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Abstract—Multimedia streaming applications have disruptively
occupied bandwidth in wireline Internet, yet today’s fledging
mobile media streaming still poses many challenges in efficient
content distribution due to the form of mobile devices. At the
same time, cloud computing is gaining power as a promising tech-
nology to transform IT industry and many eminent enterprises
are developing their own cloud infrastructures. However, the lack
of applications hinders clouds’ large-scale implementation. In
this paper, we envision a cloud-assisted power-efficient mobile
P2P media streaming architecture that addresses the weakness
of today’s wireless access technologies. Clouds are responsible
for storage and computing demanding tasks, and mobile devices
colocating with each other share bandwidth and cooperatively
stream media content to distribute the load. We first model
interactions among mobile devices as a coalition game, and then
discuss the optimal chunk retrieval scheduling. Finally, we draw
on realistic mobile phone data and utilize an ARIMA model for
colocation duration prediction among mobile devices.
Index Terms—cooperative mobile media streaming, cloud, p2p,

coalition game, ARIMA

I. INTRODUCTION
Future mobile devices may turn out to be mobile supercom-

puters as the integration of GPS, video camera, etc., with a
decent battery lifetime [1]. With the growing penetration of
powerful mobile devices, mobile applications are emerging as
a significant new application form in the next generation Inter-
net, among which media streaming may disruptively occupy
the bandwidth of mobile devices just like in wireline Internet.
However, current wireless Internet access technologies can
only provide the choice between high average bitrate (e.g.,
WiFi or WiMAX) and good coverage area (e.g., cellular
networks), but cannot guarantee both at the same time [2]. At
the same time, the limitations of contrainted computational ca-
pacity, occasional connectivity loss and limited power supply
are threatening the full blossom of this new application form.
In this paper, we focus our discussions on a cloud assisted
cooperative media streaming in scenarios that mobile devices
cannot individually achieve a reasonable streaming rate due to
bandwidth limitation.
As an exceptional assistance, clouds provide us with a

platform to perform storage and computing demanding tasks
remotely. Cloud computing—the integration of Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS) [3], [4]—has the potential to mitigate
frustrations faced by mobile devices: mobile devices send task
requests to clouds, which perform corresponding operations
(e.g., resource discovery) and return retrieved media content
or other information. Based on this storage and computing
model, mobile devices may save a substantial amount of power

and also overcome the defects of limited local computational
and storage resources. In addition, this reduces communication
overheads between mobile devices and content providers. In
this paper, we refer to cloud as any entity that can provide a
remote service for mobile devices.
We still need a communication model to solve problems

of constrained bandwidth and occasional connectivity loss.
We assume that each mobile device is equipped with a low
bitrate wireless Internet access interface (e.g., cellular Internet
interface) and a high speed local wireless network interface
(e.g., Bluetooth interface). Consequences of occasional con-
nectivity losses can be easily mitigated utilizing techniques
of prefetching and caching. Recent research about signifi-
cant temporal periodicity and spacial regularity of human
mobility [5]—people spend most of their time in a few
locations, such as home and workplace—offers us a chance to
overcome constainted bandwidth: communication cooperation
can be formed by people from the same community or with
similar human behaviors. That is, colocating mobile devices
(peers) may share wireless Internet bandwidth with each other
to obtain higher streaming rate by distributing load among
themselves through underlying sharing links (i.e., high speed
local wireless links) [2].
The purpose of this paper is to obtain a in-depth un-

derstanding of cooperative mobile media streaming through
coalition game analysis, through which we obtain that system
information is beneficial to cooperative streaming formulation.
People move across environments, which poses higher churn
rates for mobile media streaming. This again points out the
necessity to obtain system information about peer movement,
following which we propose a colocation prediction algorithm.
Targetting cooperative mobile media streaming formulation,
our contributions in this paper are three-fold:
• To better understand interactions among peers cooper-
ating with each other for media streaming, we model
the cooperative mobile streaming problem as a coalition
game. We derive that energy supply and system infor-
mation about peer mobility are the foremost factors for
coalition formulation.

• To minimize energy consumpution, we propose a
cloud assisted system architecture for cooperative media
streaming and analyze the system under a generic concept
of content providers and underlying sharing links among
peers.

