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Abstract. Vector Fitting (VF) has been introduced as a partial-fiattbasis response fitting
methodology for over a decade. Because of its reliability eersatility, VF has been applied and
extended to a number of areas. In this book chapter, we vétiudis the applications of VF in
the context of macromodeling of linear structures in sifpwber integrity analyses. We will also
discuss main features of VF along three directions: dagmrithms and models. Two practical ex-
amples are given to demonstrate the merits of VF. An altemBtnorm approximation criterion is

proposed to enhance the accuracy of the macromodelinggzoce
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INTRODUCTION

Vector Fitting (VF) [1] is a numerical technique for sampledponse-matching system
identification (macromodeling), which involves iteratligear least-squares solves with
a partial fraction basis. In contrast to other system idieation techniques for broad-
band (from DC to GHz) system identification, VF avoids illaclitioned calculation, and
therefore works in a more robust and efficient manner. Furibee, its theoretically-
simple and versatile framework can easily incooperateouarconstraints by introduc-
ing a variety of extensions to many areas. VF has also beahinseodeling of dif-
ferent electrical systems [1, 2] and extended to differeatis, for example, filter de-
sign [3, 4, 5], power network analysis [6, 2] and electron&ign(EM) simulation [7, 8].

The idea of VF was firstly introduced for transmission lirensient modeling in [9].
The underlying idea of VF is to replace the approximated ifdialized) poles with an
improved set of poles through implicit weighting (the paddocation technique), which
thereby improves the approximation iteratively. VF appmtates an underlying system
to a new system using partial fraction basis with real or demponjugate poles. A num-
ber of generalizations and extensions have been proposkdtter VF performance and
integration with various identification requirements. V&stbeen thoroughly discussed
in [10, 11]. Its variants have been widely used in indusklattronic design workflows
for addressing signal integrity issues.

This paper acts as an extended tutorial on VF on top of [12]fi§egive a brief
introduction to the signal/power integrity issues and thsid formulation of VF. Then
we discuss the applications of VF in system identificatianaly an alternativd®>-norm
approximation criterion in VF is proposed for approximatienhancement, which is
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FIGURE 1. Common macromodeling flow in signal integrity analyses.

verified through numerical examples.

LINEAR MACROMODELING: SYSTEM IDENTIFICATION
PROBLEM IN SIGNAL/POWER INTEGRITY

Electronic systems, such as smartphones, computers ahedéfpition televisions,
have become essential to our daily lives. From a system getigp, these electronic
systems contain modules of integrated circuits (ICs), engmory, datapath, control
and input-output circuitry. Modules are connected by itwenect (viz. wire) and power
networks, including via holes, sockets, power/ground @darwires, connectors and
chip packages. In low-speed circuit operation, intercahnetworks perform as ideal
wires, which do not distort transmitted signals, and thetedaic system functions well
according to the functional-level design.

However, with the increasing operation frequency and desing feature size of
ICs, high-frequency effects, such as signal delay, crdsstalerconnect dispersion
and mutual couplings, have become dominant factors lignispstem performance.
Therefore, signal integrity verification and design havedmee popular practices in
the IC design process. Signal integrity analysis can be tlmmmaigh checking the eye
diagram of transmission channels on a circuit board fromsuesanent or simulation.
Accurate and efficient modeling is required to capture Higlquency behaviors of
systems for pre-layout simulation in the design phase, 40 assure consistent signal
transmissions and reliable power distributions in highesp electronic systems [13,
2, 14]. However, a full-wave electromagnetic (EM) analysi®r a global system is
impractical. Reduced models with similar properties to ttgioal systems are therefore
demanded.

For structures with complicated geometry, such as packagesit boards and radio-
frequency (RF) objects, data-driven linear macromodelingsually applied. A com-
mon macromodeling flow is shown in Fig. 1. The sampled strectesponses can
be obtained by exciting one input port at a time and compuingheasuring the re-
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sponses at the output porRgsponse Characterizatioh By approximating the sam-
pled frequency-dependent or time-dependent system respieita, a macromodel is
generated to replace the original large-order system byalemorder one with simi-
lar input-output (1/0) behaviorsacromodeling). The macromodel is used to produce
spectra and waveforms for signal integrity analysis andtupled with other circuit
model blocks (e.g., logic devices) for global simulati@injulation). Peripheral pre-
and post-processing techniques are used to modify the macdie characteristics and
enhance the simulation performance.

Generally, for a single-port system, macromodeling tegies intend to fit a linear
time-invariant (LT1) system to the desired continuousetiftequency domairs{domain)
responsé (s) at a set of calculated/sampled points at the 1/O ports. Theehis usually
a state-space system or a rational transfer function with afdasis{ ¢}
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whereby, b, € R, N is the macromodel order. The algorithm is usually requiodit tens
of ports in the original system, where each port containglreats of frequency sampled
data points. Therefore, the linear structure macromogelan be classified as a large-
scale broadband system identification problem. The syslemtification process must
meet several stringent constraints specific to the macrefimgdprocess, namely, ac-
curate and physically consistent response approximdtencomputation complexity,
numerically robust computation and least manual configumaturing calculation.

