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ILP Formulations for �-Cycle Design Without
Candidate Cycle Enumeration
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Abstract—The concept of �-cycle (preconfigured protection
cycle) allows fast and efficient span protection in wavelength divi-
sion multiplexing (WDM) mesh networks. To design �-cycles for a
given network, conventional algorithms need to enumerate cycles
in the network to form a candidate set, and then use an integer
linear program (ILP) to find a set of �-cycles from the candidate
set. Because the size of the candidate set increases exponentially
with the network size, candidate cycle enumeration introduces a
huge number of ILP variables and slows down the optimization
process. In this paper, we focus on �-cycle design without candidate
cycle enumeration. Three ILPs for solving the problem of spare
capacity placement (SCP) are first formulated. They are based
on recursion, flow conservation, and cycle exclusion, respectively.
We show that the number of ILP variables/constraints in our
cycle exclusion approach only increases linearly with the network
size. Then, based on cycle exclusion, we formulate an ILP for
solving the joint capacity placement (JCP) problem. Numerical
results show that our ILPs are very efficient in generating �-cycle
solutions.

Index Terms—Integer linear program (ILP), -cycle (pre-
configured protection cycle), protection, wavelength division
multiplexing (WDM) mesh networks.

I. INTRODUCTION

O PTICAL networks based on wavelength division multi-
plexing (WDM) provide the backbone infrastructure for

high-speed data communications. In WDM networks, hundreds
of wavelengths can be multiplexed onto a single fiber for parallel
data transmission. This not only fully utilizes the fiber band-
width, but also efficiently reduces the network cost. Because of
the high-speed nature of WDM networks, network survivability
is of paramount importance. Upon an accidental failure such as
a fiber-cut, it is imperative that the network can achieve fast op-
tical recovery in order to minimize data loss.

As optical network topology evolves from ring to mesh,
the concept of -cycle (preconfigured protection cycle) [1]
enables fast span/link protection with high capacity efficiency.
The idea is to organize the spare capacity in the network into
a set of preconfigured cycles to protect all the traffic on each
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Fig. 1. An example of �-cycle protection.

span (i.e., 100% span protection). Unless otherwise specified,
a -cycle in this paper always refers to a unity- -cycle, which
is implemented by using one unit of spare capacity (or one
wavelength) on each span it traverses. A span traversed by a

-cycle is called an on-cycle span of this -cycle. If a span is
not traversed by a -cycle but its two end nodes are, then it is a
straddling span of this -cycle. In an undirected network with
at most a single span failure at a time, a -cycle can protect
one unit of traffic on each on-cycle span and two units on each
straddling span. Fig. 1 gives an example. Spans traversed by
the dashed -cycle are on-cycle spans. Other spans, i.e., (0, 1)
and (3, 4), are straddling spans. If on-cycle span (2, 3) fails, one
unit of traffic on (2, 3) can be rerouted to the other side of the

-cycle, or path 2-0-4-1-3. If straddling span (0, 1) fails, two
backup paths 0-4-1 and 0-2-3-1 are available and thus two units
of traffic on span (0, 1) can be protected. Although a -cycle
does not have any spare capacity reserved on the straddling
spans, the spare capacity on the -cycle can be shared to
protect both the on-cycle and straddling spans. As a result, this
link-based -cycle protection scheme yields very high capacity
efficiency comparable to shared backup path protection (SBPP)
[2]. On the other hand, since the spare capacity on the -cycle
is preconfigured, only the two end nodes of the failed span
need to fulfill real-time switching upon failure. This leads to
a bidirectional line switched ring (BLSR) [3] ring-like fast
recovery speed.

Because of its outstanding performance on both recovery
speed and capacity efficiency, -cycle has attracted extensive
research interests [4]–[23] since it was first introduced in 1998
[1]. Recently, it was also extended to path/segment protection
[24], [25] at the cost of a slower recovery speed.