• To acquire peer mobility information, clouds collect colo-
cation statistics, predict the colocation durations between
peers, allocate peer pairs with highest predicted colo-
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cation durations for cooperative streaming, henceforth
limit peer churns to the minimum and achieve optimal
chunk scheduling. Considering the limited capacity of
some current mobile devices, we assume that peers scan
colocation peers periodically via short-range wireless
network interfaces (e.g., Bluetooth, increasingly being left
switched on [6]).

The rest of this paper proceeds as follows. We begin by
detailing the background of recent advances in mobile coop-
erative streaming (Section II). In Section III, colaborations
among peers are modeled as coalition games, from which
we derive some system design implications. In Section IV,
colocation statistics analysis are presented, before Section V
summerizes our discussions and sketches our furture plans.

II. BACKGROUND
A. Content Sharing
In [7] by McNamara et al., a media sharing mechanism is

designed to utilize colocation among commuters and renders
it possible to share content with each other in urban transport.
Analyses about how to handle colocation and share content
with peers potentially colocating with each other are con-
ducted. By selecting peers with the longest average colocation
duration, this mechanism ensures that each peer downloads an
intact file from another peer with higher probability. However,
this paper is restricted to opportunistic communication through
short-range wireless interfaces in urban transport without
Internet connections and colocation duration prediction may
not be satisfiable.

B. Mobile P2P Streaming
A realtime p2p mobile streaming system is proposed in [8]

by Peltotalo et al., demonstrating the feasibility of P2P
live streaming in mobile networks. Xie et al. [9] illustrate
their open source project of p2p live media streaming for
handheld devices, and demonstrate the low bandwidth and
limited computation capacity in a handheld device. Akkanen
et al. [10] show the technical feasibility to use portable
devices to actively broadcast media streams. Stiemerling et
al. [2] propose a P2P-TV system that enables mobile users to
cooperatively retrieve media chunks in resource constrained
mobile environments.

III. MODELING COOPERATIVE P2P STREAMING
In this section, we first propose our system architecture and

formulate cooperative mobile streaming problem, followed by
a coalition game analysis.

A. System Architecture
As depicted in Figure 1, in our system architecture, we

move computation demanding and peer administration tasks
onto clouds, considering the power, bandwidth, computation,
and storage limitations of mobile devices. For example, peers
are assisted with clouds for content discovery from content
providers, namely retrieval of content destination information,
especially when streaming from an existing P2P overlay.

Figure 1. System Architecture.

Clouds also assist in the formulation of cooperative streaming
via colocation statistics. For clarity, we denote by R(ui) the
content retrieved by peer ui, and ui is in the proximity of
uj . If R(ui) = R(uj), they may cooperate with each other to
download content and make best use of bandwidth; otherwise,
the one with spare bandwidth can potentially benefact the other
through social ties.

B. Problem Formulation and Local Streaming Cooperation

Due to bandwidth scarcity, a single peer with wireless
Internet connections may not possess enough bandwidth to
maintain a satisfactory streaming quality. In reality, colocation
peers may cooperate with each other when they are interested
in the same streaming content or “familiar” with each other
via a built-in social network. Therefore, content and bandwidth
sharing among peers is desirable for the streaming satisfaction
of peers: each peer streams one portion of the media and
exchange them with each other. To obtain a long-term stream-
ing quality, peers contribute their bandwidth endowments in
a cooperative manner and form a coalition. One peer joins a
coalition only if it obtains extra benefits, otherwise it will keep
out of this coalition. Thus, a coalition game theoretic analysis
is called for.

C. Game Formulation

The proposed collaborative streaming problem can be mod-
eled as a coalition game given by 〈N ,v〉, where function v
associates with every nonempty subset S of N a real number
v(S)—the worth of S—independent with the behavior of the
coalition N/S. A coalition S is a subset of the entire peer
set N = {0,1, . . . ,|N |}. Peers in a coalition are willing to
cooperate with each other, and herein the worth of S is called
the characteristic function.
Each peer i in the collaborative streaming system cares

about its average power consumption ci and average streaming
rate si in the period of streaming, both of which are determined
by cooperations among peers and vary w.r.t. S. Denote by Bw

i

bandwidth of its wireless Internet access interface, and Bt
i

bandwidth of its underlying local wireless network interface.
Power constraint is specified as follow: ci ≤ Ci, where Ci

