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Passivity Check of S-Parameter Descriptor Systems
via S-Parameter Generalized Hamiltonian Methods

Zheng Zhang, Student Member, IEEE, and Ngai Wong, Member, IEEE

Abstract—This paper extends the generalized Hamiltonian
method (GHM) (Zhang ef al., 2009; Zhang and Wong, 2010) and
its half-size variant (HGHM) (Zhang and Wong, 2010) to their
S-parameter counterparts (called S-GHM and S-HGHM, respec-
tively), for testing the passivity of S-parameter descriptor-form
models widely used in high-speed circuit and electromagnetic
simulations. The proposed methods are capable of accurately de-
tecting the possible nonpassive regions of descriptor-form models
with either scattering or hybrid (impedance or admittance)
transfer matrices. Their effectiveness and accuracy are verified
with several practical examples. The S-GHM and S-HGHM
methods presented here provide a foundation for the passivity
enforcement of S-parameter descriptor systems.

Index Terms—Descriptor system (DS), S-parameter general-
ized Hamiltonian method (S-GHM), S-parameter half-size GHM
(S-HGHM), system passivity.

1. INTRODUCTION

S a superset of nonsingular or regular systems, descriptor

(or singular) systems (DSs) [3], [4] are capable of de-
scribing a much larger variety of physical models. In linear cir-
cuit simulation, modified nodal analysis (MNA) formulations of
RLC networks (such as interconnect and power grid models [5],
[6]) are DSs. In nonlinear circuit analysis, the piece-wise lin-
earization procedure also generates descriptor-form models [7].
Even the piece-wise polynomial representation of an analog/RF
circuit can be treated as the interconnection of several coupled
DSs [8]. In electromagnetic (EM) modeling of devices, con-
nectors and on-chip passives [9]-[11], DS is also widely used:
discretized EM equations are usually of DS format. Compared
with regular systems, DSs can provide more information, such
as the possible impulsive port response. For some impulse-free
physical systems, although the port responses can be character-
ized by nonsingular systems, converting the more natural DSs
to regular ones can be extremely expensive and sometimes nu-
merically unstable [12]. In many cases, it is also desirable to
keep the physical models in the more natural DS format to fa-
cilitate fast computation through possible utilization of matrix
structures and sparsity.
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Normally, the sizes of the DS models in circuit and EM
simulations are very large, rendering direct simulation pro-
hibitively time-consuming. Therefore, model order reduction
(MOR) techniques [5], [11]-[14] have been widely used to
approximate the original models by much smaller ones. On
the other hand, from the black-box perspective, given a set of
measured input—output frequency data, a macromodel can also
be built to approximate the original system. Physically, these
measured data may represent the admittance, impedance or
scattering parameters at a set of frequency points. In high-fre-
quency applications, scattering parameters are more commonly
used due to their relative ease of measurement. Using such data
fitting techniques as vector fitting [15], standard state-space
macromodels can be constructed. Recently, the Loewner matrix
interpolation technique [16], [17] has been advocated to fit
measured/simulated data of electronic circuits/systems to pro-
duce the corresponding DS. Such framework is superior to the
traditional vector fitting approach in the sense that no manual
pole initialization is needed and that the optimal model order
can be automatically extracted.

Using either the original models, the reduced models from
MOR, or the macromodels from data fitting, to guarantee
globally stable circuit or system simulations, these models are
usually required to be passive, because a system consisting of
interconnected passive subsystems is guaranteed to be stable. In
contrast, the interconnection of stable but nonpassive subblocks
may result in unstable responses depending on the terminations.
If the obtained models are nonpassive, enforcement techniques
may be applied to mitigate or compensate system passivity
[18]-[22], where passivity verification needs to be performed
in advance to locate the nonpassive frequency intervals. For
standard state-space models, frequency sweeping tests [18],
[19] and the more reliable Hamiltonian methods [20]-[22] are
widely used. To accelerate computation, half-size singularity
tests have been developed for symmetric cases [23], [24],
which bring about an 8x speedup versus traditional full-size
Hamiltonian methods.

For DS models, several algebraic passivity tests have
been proposed for hybrid (admittance or impedance) cases
[25]-[30]. However, their expensive computation [25] and
requirements of minimal or admissible [26]-[30] realizations
render them impractical for general DS models. Moreover, due
to their inability to locate DS nonpassive regions, they are not
good choices for passivity enforcement flows. To address this
problem, the frequency sweeping technique has been extended
to DS cases [31], [32]. However, due to the sampling nature of
frequency sweeping, no guarantee can be made for the com-
plete identification of all nonpassive regions. To this end, the
recently proposed GHM/HGHM test [1], [2] delivers as high
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a numerical accuracy (of locating all nonpassive frequency
intervals) for DSs as that of Hamiltonian methods [20]-[24] for
regular state spaces.