For a given network, -cycle design [26] can be formulated as
either the problem of spare capacity placement (SCP), or joint
capacity placement (JCP). In SCP [1], [9], traffic load on each
span is given. That means traffic demands have been properly
routed according to some routing algorithm (such as shortest
path routing). The objective of SCP is to minimize the spare ca-
pacity required for 100% span protection. In contrast, JCP de-
sign [16], [17] jointly optimizes both the routing scheme and
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Fig. 2. A cycle set �� with two disjoint cycles. Broad-brush lines/curves de-
note on-cycle spans, and regular lines denote off-cycle spans.

the spare capacity placement to minimize the total capacity re-
quired.

Conventional algorithms follow a two-step approach to de-
sign -cycles in a given network. The first step enumerates all
or a part of all the distinct cycles [27] in the network to form
a candidate set. Based on some cycle preselection heuristics
[18]–[21], the candidate set may only include a given number
of cycles with high merit. The second step finds a set of -cy-
cles from the candidate set based on an integer linear program
(ILP). Generally, the total number of all the cycles in a network
soars exponentially with the network size. For -cycle design
in a large-size network, even if only a part of all the cycles are
selected as candidate cycles, cycle enumeration may still lead
to a large candidate set which slows down the ILP optimiza-
tion process. While not as theoretically complex as some sur-
vivable network design problems, -cycle design with guaran-
teed solution quality using cycle enumeration may be too com-
plex to be solved in practice. To this end, some works focus
on pure heuristics [19], or modified/relaxed ILP models with
only a small set of necessary cycles enumerated [17], [28], [29].
Among them, the column generation approach [28], [29] is the
most promising one by employing advanced ILP optimization
techniques. It separates the ILP problem into a master problem
and a pricing problem, and then adopts an iterative process to
find the solution.

In this paper, we focus on formulating efficient optimal ILP
models without candidate cycle enumeration. Three ILPs are
first formulated for solving the SCP -cycle design problem.
They follow three different approaches, recursion, flow conser-
vation and cycle exclusion. In particular, the number of ILP vari-
ables and constraints in the cycle exclusion-based ILP only in-
creases linearly with the network size. We further extend the
cycle exclusion-based ILP to solve the problem of JCP -cycle
design.

The rest of the paper is organized as follows. Section II in-
troduces the cycle set definition, which is an important concept
in our ILP formulations. Some related work on ILP formula-
tion without candidate cycle enumeration is also reviewed. In
Section III, four ILPs are formulated, three for solving the SCP
problem and one for the JCP problem. Section IV gives numer-
ical results and Section V concludes the paper.

II. CYCLE SET AND RELATED WORK

In an ILP formulation, cycles can be defined by requiring each
node in the network to have either 2 or 0 on-cycle spans incident
on it [22]. With this definition, multiple disjoint cycles may be
generated at a time, where two disjoint cycles do not have any
common on-cycle span or node. Fig. 2 shows an example of

Fig. 3. Master node in Schupke’s ILP [22].

two disjoint cycles. Without loss of generality, we call the set
of cycles generated from the above definition as a cycle set
with index , where is the maximum number
of cycle sets in a solution. We further define that if a span is an
on-cycle or straddling span of any cycle in , it is an on-cycle
or straddling span of . If a cycle set is chosen to provide

-cycles, it can protect all its on-cycle and straddling spans. In
Fig. 2, span is not a straddling span of because it
straddles two disjoint cycles. Therefore, is not protected
by . For simplicity, we say that a node or span is on if
it is traversed by any cycle in .

To the best of our knowledge, Schupke’s ILP [22] is the only
work for -cycle design without cycle enumeration. It adopts a
flow-based analysis to ensure a single cycle in each . As a
result, a span can be protected by the only cycle in if its
two end nodes are on . In Schupke’s ILP, a unique master
node is defined on each cycle set and it serves as the source
of all flows, as shown in Fig. 3. Other nodes in the network are
target nodes. Each target node receives a flow generated by
the master node. If the flow can move along the on-cycle spans
of to reach , then is on . Otherwise, the flow must
traverse some spans not on and, thus, the target node is not
on (e.g., node in Fig. 3).