depends on the specification of i’s power supply; the streaming
constraint is

si = s ≤ Bw
i +Bt

i and si ≤ Bw
i +

∑
j∈T

sji,
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where T is the set of current peers helping i and sji is
the streaming rate that i obtains from j. We assume that
communication for local cooperation is equipped with high
capacity links and peers within a coalition share the same
streaming quality. To this end, peer i’s streaming rate merely
depends on its residential coalition; henceforth, we drop the
subscript i in the streaming rate notation.
The utility function of peers within a coalition S ∈ N must

capture benefits earned from media streaming with the sacri-
fice of power consumption. For this purpose, peer i’s utility
function vi(S) must be an increasing function of streaming
rate s and a decreasing function of power consumption ci.
Before discussing characteristic function v(S), the utility for
node i in collaborative streaming is given by

vi(S) = gi(s)− fi(ci),

where gi(s) indicates the utility obtained, and fi(ci) the cost
function of power consumption. Streaming quality obtained by
each peer should be non-decreasing with respect to each peer’s
bandwidth endowment. For ease of analysis, we introduce
effort strength ηi to denote the bandwidth endowment of
peer i, and μi, the interest level of peer i to the current
streaming content in coalition S. In reality, peers value and
are willing to enjoy the streaming media iff interest levels are
higher than some interest level threshold μ∗. Hence, gi(s) is
practically defined as an increasing and twice differentiable
concave function [11]:

gi(s) = g(s) �

{
0 μi ≤ μ∗

log(1 +
∑

i∈S ηi) μi ≥ μ∗,

which is independent with specific peers. Any well suited cost
function fi(ci) should be nondecreasing with an upper bound
tolerable power consumption. Following [12], a cost function
satisfying these requirements is log barrier penalty function
given by

fi(ci) �

{
−tai

2log(1− ( ci
ai

)2) ci < ai
+∞ ci ≥ ai,

where t > 0 is a scale factor and ai is a power consumption
constraint.
The worth of a coalition S is equal to the streaming quality

of each peer in the coalition, taking away cost due to power
consumption. The characteristic function v(S) is properly
given by

v(S) = g(s)−
∑
i∈S

fi(ci). (1)

According to [11], a general coalition game 〈N,X,V,(�
)i∈N 〉 is defined as: X = R

N , V (S) = {x ∈ R
N :

∑
i∈S xi =

v(S) and xj = 0 if j ∈ N \ S } for each coalition S, and
x �i y if and only if xi ≥ yi. In the following, we provide
definitions of transferable utility and core, and subsequently
discuss the corresponding properties of our proposed coalition
game.

DEFINITION 1. A coalition game is a game with transfer-
able utility if v(S) may be distributed in any way among the

members of S. Otherwise, the coalition game is a game with-
out transferable utility, and each coalition S is characterized
by an arbitrary set V(S) of consequences.

PROPOSITION 1. The proposed coalition streaming game
model is a game without transferable utility.

Proof. The characteristic function of a coalition S is given
by Eqn. (1). Since the streaming quality of each peer is also
the streaming quality of the coalition, utility obtained from
streaming quality is equal for each peer in the coalition. Al-
though cost due to power consumption can be divided among
peers within a coalition, we still have v(S) 	=

∑
i∈S vi(S).

Therefore, the proposed coalition game has no transferable
utility.

DEFINITION 2. The core of the coalition game 〈N,X,V,(�
)i∈N 〉 is the set of all x ∈ V (N) for which there is no coalition
S and y ∈ V (S) so that y 
i x for all i ∈ S.

The coalition needs to bring benefits to peers willing to
cooperate. The core of the coalition game refers to a stable
coalition so that no coalition enjoys the capacity to upset
current cooperative coalition, and no peer holds incentive to
leave it. The following theorem discusses whether a grand
coalition will form in our proposed coalition game.

THEOREM 1. For our proposed coalition game 〈N,X,V,(�
)i∈N 〉, the grand coalitions of all peers with similar content
interest does NOT always form; rather, disjoint independent
coalitions will emerge.