In the context of S-parameter DSs, passivity verification is
still not well addressed. Although the extended bounded-real
lemma [33] and GARE-based method [34] have been proposed
for passivity check, no reliable technique exists for the nonpas-
sive region identification. Due to the lack of reliable S-param-
eter DS passivity verification algorithms, passivity enforcement
can not be performed for nonpassive models at present. Moti-
vated by this demand, this paper extends the GHM and HGHM
theories to their S-parameter counterparts called the S-GHM
and S-HGHM, respectively, to verify the passivity of the phys-
ical models in circuit or EM simulation. A preliminary version
of this work, without the half-size implementation, has been re-
ported in [35]. Although this work focuses on S-parameter DS
passivity test, a reliable passivity compensation approach can
be straightforwardly developed based on the theories presented
here, which would be documented in our future reports very
soon.

II. BACKGROUND OF PASSIVITY CHECK

Throughout this paper, the superscripts 7 and * denote

transpose and conjugate transpose (Hermitian) operations,
respectively. For a general matrix X, o(X) represents the set of
singular values in descending magnitudes, and o;(X) denotes
the ith singular value. The set A(X,Y’) means the generalized
eigenvalues of the matrix pencil (X,Y) [i.e., det(X —aY) =0
ifa(e C) € A(X,Y)]. The set A(X, I) is sometimes abbrevi-
ated as \(X), where 7 is an identity matrix.

We consider the continuous linear time-invariant (LTI) DS
model ¥ : (E, A, B,C, D), with the state-space equations

FEi= Az + Bu, y=Cz+ Du. )

Here £, A € R"*", B e R"*™, C € R™*™, D € R™*™, and
x € R™ represents the state variables. In this DS, rank(F) <
n and the matrix pencil (A, E) is assumed to be regular, i.e.,
det(A — sE) # 0 for some s € C.If E is full-rank (or in-
vertible), the DS reduces to a regular system and then can be
converted to a standard state-space equation by absorbing E~!
into A and B.

A. Passivity of S-Parameter LTI Systems

The transfer matrix of system (1) is
S(s)=C(sE— A)~'B+D. )

When (1) or (2) represents an S-parameter DS, the (strict) pas-
sivity is equivalent to the (strict) bounded realness of S(s) (s =
0 + jw, where §, w € R), i.e.,

1) S(s) is analytic on the open right half plane (6 > 0);

2) I — S8*(jw)S(jw) > 0 (> for strict bounded realness) for

all w.

Condition 2) implies o1 (S(jw)) < 1 (or <1 for strict bounded
realness), which can be checked by sampling some points (fre-
quencies) along the imaginary axis s = jw [18], [19], [31].
However, erroneous results may result if nonpassive regions
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between sampling points are missed. For standard state-space
models (A, B,C, D) [with E = I in (1)], the more reliable
Hamiltonian method is preferred. The corresponding 2n x 2n
Hamiltonian matrix is defined as

_[A-BDTS'C

—~BR™BT
M= crs-ic

cTpR-1BT — 47| ©

where § = (DD™ —I) and R = (D™ D — I). Since any purely
imaginary scalar jw € A(M) pinpoints a crossover point w (in
rad/s) of passivity violations, the (possible) nonpassive regions
can be accurately located by the imaginary eigenvalue calcu-
lation of M. Reference [23] has further developed a half-size
singularity matrix for symmetric standard state-space models:

P=(A-BDO-0)"'C)(BD+D)"'C-A4). &

It has been proved that w is a crossover point of passivity vi-
olations if and only if 3 € A(P) where 3(€ R) = w? > 0.
Since P € R™*™ and the eigenvalue computation has O(n?)
complexity, the half-size singularity test is about 8 x faster than
the full-size Hamiltonian method. Both of them are reliable but
only applicable to standard state-space models. Also, (3) [or (4)]
requires I — DT D (or I — D? for symmetric cases) to be non-
singular, which is not guaranteed in all cases.

B. GHM/HGHM Theories for Hybrid DSs

Denoting the transfer matrix of a hybrid (viz. admit-
tance/impedance) DS by H(s), [2] has proposed the
GHM theory: assume X ¢ A(D + DT)/2), then
X € M(H(jw) + H*(jw))/2)) if and only if jw € A(J, K).
(J, K) is defined as

S [A+BQ—1C BQ-'BT

_CTQ—IC _CTQ—IBT _ AT

where Q@ = (2\'I — D — DY), For symmetric DSs, (J, K)
reduces to a half-size one

(Jn,Kp) = (A+ B(XN'I-D) 'C,EA'E) (6)

whereby the generalized eigenvalue jw is replaced by 3 = w?

accordingly. This is the HGHM theory for hybrid DSs. By set-
ting A’ = 0, GHM/HGHM can be used to search the nonpassive
regions of hybrid DSs. Due to its half-size nature, HGHM is ap-
proximately 8 x faster than GHM [2].