Despite of its theoretical significance of removing candidate
cycle enumeration, Schupke’s ILP needs a very long running
time. This is mainly due to four reasons: 1) the ILP must check
all the master-target node pairs in the network to ensure a single
cycle in ; 2) the ILP must determine a specific master node
on in order to prove the optimality of the solution, though
it does not matter which master node is chosen (as long as it is
on ); 3) since each -cycle is not treated as a unity- -cycle,
the ILP must also determine the number of required copies of
each cycle; 4) the number of variables and constraints in the ILP
is a quadratic function of the number of nodes in the network.
To reduce the running time of this ILP, a four-step heuristic is
proposed in [22] for finding suboptimal solutions.

III. ILP FORMULATIONS

We formulate ILPs for solving both SCP and JCP problems.
For easy reference, we summarize the notations in our ILPs in
Fig. 4. Undirected networks are considered with at most a single
span failure at a time. We also assume there are enough wave-
length channels and wavelength converters to support all neces-
sary optical connections.

A. Recursion-Based ILP for SCP

We observe that it is not necessary to ensure a single cycle
in each cycle set (as in Schupke’s ILP [22]). With mul-
tiple disjoint cycles in a , a -cycle solution can still be con-
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Fig. 4. Notations in the ILP formulations.

structed if we can properly identify individual spans that can be
protected by each .

To check whether a span can be protected by a cycle set
, we examine if there is a route on connecting nodes

and , where the route can only consist of on-cycle spans of
. We refer this process as checking the connectivity between

and . If such a route exists, then nodes and are on the same
cycle, or “ connects to ” for short. Accordingly, span is
either an on-cycle or a straddling span of this cycle, and it can
be protected by . Otherwise span cannot be protected
by .

Motivated by some classic routing algorithms such as Dijk-
stra’s and Floyd-Warshall algorithms [30], we design a recur-
sive process for connectivity checking. In Fig. 5, checking the
connectivity between nodes and is equivalent to checking
the connectivity between nodes and , because is an
on-cycle span. This further depends on the connectivity between
nodes and if is also an on-cycle span, and so on. De-

Fig. 5. Recursive process.

fine node as the starting node of the recursion. The nodes in-
volved in the recursion are sequentially referred to in a unidi-
rectional manner along the cycle, as indicated by the dashed ar-
rows in Fig. 5. If and are on the same cycle, the recursion
will be stopped when node is referred to (defined as the first
stop condition). Then, span can be protected by . On
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the other hand, if span in Fig. 5 is checked and node
is the starting node, the recursion will be stopped when node
is revisited (defined as the second stop condition). In this case,
nodes and are not connected and thus span cannot be
protected by .

Based on the above mechanism, an ILP for solving the SCP
problem is formulated below, with given traffic load and cost

for each span .

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Objective in (1) aims at minimizing the total cost of all cycle
sets/ -cycles. Constraint (2) defines a cycle set by requiring
each node in the network to have either 2 or 0 on-cycle spans in-
cident on it. Constraint (3) ensures 100% span protection, where

gives the number of traffic units on span
that can be protected by . takes 1 if is
an on-cycle span, 2 if is a straddling span, and 0 oth-
erwise. Constraints (4)–(10) formulate the recursive process to
check whether span can be protected by . Constraint
(4) specifies that node must always “connect” to itself. This
provides the first stop condition for the recursion when node is
referred to. Constraint (5) defines “ connects to via ”, where

if connects to (i.e., ) and is
an on-cycle span (i.e., ). Constraint (6) stipulates that,
connects to on only if there exists a neighbor of such
that “ connects to via .” Constraint (7) prohibits any pos-
sible loopback to the starting node by preventing to connect
with any node via . This provides the second stop condition
for the recursion. Constraint (8) determines whether span

Fig. 6. Flow conservation approach.

can be protected by . Constraint (9) means that, if there is
no on-cycle span incident on node , then we cannot find a route
on between and any other node in the network. Finally,
(10) ensures that the recursion is carried out in a unidirectional
manner. Assume is an on-cycle span, and we have re-
ferred to node for checking the connectivity between nodes

and . With constraint (10), we cannot refer back to node
when we further check the connectivity between nodes and .