Proof. First, any peer i with interest level μi < μ∗ will get
negative utility if it joins the coalition, so this kind of peers
have no incentive to join coalition. Secondly, peers without
sufficient power supply will not join the coalition due to high
cost. Finally, for peers with enough power supply and strong
interest, we assume vi(S) = v(S) = g(s), and consider the
following two cases. If peer i has little or even no opportunity
to form local sharing link with other peers in a coalition S
either spatially or temporally, it is not reasonable for it to stay
in coalition S. Also, information incompleteness due to peer
mobility, underlying sharing link, etc. does not guarantee that
peers always form a grand coalition.
In a nutshell, we have a coalition game without transferable

utility. In general, coalition game based problems seek to
derive algorithms for forming coalitions among peers. Since
coalition formulation has been a topic of high interest in
game theory, it is not difficult to find a suitable coalition
formulation algorithm. However, in this paper, we focus on the
system design implications of our proposed coalition game. In
reality, we assume that there exists a well-defined protocol in
underlying sharing links.

D. System Design Implications
Coalition game model presents us with illuminating system

design implications:
1) Iff one peer can contribute to and obtain streaming
benefits from an existing coalition, it will be included
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in the coalition.
2) Energy deficiency of mobile devices will definitely ren-
der them noncooperative, in which case peers consider
power consumption more urgent than the leisure of
media entertainment.

3) System information about peer mobility is beneficial to
the formulation of collaborative coalitions.

In this paper, we assume that, due to limited bandwidth,
mobile devices equipped with decent energy supplies can-
not obtain satisfactory streaming quality without cooperative
streaming. For this purpose, we propose a cloud assisted
social network architecture to minimize power consumption
and maximize system information about peer mobility.

IV. COLOCATION STATISTICS
In this section, we discuss streaming coordination and

colocation statistics among peers.

A. Optimal Chunk Retrieval Coordination Problem

(a) Chunk Retrieval Coordination
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Figure 2. Chunk Retrieval Coordination and Colocation Duration.

Here, we show our modeling efforts for chunk retrieval
coordination in a coalition. For analysis clarity, as in [2], we
collapse the group of N nodes into a single node with N
access links and a virtual chunk buffer; at the same time, we
shield details about content providers and clouds as a virtual
server as depicted in figure 2(a). Peers cooperate with each
other for media streaming. For each coalition, we assume that
there is a super peer with corresponding capacities—coalition
coordinator—responsible for chunk retrieval coordination;
otherwise, clouds fall back as the coalition cooradinator.
At time period t, ai = �{link i is up and in the coalition},

xi
j = �{the coalition uses link i to download chunk j}, and

�{·} is the indicator function, i.e., �(x) = 1 if x is true,
and �(x) = 0 otherwise. bi denotes the bandwidth of link i
at period t. The optimal chunk retrieval coordination favors
links with higher bandwidth and shows priority to chunks
more urgent for retrieval. Therefore, we formulate the coalition
utility to retrieve chunk j with playback time Tj via link i as

U i
j = αUL(aibi) + (1 − α)UC(Tj − t),

where α > 0, UL(·) is non-decreasing and UC(·) is non-
increasing.
For each time period, the chunk retrieval coordination is

equivalent to the assignment of tuples 〈i,j〉. Thus, we call
〈i,j,t〉 a retrieval coordination in period t for chunk j. Denote
by bij the bandwidth utilized by i for the retrieval of chunk j.

Our target is to maximize the total utility of the coalition in
the entire media streaming process:

max
∑
j

U i
jx

i
j , (2)

subject to
bij ≤ bi, t ≤ Tj .

If we possess the perfect information about inbound links,
such an optimization problem can be trivially solved in the
following fashion. At time t, coordinator c selects the link
with highest bandwidth to retrieve the most urgent chunk, i.e.
the chunk with min(Tj − t). In the event that there is still
available inbound links, c assigns the second urgent chunk
to the corresponding link similarly. This process repeats until
no available links are left, or all chunks for streaming are
retrieved.
However, information incompleteness of available inbound

links and link bandwidth fluctuations renders optimal chunk
retrieval coordination extremely difficult. For illustration, sup-
pose that we totally have three links for media retrieval at time
period t—link 1, 2, and 3 can retrieve 1 chunk, 2 chunks, and 2
chunks respectively. Now, if the coalition need 5 chunks, each
link retrieves chunks with their own capacity. However, in the
event that the coalition need 7 chunks, due to incompleteness
of information about whether each link is still available for
chunk retrieval in the next time period, it is difficult for the
coordinator to determine how to schedule the chunk retrieval.
Thus, we have the following proposition.

