binary network to address some potential
errors in binary network. Finally, our optimization method
can also be easily extended to classification.
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