Compared with Schupke’s ILP [22], the above recur-
sion-based ILP runs much faster. Instead of checking all
the node pairs to ensure a single cycle in each , it only
checks whether each individual span can be protected by
a . Since each -cycle is defined as a unity- -cycle,
this ILP does not calculate the required number of copies
of each -cycle. Approximately, the ILP formulated in
(1)–(10) has variables and

constraints
(the exact number of variables and constraints depends on
whether node or serves as the starting node). Note that is
the maximum number of cycle sets allowed in the solution. Its
value can be set according to (37).

B. Flow Conservation-Based ILP for SCP

Unlike the recursion-based ILP above, we now adopt a flow
conservation-based analysis to check whether span can
be protected by . Without loss of generality, we assume that
node is the source and node is the sink. We check if a flow
between and can be carried only by the on-cycle spans of

. (Note that Schupke’s ILP [22] allows a flow to move along
any span in the network.) Source can generate at most one flow
but it does not receive any flow. Similarly, sink can receive at
most one flow but it does not generate or relay any flow. Except
source and sink , all other nodes in the network must obey
flow conservation [30]. If both and are on the same cycle
as in Fig. 6, then a flow between and exists, and span
can be protected by . If span in Fig. 6 is checked
instead, no flow exists between and , and span cannot
be protected by .

For an arbitrary node in the network, if an on-cycle span inci-
dent on it carries a flow, we say that there is a unit-flow incident
on this node. To reduce the number of variables and constraints
in ILP, we can use an undirected flow to replace the directed
one in Fig. 6. Then, flow conservation can be formulated by re-
quiring each node (except source and sink ) to have either 2
or 0 unit-flows incident on it, whereas or can have at most
1 unit-flow incident on it. With the notations defined in Fig. 4,
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Fig. 7. On-cycle vector, voltage, reversal and root node. (a) A �-cycle in �� . (b) A reversal at node �. (c) A reversal at node �. (d) Voltage value conflict at
node �.

the flow conservation-based ILP is formulated here for solving
the SCP problem.

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Objective in (11) aims at minimizing the total cost of all -cy-
cles (or cycle sets). Constraint (12) defines cycle sets and (13)
ensures 100% span protection. Constraint (14) gives a neces-
sary (but not sufficient) condition to identify those spans pro-
tected by , i.e., a span can be protected by only if its
two end nodes are on . This constraint confines the solution
space and thus speeds up the optimization process. Constraints
(15)–(19) check whether a span can be protected by
based on flow conservation. By (15), flows can only move along
the on-cycle spans of . Constraints (16) and (17) require
source and sink to have at most 1 unit-flow incident on each.
Constraint (18) formulates the flow conservation property for
other nodes in the network. Finally, (19) indicates that,
can be protected by if there is a unit-flow incident on source

. In fact, can be protected by if any flow exists on
.

Compared with the recursion-based ILP, the above flow con-
servation-based ILP is simpler. To check whether a span can
be protected by a , the former must retrieve nodal connec-
tivity in a recursive manner, but the latter only examines the
existence of a unit-flow on . In other words, the former
requires “node level” details but the latter only requires “path
level” details. The flow conservation-based ILP in (11)–(19) in-
volves variables and

constraints. Both numbers are smaller
than that in the recursion-based ILP.

C. Cycle Exclusion-Based ILP for SCP

Schupke’s ILP [22] pays great effort in ensuring a single cycle
in each cycle set . In return, it is very simple in checking
whether a span can be protected by a . In Schupke’s ILP,
span can be protected by if and only if both and

are on the only cycle in . In contrast, our recursion and
flow conservation based ILPs greatly simplify cycle formula-
tion by allowing multiple disjoint cycles in , but the down-
side is that we need a more complex process to check whether
each span can be protected by . In the following, we
formulate a cycle exclusion-based ILP to take the advantages
from both sides, i.e. simple cycle formulation and easy protec-
tion checking.

We use a directed on-cycle vector (vector for short) to denote
each on-cycle span. An on-cycle span of is denoted
by either or , but not both. The direction of the
vector is not important, as either vector sufficiently denotes the
on-cycle span . If a span in the network is not associated
with a vector, then it is not an on-cycle span of . For the

-cycle in Fig. 7(a), Fig. 7(b) and (c) give two possible represen-
tations using different sets of vectors. For each vector , we
define node as the head and node as the tail. A value called
voltage is assigned to each node in the network, and its absolute
value is not important. For each vector , we only require
that its tail has a larger voltage value than its head . If two
vectors have a common tail on , e.g. node in Fig. 7(b) and
node in Fig. 7(c), we say that there is a reversal at this node,
and the common tail is called a reversal node. If two vectors
have a common head on , e.g., node in Fig. 7(b) and (c),
we call this common head a root node.