III. S-GHM AND S-HGHM

A. S-Parameter GHM (S-GHM) Theory

Theorem 1: Given the DS (1), jw & M(A, E) and vy & o(D),
we have 7 € o(S(jw)) if and only if jw € A(M, N), with

o [A=BDTST'C —ABRTBT
B ’yCTS_IC AT + CTDR BT
E
N = [ ET} ™

where S = DDT — 42] and R = DTD — ~42].



1036

Proof: Since the system matrices are real, we have
S*(jw) = ST(—jw) = BT(—jwET — AT)"'CT + DT.
Assuming v € o(S(jw)) and v € o(D), singular value de-
composition (SVD) implies that there exist nonzero vectors v
and w such that S(jw)u = yv and S*(jw)v = yu, i.e.,

[C(jwE — A)™'B + D] u=~v
[BT(jwET + AT)"1(=CT) + DT] v =vu

which is equivalent to the compact matrix form

c 0-1 B u| | =D ~yI U
BT | ~CT\||v| |~y -DT||v]|"
(®)
JwE — A
jwET
simplicity, we further denote

S LI 1 P

Because 7y is not a singular value of DD, we can prove that
-D Al
[ ~I —=DT
vectors are contained in its null space. Since neither u nor
v is zero, the right-hand side of (8) is nonzero, which fur-
ther implies z is a nonzero vector because it is a factor of
the left-hand side of (8). Premultiplying both sides of (8) by

-1
B —-D Al
[ —CT] [ oI —DT} would lead to

B D ~I 17'[C
G [ L R

Because

Here AT } has been denoted by (2. For

is a nonsingular matrix, thus no nonzero

-1
o [B -D Al c
M_JwN_[ —CTHVI —DT] [ BT]_Q“

(10) can be rewritten as

Mz = jwNz. (11)

Therefore, jw is a purely imaginary generalized eigenvalue of
the matrix pencil (M, N). To prove the converse, we define

—1 /
A R R

which is a factor for the left-hand side of (10). Here v’, v’ € C™.
Because (2, is nonsingular and z # 0, the right-hand side of
(10) and thus 2’ should be nonzero vectors. Premultiplying (10)

by ¢ BT} Q5! would lead to

[C BT}le[B _CT}Z’:[;? _gT}z’. (13)

From (13), we can get S(jw)u’ = o' and S*(jw)v' = ~u'.
Because neither u/ nor v’ is zero (otherwise both of them and
thus 2’ should be zero vectors), v is a singular value of S(jw). B

IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 4, NOVEMBER 2010

B. S-Parameter HGHM (S-HGHM) for Symmetric DSs

Theorem 2: Assume the DS in (1) is symmetric [i.e.,
ST(jw) = S(jw)], jw & MA,E) and v € D, we have
v € o(S(jw)) if and only if B = w? € A(My, Ny,), with

(Mp,Np) = (X +Y,E(Y — X)7'E) (14)
where X and Y are defined as
X =A-BDS'C, Y=—-BR!C. (15)

Proof: If the transfer matrix of (1) is symmetric, we have

S*(jw) = S(—jw) = C(jwE + A)™ (=B)+ D.  (16)
Consequently, ET AT BT, CT, and DT in (7) can be replaced
by E, A, C, B, and D, respectively. The following nonsingular
congruence transform on (M, N) gives a new matrix pencil

arv=[; Ljorm [}

2X-2Y] [2E
- <[2X+2Y } [ QED a7

Because the above nonsingular congruence transform does not
change the generalized eigenvalues, jw € A(M’,N’) if and
only if jw € A(M,N). On the other hand, we have proved
the equivalence of jw € A(M,N) with v € o(S(jw)) in
Section III-A, therefore, if v € o(S(jw)) we also have jw €
A(M',N'), ie.,

—jwE X =Y | |w | _ wy
[X+Y —wa}[wJ_O’ [MJ#O'

Assuming X — Y being invertible, we get wo = jw(X —
Y)~! Ew, from the upper part of (18). Here, w is nonzero (oth-
erwise wsy is also zero). By virtue of this, (18) reduces to

(18)

[M), — w?NpJw; = 0. (19)
Therefore, 3 = w? € MMy, Ny) if v € S(jw). Analo-
gous to S-GHM, the converse can also be proved. Setting wy =
jw(X =Y) " Ew; we canreach (18) from (19). And then using
A(M,N) = A\(M',N") we can return to Theorem 1. [

Note that S-parameter HGHM only requires the DS transfer
matrix S(jw) to be symmetric, and it does not pose any restric-
tions on the symmetry of the system matrices.