PROPOSITION 2. For cooperative mobile streaming, the
optimal chunk retrieval problem is equivalent to colocation
prediction among peers.

B. Active Prediction of Colocation Duration and Social Net-
work for Local Cooperation
In this section, we draw on one dataset from the MIT

Reality Mining Project [13], referred to as Reality, for colo-
cation statistics. As shown in figure 2(b), we obtain CDF
of colocation duration. The fact that most peers colocate
with each other for a short duration illustrates the necessity
of colocation duration prediction for cooperative streaming
formulation to minimize peer churns and increase peer utility.
After colocation duration prediction, we justify the need to
build a social network based on peer colocation statistics as a
platform for incentive mechanism design to motivate peers in
proximity but without similar streaming interests to cooperate
with each other.
Colocation Duration Prediction. We leverage clouds for

colocation statistics. As stated in [7], we need to consider the
temporal and spacial regularity, and cyclic variations of human
mobility [5], which lead to the necessity of personalized
profiles to record trajectory histories of peers on clouds. We
utilize an ARIMA model for colocation duration prediction.
We practically assume that peers are location-aware in terms of
peer proximity and utilize Bluetooth scanning as a illustrative
scenario in the following description.
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Clouds update profiles in the following fashion. Each peer
periodically discovers peers in reach and reports to clouds.
Clouds maintain a personalized profile for each peer, including
colocation durations with another peer. However, clouds do
not need to maintain a catalog for all colocations of each peer
it meets in daily life; rather, clouds only keep a record of
peers with colocation duration larger than a threshold (e.g.,
100 seconds in the following analysis). When clouds receive
a peer’s report about the coincidence of a stranger (i.e., a
peer not in its personalized profile), clouds check colocation
duration at this time. If larger than the threshold, it adds it
into the familiar profile. Otherwise, it adds this stranger to
a stranger profile. If the peer meet this stranger frequently,
it adds this stranger to the useless familiar profile to avoid
redundant handling. In this way, we may detect the arrivals
and departures of peers in u’s proximity.
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Figure 3. ARIMA Model Identification.

As the colocation duration time series xt is gener-
ally nonstationary (i.e., a time series contains a systematic
change), the autoregressive integrated moving average model,
ARIMA(p,d,q)— a standard linear predictor to tackle non-
stationary time series—is utilized for colocation duration pre-
diction [14]. ARIMA(p,d,q) involves two steps: the decision of
p, d, q (model identification) and the estimation of p+q weight
coefficients (model estimation). We derive an ARIMA(0,2,1)
model in that the 2nd-order differencing is zero mean, values
of autocorrelation (ACF) for longer lags tend to be zero and
partial autocorrelation (PACF) tails off (figure 3). Therefore,
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Figure 4. Colocation Duration Prediction with ARIMA(0,1,1).

we can derive the prediction function

x̂t+1 = 2xt − xt−1 − ε(xt − x̂t),

where x̂t is the predicted time series and ε is the coefficient
for the random error xt− x̂t, trained with colocation duration
statistics. As depicted in figure 4, the observed data xt is the
colocation duration time series between two peers. We notice
that the ARIMA prediction time seires x̂t is obviously much
better than the mean method utilized in [7].
Social Network for Incentive Mechanism Design. Based

on the above peer colocation statistics, clouds may build an
social network infrastructure to encourage cooperations among
colocation peers, even when they do not share the same
content interest. When peer u is in need of bandwidth, it
reports current peers in reach, and clouds predict the remaining
colocation duration with each discovered peer. Then, clouds
send requests to peers with longest prediction colocation
duration in the social network to help u. In reality, social
network builds bonds among mobile users and potentially
guarantees a platform for the formulation of an exchange
economy and a well-designed infrastructure for effortless
coalition formulation.

V. CONCLUSION
In this paper, we propose a cloud-assisted system archi-

tecture for media streaming in mobile Internet to minimize
power consumption of mobile devices. We show our modeling
efforts for cooperative streaming utilizing coalition games
and optimal chunk retrieval coordination. Further, we predict
colocation durations between peers with the aid of an ARIMA
model, which is very important for cooperative streaming
formulation. The predicted time series show better accurracy
than normally used mean method. System implementation
remains for further study.
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