In Fig. 7(b)–(d), a number (fraction) next to each node de-
notes a possible voltage value for that node. If there is a single
root-reversal node pair on the cycle [as in Fig. 7(b) and (c)], then
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Fig. 8. Only the cycle with a root-reversal node pair can exist in �� .

a feasible set of voltage values exists. If a cycle does not have
any root-reversal node pair [as in Fig. 7(d)], there must exist a
voltage value conflict at some node on the cycle. An example
is shown in Fig. 7(d). If we start from node and move along
the direction of the vectors, the nodal voltage value increases
monotonically until we loop back to the starting point . Node

should have a voltage value larger than 0.04 of node , but
smaller than 0.01 of node . This causes a conflict.

Based on the above observation, we can see that ensuring
a single cycle in each is equivalent to ensuring a unique
root-reversal node pair in each . When there are multiple
cycles in (as in Fig. 8), only the one with the root-reversal
node pair remains, and all other cycles will be excluded to avoid
voltage value conflicts. We call this process cycle exclusion.
After cycle exclusion, a span can be protected by the only cycle
in if and only if its two end nodes are on . With the no-
tations defined in Fig. 4, the cycle exclusion-based ILP is formu-
lated below for solving the SCP -cycle design problem. Note
that we still call it an ILP for simplicity, although a fractional re-
laxation on voltage values is used to speed up the optimization.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

The total cost of all -cycles is minimized by (20). Constraint
(21) associates each span to at most one vector
in each , either , , or none. Constraint (22)

defines cycle sets using vectors. Each node in the network
has either 2 or 0 on-cycle vectors incident on it (regardless of
the direction of the vectors). Constraint (23) ensures 100% span
protection. Constraint (24) allows at most one root node in each

. Constraint (25) says that, only the root node can serve
as a common head for two vectors, and any other node in the
network can be a head for at most one vector. This ensures a
single root-reversal node pair in . Constraint (26) requires
the tail of each vector to have a larger voltage value than the
head. Constraint (27) indicates that, a span can be protected by
the only cycle in if its two end nodes are on .

From (26), we have and if
is not an on-cycle span of , or . Note

that the network contains nodes and their voltage values may
be arranged in a monotonically increasing order with a step of
(at least) as formulated in (26). To ensure that each node has
a proper voltage value, we set

(28)

Note that is a predefined constant. Its specific value is also
not important as long as (28) is satisfied. On the other hand,
voltage values can also be defined as integers if constraint (26)
is replaced by (29) below, where is an arbitrary constant not
smaller than .

(29)
This turns the formulation into a true ILP.

Compared with the recursion and the flow conservation
based ILPs, which require either “node level” or “path level”
details, the cycle exclusion-based ILP only involves “cycle
level” details. Since this ILP ensures a single cycle per , it
is very efficient in checking whether a span can be protected by
a . In contrast, both the recursion and the flow conservation
based ILPs need a dedicated set of variables and constraints
for each span. The cycle exclusion-based ILP in (20)–(27)
involves variables and
constraints, which only increase linearly with the network size
if is given.

D. Cycle Exclusion-Based ILP for JCP

In the JCP problem, traffic demands are expressed as the
bandwidth requirements for all source-destination node pairs
(i.e., traffic matrix ). Since working paths are jointly opti-
mized with spare capacity placement, working capacity on
each span becomes a design parameter. For simplicity, we
focus on an undirected network, and only consider the upper tri-
angle of a symmetric traffic matrix . To facilitate our formu-
lation on the routing process, we first treat each demand as
a directed demand from source to destination . Then, the re-
quired working capacity on each span is obtained by
adding up the working capacity on in both directions.