IV. PASSIVITY TEST OF DSS

A. Passivity Test of S-Parameter DSs

In passivity test, we are interested in the special case of v =
1, which represents the boundary of passivity violations of an
S-parameter DS. By setting v = 1, from S-GHM [in (7)] we get
a passivity test matrix pencil (M, N) = (Mg, Ny) for scattering
DSs with

M, Ny

[

<
[
=

(20)
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Fig. 1. TIllustrative examples for different kinds of DSs. (a) A globally strictly passive DS. This DS has no crossover points and its transfer matrix is always
unit-bounded. (b) A consistently nonpassive DS. This DS does not have any crossover points, but it is nonpassive at any frequency point. (c) A DS with locally
passive and nonpassive regions. This DS is nonpassive in intervals > = (wi,ws), l4 = (w3, wy4), and ls = (ws,ws).

Here, M is the Hamiltonian matrix defined in (3). Analogously,
for symmetric cases, from S-HGHM [in (14)] one can get a half-
size passivity test matrix pencil (Mo, Npo) defined as

Myo=A—-B(D-I)"tC

Nuw =E[(B(D+I)"'C — A]""E. Q1)
If the matrix pencil (Mg, No) (or (Mo, Npo) for symmetric
DSs) has any purely imaginary (or positive real) generalized
eigenvalue jw (or 3 = w?), then w is a crossover frequency
point where passivity violation happens.

Note that the scattering DS of interest may still be nonpassive
even though no crossover points are computed via S-GHM or
S-HGHM. To further identify the possible nonpassive regions,
the following procedures could be used.

1) If no crossover points are found, check S(jwg) at an arbi-

trarily selected frequency point wg. If ||S(jwo)|| < 1, the
DS is globally strictly passive [as illustrated in Fig. 1(a)].
Otherwise, if ||S(jwo)|| > 1 the DS is nonpassive at any
frequency point [as shown in Fig. 1(b)].

2) If S-GHM/S-HGHM test produces p crossover points
w1,ws,...,w, which are increasingly ordered, one can
select p + 1 sampling points wy (K = 1,2,...,p + 1)
such that W, € £, where ¢; = (0,w1), ¢; = (wi—1,w;) for
i=2,...,pand p11 = (wp,00). If |S(j@r)|| < 1, the
DS is passive in the interval /j; otherwise, it is nonpassive
in /. An illustrative example is given in Fig. 1(c).

If the DS in (1) is a regular system (when F is invertible), it
can be converted to a standard state-space model with ¥ = 1.
Subsequently, for a regular system, the generalized eigenvalue
solution in the test pencil (Mg, Ny) can be replaced by the stan-
dard eigenvalue computation of My = M. This is in fact the
Hamiltonian passivity verification (in (3) of Section II-A). And
for symmetric regular systems, substituting £/ = I into the
half-size test pencil in (21), the generalized eigenvalue problem
reduces to the standard eigenvalue computation of P [defined in
(4)]. Therefore, the Hamiltonian method and the half-size sin-
gularity test in (3) and (4) are the subsets (or special cases) of
S-GHM and S-HGHM, respectively.

B. Passivity Test of Hybrid DSs

A linear LTI system with a hybrid transfer matrix is (strictly)
passive if and only if its transfer matrix H (s) is (strictly) positive
real [25]:

1) H(s) has no poles in Re(s) > 0;

2) H(s) is real for all positive real s;

3) H(s) + H*(s) > 0 (> for strict positive realness) for all

Re(s) > 0.
Given a square transfer matrix H(s) with det(I + H(s)) # 0
for all Re(s) > 0, its Moebius-transformed function is [34]
G(s)=(I—H(s))(I+H(s))"". (22)

If 7 + D is invertible, a realization of G(s) =
As)_lBS + Dg is

Cs(SES —

Es=E, As=A—-B(I+D)"'C, Bs=—V2B(I+D)™*
Cs=V2(I+D)"'C, Ds=(I-D)(I+D)"". (23)

Conversely, H(s) is also a Moebius-transformed function of
G(s). For Moebius transformation, the following properties
hold [34].

1) Let H(s) = C(sE — A)"'B + D be a positive real DS
transfer matrix with nonsingular I + D, then its Moebius-
transformed function G(s) is bounded real.

2) Given a bounded real DS transfer matrix G(s) =
Cs(sEs — As)™'Bs + Dg with I + Dg being non-
singular and det(I + G(s)) # 0 for all Re(s) > 0, its
Moebius-transformed function H (s) is positive real.