Our ILP for solving the JCP problem is based on the cycle ex-
clusion approach formulated in (20)–(27), due to its simplicity
as compared with both the recursion and the flow conservation
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TABLE I
COMPARISON OF THE NUMBER OF VARIABLES AND CONSTRAINTS IN DIFFERENT ILPS

based approaches. In particular, objective in (20) is replaced by
(30).

(30)

In addition to (21)–(27), constraints (31)–(34) below are re-
quired for routing optimization.

(31)

(32)

(33)

(34)

Constraint (31) calculates by adding up the working ca-
pacity on span for all demands . For any demand ,
(32)–(33) specify that the number of traffic units generated at
source and arrived at destination must equal to . Con-
straint (34) ensures flow conservation for each demand . Ex-
cept source and destination , all other nodes in the network
must have equal number of inbound and outbound flow/traffic
units for each demand .

In addition to the variables and
constraints in (21)–(27), (30)–(34) introduce

additional variables and constraints,
where is the number of nonzero demands in the traffic
matrix .

E. Discussion

Our ILPs can be easily extended to -cycle design with a
hop-count or circumference limit . In either recursion or flow
conservation based ILP, this can be achieved by adding (35).

(35)

For the two cycle exclusion based ILPs (for SCP and JCP, re-
spectively), (36) is needed instead.

(36)

Note that (the maximum number of cycle sets allowed in the
solution) is a predetermined parameter in all our ILPs. It should
be set sufficiently large whereas the final solution may contain
less cycle sets. But, a large may slow down the optimization
process, because for a given network the number of variables
and constraints increases linearly with . Define a segment as a
path consisting of at least two spans and with a degree of 2 at
any intermediate node. Let be the set of spans on all segments
and be a small positive integer. For solving the SCP -cycle
design problem, we can set according to (37).

(37)

This is because -cycles tend to straddle the most heavily loaded
span so as to protect two units of traffic on it. On the other hand,

-cycles cannot straddle a span on a segment, and thus only
one unit of traffic on such a span can be protected by a -cycle
traversing it. For JCP -cycle design, (37) cannot be applied
because on each span is yet to be determined. As a
substitute, we can first try shortest path routing based on the
given traffic matrix to calculate an estimated for each span

, and then use (37) to calculate the required value of .
Table I compares the number of variables and constraints in-

volved in different ILPs. In the conventional ILP with candi-
date cycle enumeration [1], the number of variables equals to
the total number of cycles in the network, which increases ex-
ponentially with the network size. In Schupke’s ILP [22] and our
recursion and flow conservation based ILPs, both the number of
variables and constraints are quadratic functions of the number
of nodes or spans . Notably, those numbers only increase
linearly with and in our cycle exclusion-based ILP for
SCP (assume is given).

IV. NUMERICAL RESULTS

We use CPLEX 10.0 [31] to solve the ILPs on a standard
Pentium IV 2.2 GHz computer, with CPLEX parameters below
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Fig. 9. SCP solutions for two networks with � � � at each span ��� �� � ��� . (a) A network taken from [23] (���� � � ��, ����� � ��). (b) SmallNet with ���� � � ��
and ����� � ��.

to speed up the optimization.

(38)

Unless otherwise specified, solutions obtained are SCP solu-
tions without cycle length limit. In all examples, we set

for the cycle exclusion-based ILPs. For brevity, in the fig-
ures we denote the four ILPs formulated in this paper by RC (re-
cursion-based ILP for SCP), FC (flow conservation-based ILP
for SCP), CE (cycle exclusion-based ILP for SCP), and JCP
(cycle exclusion-based ILP for JCP), respectively.

The two networks in Fig. 9 are first considered, with span cost
at each span . A number next to each span in

the topologies gives the number of traffic units on that span
(same for other examples). Since the ILPs need relatively long
time to prove the optimality of the solution, we only take solu-
tions within a 5% gap to optimality (by setting tol-
erance mipgap in CPLEX). Note that the total cost 85 in Fig. 9(a)
is actually the optimal result according to [23]. Though all of our
three ILPs for SCP generate a solution in a reasonable amount
of time, we can see that the time required by the cycle exclu-
sion-based ILP is the shortest.

A case study based on the pan-European COST 239 network
(with 11 nodes and 26 spans) is shown in Fig. 10, with dis-
tance-related span costs defined in Fig. 10(a). The traffic matrix
in Fig. 10(b) is obtained by dividing the traffic matrix in [32] by

10 Gbps. The demands are then routed according to shortest path
routing, and Fig. 10(c) shows the traffic load on each span after
routing. Based on Fig. 10(c), the SCP solutions obtained from
our recursion, flow conservation and cycle exclusion based ILPs
with are summarized in Fig. 10(d). We can see that the
cycle exclusion-based ILP dramatically cuts down the running
time when compared with the other two. In particular, Fig. 10(e)
lists the set of -cycles generated by the cycle exclusion-based
ILP, which is obtained in only 34.68 s. Among the 7 -cycles in
Fig. 10(e), the one marked with an asterisk has the largest cir-
cumference of 5940 km. Fig. 10(f) gives another SCP solution
with a -cycle circumference limit of 5800 km. It is obtained by
including constraint (36) in the cycle exclusion-based ILP.

JCP is also considered in Fig. 10 with the same traffic matrix
in Fig. 10(b). The solution obtained (without -cycle length
limit) contains not only a set of -cycles as listed in Fig. 10(g),
but also a routing table as shown in Fig. 10(h). In Fig. 10(g),
we can see that there are only 4 -cycles in the solution.
This explains why the JCP solution is obtained faster (only in
18.26 s) than its SCP counterpart (in 34.68 s with 7 -cycles).
In Fig. 10(h), we can observe the differences between JCP
routing and shortest path routing adopted in the SCP scenario.
Specifically, the demands in the dashed rectangles are assigned
with two working paths, whereas in shortest path routing we
have required each demand to follow a single working path.
Besides, in Fig. 10(h) many demands do not follow the shortest
path. For example, the working path for demand is 0 6
with a length of 740 km, but the shortest path between nodes 0
and 6 is 0-3-6 with a total length of 730 km. We also calculate
the traffic load on each span based on the routing table in
Fig. 10(h), and the result is shown in Fig. 10(i). Compared with
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Fig. 10. A case study based on the pan European COST 239 network with 11 nodes and 26 spans (10 Gbps per wavelength). (a) Span costs in kilometers. (b) Traffic
matrix. (c) Span load under shortest path routing. (d) Comparison among RC, FC , and CE based on (c). (e) SCP solution based on CE for (c) (� � �, � � ����).
(f) SCP solution based on CE for (c) with a �-cycle length limit of 5800 km. (g) �-cycles in the JCP solution. (h) Routing table in the JCP solution. (i) Span load
in the JCP scenario.

Fig. 10(c), the traffic loads on the spans are better balanced in
Fig. 10(i). This explains why the JCP solution only requires 4

-cycles [Fig. 10(g)], in contrast with 7 -cycles in the SCP
solution [Fig. 10(e)]. Generally, JCP routing can achieve a
better load balancing than shortest path routing. As a result,
less number of -cycles is required in the JCP solution. Recall
that in JCP, we have proposed to try shortest path routing to
estimate before calculating the required value of using

(37). Our above analysis validates this approach because the
required value of in JCP is generally not larger than that
in SCP. Based on Fig. 10(a), (c), and (e), the total capacity
required in the SCP solution (without -cycle length limit) is
93 760 (spare capacity 32 760 plus working capacity 61 000).
We can see that the JCP solution with a total capacity of 83 245
in Fig. 10(g) achieves a capacity saving of 11.21% over the
SCP solution.
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Fig. 11. SCP solutions for the pan-European COST 239 network with span costs in Fig. 10(a) (2.5 Gbps per wavelength).

Fig. 12. SCP solution based on CE with � � �� and span cost � � � for ��� �� � ��� .