Since D usually has a much lower dimension than F and A,

the above transformation is very cheap. If we see G(s) as a scat-
tering system, then H (s) is passive if and only if G(s) is passive
(i.e., bounded real). Therefore, we can test the passivity of H (s)
by checking the bounded realness of G(s) using S-GHM. Fur-
ther, we note that

G(s)=2(T+H(s)) " =1 (24)
which implies that G(s) is symmetric if and only if H(s) is
symmetric. Therefore, S-HGHM can also be used for symmetric
hybrid cases after Moebius transformation.
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TABLE 1
APPLICABILITY OF DIFFERENT PASSIVITY TESTS
System model S-GHM | S-HGHM | Hamiltonian Half-size
method singularity
singular system yes yes no no
regular system yes yes yes yes
asymmetric system yes no yes no
symmetric system yes yes yes yes

C. Comparison With Traditional Approaches

Table I compares the applicability of different passivity tests.
There are some distinctions among S-GHM/S-HGHM approach
with traditional Hamiltonian method and half-size singularity
test.

1) S-GHM/S-HGHM can be applied to both singular and reg-
ular LTI models, while Hamiltonian method and half-size
singularity test are only applicable to regular systems.

2) S-HGHM and half-size singularity test are exclusive to
symmetric models, but their full-size counterparts can be
used for general cases without symmetric restrictions.

3) S-GHM and S-HGHM search for the passivity violation
points via generalized eigenvalue calculation, while tradi-
tional methods use standard eigenvalue computation.

4) Due to the half-size nature, S-HGHM and half-size singu-
larity test are 8 X faster than S-GHM and Hamiltonian test,
respectively.

5) As will be discussed in Section IV-D, S-GHM/S-HGHM
can test the LTI models with I — DT D being singular,
whereas the traditional approaches fail to work.

D. Numerical Issues

1) The requirement of 1 ¢ o(D) limits the applications
of Hamiltonian method and half-size singularity test.
For S-GHM and S-HGHM this restriction can be re-
moved after a small modification called equivalent model
conversion [1], [2]. The basic idea is to construct a
new DS §'(jw) = C'(jwkE' —A)"'B’ + D', such
that S'(jw) = S(jw) and 1 ¢ o(D’). S’(jw) can be
constructed in different ways. In this paper, S’(jw) is
constructed, if necessary, as

o] o= )=l

C'=[C al-D] D' =al

El

(25)

with @ € R and |a| # 1. Subsequently, the passivity of
S(jw) can be checked by performing S-GHM/S-HGHM
on S’'(jw).

2) With the equivalent model conversion in (25), the restric-
tion of I+ D being nonsingular in Moebius transformation
can also be removed.

3) In S-HGHM passivity test, A — B(D + I)~1C' is assumed
to be nonsingular, which is equivalent to 1 ¢ A(S(0)). A
proof is given in the Appendix.
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Algorithm 1: Passivity test by S-GHM/S-HGHM.
Input: An LTI model ¥ : (E, A, B, C, D), with E, A € R"*X"™,
B,CT ¢ R"X™ and D € RMX™,
Output: The passive regions Upgssive and nonpassive regions

Unonpassive .

begin
1. Initialization: set Upgssive = Unonpassive =
2.if X: (E,A,B,C,D) is a hybrid system then
| perform Moebius transform (23) and update .
3. Compute crossover points.
if 1 ¢ o(D) and E is nonsingular then
if 3 is symmetric then
compute the crossover points by half-size singularity test
(4);
© — {w1,...,wp}, where the p crossover points wi, ...,
wyp are increasingly ordered.
else
compute the crossover points by traditional Hamiltonian
L method (3);
O — {wi,...,wp}.
else
if 1 € o(D) then
| perform equivalent model conversion (25), update >.
if X is symmetric then
‘ compute the crossover points by S-GHM (20);
O — {wi,...,wp}.
else
compute the crossover points by S-HGHM (21);
O — {wi,...,wp}.

4. Locate the passive/nonpassive regions
if © = () then
compute S(jwo) (the transfer matrix of X) at wo
if |[S(jwo)|| < 1 then
‘ Upassive = [0, OO);
system is strictly passive, return.
else
L Unonpassive = [07 OO);
system is consistently nonpassive, return.
else
£ — [0,w1), b2 — (w1,w2), ..., &p — (Wp—1,wp), bpt1 —
(wp, 00).
fori=1,...,p+1do
compute S(jw;), with w € £;;
if [|S(jw;)|] < 1 then
Upassive = Upassive Ul
else
L Unonpassive = Unonpassive U Zi~

end

4) The “purely” generalized eigenvalues of (M, Ny) may ap-
pear as conjugate pairs Ay = ax = jbi (ax, bx € R). Here,
ay, is the numerical noise induced by the finite machine pre-
cision, which is also observed in traditional Hamiltonian
method [24]. A small numerical tolerance tol > 0 can be
used to eliminate the noise, and only those solutions with
lax| < tol are regarded as expected results.

The proposed passivity test is summarized in Algorithm 1.

V. EXAMPLES

This section presents some numerical examples to verify the
validity and effectiveness of S-GHM/S-HGHM for S-parameter
and hybrid DSs. All examples are tested in MATLAB R2006a
on a 2.66 GHz 2G-RAM PC.
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TABLE II
S-GHM/S-HGHM TEST RESULTS FOR THE ORDER-4 DS

A(Mo, No) (jw) | AMMno,Nno) (B) | VB (rad/s)
5.5e-7 £7304491.7 92715196749 304491.7
2.05e-14 £522.86 522.6 22.86

0.4

— Magnitude of H(jw)

~ 0.2/l Crossover points from S~GHM and S~-HGHM
S
gz ° H
O
T 0.2
e
o
3 -04
2
%—0.6 1
= -0.8

1 i i i i

10! 102 10° 10° 10° 10°

Angular frequency (rad/sec)

Fig. 2. S-GHM and S-HGHM test results for the order-4 DS model.

A. A Synthetic DS Model

To show the complete test flow, we consider the bounded real-
ness of the following order-4 single-input single-output (SISO)
DS

rl —4
1 —120
E= 0 1 A= 1
L 0 1
r1
1 -5
B = 0 , C=1[10 200 10 0],
L10—°
D= —-1. (26)
The transfer function of this DS is
10 200
S(jw) = — 14+ jwx1070 (27
)= 7T a0 LT @7
Solving the equation
1S(jw)| =1 (28)

we get two crossover frequency points: w = 22.86 rad/s and
w = 304491.7 rad /s. Then we use S-GHM/S-HGHM to com-
pute the crossover points. Note that in this DS D = —1, so
we need to use equivalent model conversion in advance, which
produces an order-5 DS S’ (jw) with D’ = 0. Since the transfer
function is symmetric, S-HGHM can also be applied for pas-
sivity test. The computed results of S-GHM and S-HGHM are
listed in Table II. The results of S-GHM and S-HGHM coincide
with the solutions to (28), which is illustrated in Fig. 2. There-
fore, this scattering DS is bounded real in the angular frequency
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band of (22.86, 304491.7), and it is nonpassive in the bands of
(0, 22.86) and (304491.7, c0).

B. A Symmetric S-Parameter Three-Terminal Filter

We use a three-terminal filter with symmetric port response
to illustrate the application of S-GHM/S-HGHM and the
connection to their standard state-space counterparts. The
frequency-dependent scattering parameters are measured
at 1601 sampling points ranging from 50 MHz to 6 GHz.
Since it is impulse-free, the input—output response can be
described by either a standard state space or a DS. To use
the traditional Hamiltonian method and half-size singularity
test, we first build an order-120 standard state-space model
(A, B,C, D) by vector fitting [15] with 40 common poles.
Both the traditional Hamiltonian method [20] and the half-size
singularity test [23] show that this model has nine crossover
points. The imaginary eigenvalues of M and the positive real
eigenvalues of P are illustrated in the first and second columns
of Table III, respectively. The obtained standard state-space
model is then converted to a DS model H,;(jw) described by
(Ea, Ad, Ba, Cq, Dg), via the following transformation:

I A
EdZ{lQO 0}-, AdZ[ IJ

B:m Ci=[C —D], Dy=0. (9

Then S-GHM and S-HGHM tests on H,;(jw) also give nine
crossover points shown in the third and fourth columns of
Table III. Table III shows that the experimental results of all
the four methods pinpoint the same boundary frequency points,
which coincides with the singular value curves of the transfer
matrix in Fig. 3.

C. A Symmetric Admittance PEEC Reduced Model

This example is used to show the validity of S-GHM and
S-HGHM in the passivity test of admittance or impedance
DS models. The original SISO model is an order-480 DS
describing a patch antenna structure with admittance parameter
as its transfer function, which is obtained by partial element
equivalent circuit (PEEC) method [36]. This PEEC model is
nonpassive, which may be induced by poor meshing genera-
tion, inadequate numerical integration, matrix sparsification
or inappropriate geometrical discretization [37]. After model
order reduction via PRIMA [13], an order-53 reduced model is
obtained, which is nonpassive in the low-frequency band.