In the pan-European COST 239 network, if we use 2.5 Gbps
instead of 10 Gbps to divide the traffic matrix in [32] and then
route the demands according to shortest path routing, we can
get the traffic load on each span as shown in Fig. 11(a). Com-
pared with Fig. 10(c), the number of traffic units on each span
is larger due to the finer wavelength granularity. So, we set
to a larger value of 15 according to (37). Fig. 11(b) compares
the running time of the recursion, flow conservation and cycle
exclusion based ILPs, and Fig. 11(c) shows the -cycles gener-
ated by the cycle exclusion-based ILP. Again, the cycle exclu-
sion-based ILP runs much faster than the other two. Note that the
recursion-based ILP is terminated after 5 h (by setting 18 000
timelimit in CPLEX). Comparing Fig. 11(b) with Fig. 10(d), we
can see that the running time increases with for each ILP. To

check the efficiency of our cycle exclusion-based ILP for large
values, we consider the network in Fig. 12 with . We

can see that a good SCP solution can still be returned in a rea-
sonable running time.

We also compare the cycle exclusion-based ILP with the con-
ventional ILP [1] with candidate cycle enumeration. Cycles are
enumerated using the algorithm in [27]. For small size networks,
cycles can be enumerated in a short time, and the size of the can-
didate set is not too large. For example, the pan-European COST
239 network in Fig. 10(c) contains 3531 distinct cycles, which
can be found in less than 2 s. As network size increases, cycle
enumeration needs a long time and the size of the candidate
set soars exponentially. For the randomly generated network in
Fig. 13 (with 30 nodes and 62 spans), we find 13 343 782 cycles
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Fig. 13. SCP solution for a randomly generated large-sized network using CE.

in 16 420 s (4.56 h). Though cycle enumeration is still manage-
able, it is infeasible for the conventional ILP [1] to handle so
many cycles. In contrast, our cycle exclusion-based ILP (with

and ) can return an SCP solution with a gap to
optimality of 4.83% in 31 520.35 s (8.76 h).

It should be noted that we do not compare our ILPs to the con-
ventional ILP [1] with candidate cycle preselection [18]–[21],
or other heuristic algorithms (e.g., CIDA [19]), due to multiple
reasons as follows. First, we focus on an optimal ILP model,
whereas those approaches are heuristic-based. As a result, the
solution quality of those approaches is not guaranteed, whereas
our ILPs always ensure an explicit gap to the true optimality in
the solution; Second, such a comparison is meaningful in eval-
uating the performance of those heuristics, which is out of the
scope of this paper. In fact, such heuristic performance evalua-
tion has been investigated in [19] and [21] based on some small-
size networks. It is observed that the solution quality obtained
from those heuristics is generally 10%–20% worse than the op-
timal solution, or a close-to-optimal solution can be achieved
if 20%–40% of all cycles are preselected (in a large-size net-
work as the one in Fig. 13, this still introduces a huge number
of ILP variables); Third, the performance evaluation in [19],
[21] is obtained based on some small-size networks. As net-
work size increases, the solution quality of the heuristic-based
approaches intends to be even worse. For example, Grow algo-
rithm [19] preselects cycles, but the total number

of cycles in the network increases exponentially with network
size (i.e., grows faster than ). As network size in-
creases, the ratio of the number of preselected cycles to the total
number of all cycles decreases rapidly, leading to a poorer solu-
tion quality (than 10%–20% gap-to-optimality); Finally, even
if we use Grow algorithm [19] to preselect candidate cycles,
for the network in Fig. 13, the number of candidate cycles still
reaches a magnitude of .
This is only 0.86% of all 13 343 782 cycles, but still introduces
115 320 variables which could be hard to be handled by the
ILP. In contrast, our cycle exclusion-based ILP for SCP (with

) only involves variables and
constraints. Though the

number of constraints in our ILP is larger than in the
conventional approach, the overall problem size of our ILP is
still much smaller.

V. CONCLUSION

We focused on optimal -cycle design without candidate
cycle enumeration and preselection. Three ILPs were first for-
mulated for solving the SCP problem, based on recursion, flow
conservation and cycle exclusion, respectively. We showed that
the cycle exclusion-based ILP is the most efficient one. The
number of ILP variables and constraints involved in the cycle
exclusion-based ILP only increases linearly with network size.
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This is a great advantage over the conventional ILP with can-
didate cycle enumeration, where the number of ILP variables
increases exponentially with network size. We also formulated
another ILP for solving the JCP problem by extending our cycle
exclusion approach. Numerical results showed that our ILPs
are very efficient for -cycle design in various WDM networks.
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