Since this model is a hybrid system, S-GHM and S-HGHM
can not be directly used. The Moebius-transformed system is
first constructed by (23), and then its transfer function G(s) is
tested by S-GHM and S-HGHM, respectively. The computed
crossover points are listed in Table IV. Fig. 4 shows the magni-
tude of the Moebius-transformed transfer function equals unity
at the computed crossover points. To show the validity, the real
part of the original admittance transfer function H (jw) is also
plotted in Fig. 5, which shows that the proposed S-GHM and
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TABLE III
EXPERIMENTAL RESULTS OF VARIOUS PASSIVITY TESTS FOR THE THREE-TERMINAL FILTER MODEL

Hamiltonian method:
imaginary results of A\(M)

Half-size singularity test: positive real
results of \(P)/crossover points (rad/s)

S-HGHM: positive real results of
A(Mpo, Npo)/crossover points (rad/s)

S-GHM: imaginary
results of A(Mo, No)

6.9e-10 £5112253 12600780132/112253

2.17e-7 £5112253 12600780132/112253

2.6e-10 £542988.4 18479990052 /42988.4

2.58¢e-8 +542988.4 18479990052/42988.4

1.3e-10 £538173.7 14572294488 /38173.7

1.06e-5 £538173.7 14572294488 /38173.7

2.2e-11 £534551.3 1193794989.3/34551.3

2.93e-8 +534551.3 1193794989.3/34551.3

4.0e-12 £53109.22 9667288.145/3109.22

2.80e-6 +53109.22 9667288.145/3109.22

2.1e-12 £71631.07 2660378.573/1631.07

6.02e-7 +51631.07 2660378.573/1631.07

3.0e-10 +515871.8 251914404.4/15871.8

1.85e-8 £7515871.8 251914404.4/15871.8

8.7e-11 +£59879.71 97608669.57,/9879.71

5.17e-7 £59879.71 97608669.67/9879.71

8.5e-11 +£79895.29 97916796.34,/9895.29

5.20e-7 £59895.29 97916796.34,/9895.29

(a) -
’§ 2 - = 1st singular value
O 1.8 = 2nd singular value
i’j 1.6 gt Gt dod | == 3rd singular value
o 171 R 4 S-GHM/S-HGHM results
O o b Y BT i
=
s NN O Tk
e 08 SENG T NA
= 06} i
©n 02 i L
103 10* 10° 10°
Angular frequency (rad/sec)
Zoom in (b)  [—— 1st singular value
216 w :
g " —— 2nd singular value
N ;
TR, A i fessesunssmsmorssnnssnmis s = 3rd singular value
& ¢ S-GHM/S-HGHM results
12
wn
9]
= 1} & 4 —
S [ Y e —
>
= 0.8F A
&
5, 06 .
5=
v 04 !
103-9%4 103995 103996

Angular frequency (rad/sec)

Fig. 3. S-GHM and S-HGHM test results for the three-terminal filter.

TABLE IV
S-GHM AND S-HGHM TEST RESULTS FOR THE ADMITTANCE REDUCED
MODEL (ON THE MOEBIUS-TRANSFORMED SYSTEM)

A(Mo, No) (jw) A(Mno, Nno) (B) | VB (rad/s)
1.309e-11 £30.505080 0.255103 0.505080
1.307e-11 £350.505082 0.255110 0.505082
1.127e-13 £51.234402 1.523749 1.234402
3.650e-13 +72.465012 6.076287 2.465012
3.169e-13 +72.560446 6.555922 2.560446
7.587e-13 £354.074095 16.59825 4.074095

S-HGHM methods have accurately found the passivity viola-
tion points of this hybrid DS.

D. Multiport DS Model

This example is used to verify the validity of S-GHM and
S-HGHM in general multi-port DS models, and to compare their
numerical efficiency. The order-1080 symmetric DS model has
60 ports, and it is built from the measured S-parameter data
of an electronic system, via the DS-format Loewner matrix fit-
ting [16], [17]. Using S-GHM and S-HGHM tests, 18 crossover
points are obtained, which are plotted in Fig. 6. Due to the large
amount of crossover points, they are not listed by table. Clearly,

(@) _ ‘
= 0.08 — = Magnitude of G(jo)
=, 0.06f 4 S-GHM/S—HGHM results
g 0.04}- S R SUNS. SRS SUUU il
5 0:02 Frmsst
“5 [o) o
% _002 .............
é —0.04F N
<)
5 -0.08 : : : : : : : : :
= 008 ; ; ; ; ; i i i i
o o5 1 15 2 25 3 35 4 45 5
l Angular frequency (rad/sec)
«10-4 Zoom in (b) . .
= 1.5 T T T T —— Magnitude of G(jw)
= 4 S—GHM/S—HGHM results
’é\ ¢ : 2 £
o } 4
O
Gy
= i
[}
k=t i
=
& i
<
=

15 1 1 1 1 1 1 1 1
05051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051
Angular frequency (rad/sec)

Fig.4. S-GHM and S-HGHM test results on the Moebius-transformed transfer
function of the order-53 admittance reduced model.

Fig. 6(b) shows that the computed results are very accurate.
We have listed the CPU times of S-GHM and S-HGHM tests
in Table V. It is clear that S-HGHM is about 8§x faster over
S-GHM, which is expected due to its half-size nature and the
O(n?) complexity of generalized eigenvalue calculation.

VI. REMARKS

1) S-GHM and S-HGHM are purely algebraic passivity veri-
fication with similar accuracy to Hamiltonian method and
half-size singularity test. Therefore, they are much more
reliable and accurate than frequency sweeping methods,
which has been verified by their hybrid counterparts [2].
Compared with Hamiltonian method and half-size sin-
gularity test, S-GHM and S-HGHM are not restricted by
the restriction on D matrix, as verified by the synthetic
example.

As illustrated in Tables II to IV, the numerical results of
S-GHM and Hamiltonian method contain some numerical
noise in the real part, which can be eliminated by setting
a tolerance. S-HGHM and half-size singularity tests do

2)
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3) Due to the half-size nature and the O(n?®) complexity of
(generalized) eigenvalue computation, S-HGHM and half-
size singularity test are 8 x faster than their full-size coun-
terparts. This has been verified by the results in [2] and [23]
and the CPU timings in Table V. S-GHM and S-HGHM
algorithms presented here are based on full-matrix eigen-
solver, so they are feasible to medium-size (e.g., order-
1000) physical models. If we consider the Hamiltonian
structure of My and only compute the purely imaginary
roots in S-GHM test, the proposed flow is expected to be
faster and thus extensible to large and/or sparse DSs. This
work has been discussed in [38].

4x10‘3 (zll) ——Real part of H(jw)
il i | & S—GHM/S—HGHM results
g 2 : : ]
SIS
Gy
1S
g o
SRR
s 2 : ..........
] R e
4 i i i i i i i i i
o o5 1 15 2 25 3 35 4 45 5
' Angular frequency (rad/sec)
£X107° Zoomlln . ' (b)| —Real part of H(jw)

4)

In this paper, the passivity at the interval of two adjacent

4 S-GHM/S—HGHM results|

Real part of H(jw)

; i i n ; i i ;
0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051 0.5051
Angular frequency (rad/sec)

Fig. 5. The real part of the transfer function of the original order-53 admittance
DS model. The dots are the results from S-GHM and S-HGHM tests, which are
accurately located at the boundaries of passivity violations.
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Fig. 6. S-GHM/S-HGHM test results for the multiport S-parameter DS model.

The dots are the results from S-GHM and S-HGHM tests, which are accurately

located at the boundaries of passivity violations.

TABLE V
CPU TiME COMPARISON OF S-GHM AND S-HGHM (IN SECOND)
Model Size | Port Number | S-GHM | S-HGHM | Speedup
1080 60 241.2 30.45 7.92

not suffer from this problem. From the numerical perspec-
tive, they are more accurate over the full-size S-GHM and
Hamiltonian methods.

crossover points is identified by the sampling scheme (as
shown in Algorithm 1). An alternative approach is to com-
pute the slope signs of the singular value curves at the
calculated boundary points, according to the generalized
eigenvalue perturbation theory of Hamiltonian matrix pen-
cils. And furthermore, using the perturbation theory, our
proposed S-GHM/S-HGHM approach also leads to a DS
passivity enforcement scheme. These issues will be re-
ported soon in the future document.

VII. CONCLUSION

We have extended GHM and HGHM theories to S-parameter
DSs, which reflect the relationship of the singular values of a DS
transfer matrix with its operating frequency. With the proposed
methods, the passivity of S-parameter and hybrid DSs can be
efficiently assessed, and the passive/nonpassive regions can be
accurately located. For symmetric DSs, S-HGHM enjoys higher
numerical accuracy and an 8 X speedup over S-GHM.

APPENDIX

In S-HGHM passivity test, the assumption of A — B(T +
D)~1C is equivalent to det[I — S(jw)] # 0 at the DC point
(i.e., w = 0). The proof is as follows.

Proof: Firstly, we assume that A — B(I + D)~1C is sin-
gular, then there exists a vector p such that

[A-B(I+D)"'Clp=0 p#0. (30)
Since A is nonsingular, the above equation is equivalent to
AT'B(I + D)"'Cp =p. (31)

Denote (I + D)~1Cp by g, which should be a nonzero vector
[otherwise, p # 0 in (31)]. Premultiplying both sides of (31) by
C yields

CA™'Bq=(I+D)g, q#0. (32)
Because S(0) = D — CA~!B, (32) can also be written as
[I-5(0)]g=0, ¢#0 (33)

which shows I — S(0) is singular [i.e., 1 € A(S(0))].

Next, we start with (32) to prove the converse. Since the right
side of (32) is nonzero (because 1 ¢ o(D) and q # 0), we
denote p’ = A~!Bq which should also be nonzero. Equation
(32) is equivalent to

(I+ D) 'CA'Bg=q. (34)
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Premultiplying this equation by A~1B we get

AT'B(I+ D) tCyp =9, p #£0. (35)

Hence, A — B(I + D)~1C is singular. [ ]
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