In the L, sense, the optimal model of a system can be obtained througmizing
the following objective function
N(s)
D H(s)
However, this is a numerically sensitive non-linear prablith no prior information
about the exact pole and zero locations of the system beewgifibd. The response is
usually approximated using Prony’s method [15] for a coaisation or other identi-
fication frameworks for a finer solution, such as continute domain Sanathanan-
Koerner (SK) iteration [16] or equivalent discrete-timentin Steiglitz-McBride (SM)
iteration [17]. The objective function of the SK iteratiantheith iteration is

min
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By arranging the weighting functioa(® (s) := D() (s)/D(i*1> (s), the model parame-
ters can be determined via a least-squares problem

N0 (s) DO (s) D (s)
D) (s)Di-1(s) DI-D(s) . 4
—

(aH)(9) all(s)
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If a monomial power series basis function is used in (4) fo-lbiband macromodeling,
i.e., @h(s) = 9", the traditional SK iteration approach will suffer from dirdonditioned
Vandermonde matrix calculation [18], and thereby do noisBathe macromodeling
requirements from a numerical perspective. Thereforetoveésdtting (VF) is recognized
as a robust and simple broadband macromodeling techniquehas been widely
practiced. In this paper, we will discuss the macromodefingcedure development
along three directions:

1. Data sectionH (s)): Input data choices, pre-processing of data and model;

2. Algorithms sectionH (s /D )): Identification criterion and framework
and numerical |mplementat|on

3. Models sectionN (s /D )): Post-processing for model physical consistency and
simulation.

FORMULATION OF VECTOR FITTING (VF)

In VF, given a set of polegan}, (1) is approximated using a summation of partial
fraction basis and a unity basis with their model parameigrs andd,

N(s) N
H(S)zﬁz <nzls+an> +d. (5)

By including the weighting functiom (s), (5) is linearized into an iterative separable
denominator calculation, namely, for ttta iteration,

N c§f> 4 N t) A
(nzls+ar(1)>+ N<(le+at))+) ()’ ®)

HO () a(s)

which falls into the framework of SK iteration (4) [18, 19].

In numerical implementation, provided all poles are real Blgfrequency-sampled
data points are given, an expression from (6) is formed fon &&quency-sampled point
s,i=12,...,Ns

Aix=bj, ©)

1 1 —H(s) —H(s)
where b = H(s), A = |:S+C(:(Lt) g1 e B } and
x=[dV ... U ogo oo VS)}.xare solved through stacking the row (7)

at theNs sampled points to form an overdetermined linear equatioisi@m,
[A] A - AL ]™x=[b1 b - by ], @)

where it can be solved through normal equations or a QR deasitign. The zeros of
® (s) (i.e., the new set of pole%a,ﬁ”l)}) can be calculated as the eigenvalues of the
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If the poles are unstable (i.e] a"™Ml) >0 ), the poles are flipped against the
imaginary axis to the open left half plane for pole stabti@a

alty . — gD, (10)
This is equivalent to cascading an allpass fik¢s) to alter the phase response
s+a

The computation is repeated until convergence is achiesegl, o(s) ~ 1 and

H gét;g —H (S)H ~ 0, at theNrth iterations. Eq. (6) is then reduced to

N CENT)
Yy e FdM = H(s), (12)

n=1S-+ Ur(1NT)

and the residu cﬁNT) andd{Nt} can be calculated similarly as in (8). In summary, VF

replaces the monomial power series basis by a partial frabtsis, which significantly
improves the numerical condition in calculation of (8). Tdetailed VF formulation is
shown in [1, 18, 19]. Pseudocodes are given to summarizeahesfvork of VF:

Algorithm 1 Pseudocodes of Vector Fitting (VF)
. FindH (2), and assigr{ar(,°>};
repeat

Calculate{ yﬁt)} by solving (8) with{a,(f) };

Calculate{ oty

w N R

»

} by solving (9) and stabilize the unstable poles through;(10)

a

until {a,@} converges aftely iterations

- Calculate{ "} andd™" through (12) with{ "}

(o))

DATA

Data describe the system response, and are obtained frosuraggents or EM simu-
lators. Since data content can affect the properties anlityjoathe macromodel, dif-
ferent considerations and techniques have been proposmustoe the input data are
maximally informative for identification purpose.
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Data: Input Data Choices

Continuous-time frequency-sampled dEités) are used for macromodeling in VF [1],
as the frequency-sampled responses capture the highefregibehaviors of a system.
Examples of frequency-sampled data are scattering pagasn@tparameters) for RF
objects and admittance parameteYsp@arameters) for interconnects. Alternative data
choices, such as frequency response derivativ@) [20], phase responséH (s) [21]
and magnitude respons#l (s)| [22], are used for different identification purposes.
In practices, frequency-domain macromodeling involvemglicated measurements.
Truncated time-sampled data (input and output respirisgandY [n]) are often used,
therefore (discrete) time-domain VF have been proposed@3 Approximation using
combination of several classes of data (hybrid-domain @ppration) provides extra
information for a more accurate approximation of the systirhas been applied to
digital lIR filter approximation [4] and works well in macrardeling process.

Data: Pre-Processing of Data

The system response should correctly describe the systewewér, some problems,
such as data burst, defects, missing and noise-disturbanageoccur during the course
of data collection. Some information may get lost and diffies and failures in ap-
proximation may arise. Therefore, data pre-processinggaired to ensure the data are
meaningful (e.g., passive and causal) to generate a con@atomodel. For example,
causality and passivity verifications of input data and ylestraction are developed
using (generalized) Hilbert transform [25]. Furthermaraysality-constrained data in-
terpolation is developed to generate consistent DC andfleguency data, which is
necessary for simulation but usually not provided in thgdency-sampled data [25].

In addition, a large data set or broadband responses usiz#ya large variance and
may result in ill-conditioned calculation. Pre-filterirechniques, in this scenario, can be
used to change the distribution of noise and bias, so aséadpetter fitting of important
frequency range and a numerically favorable calculatiah winall computational cost.
An appropriate adaptive or deterministic data selecti@t@ss and response weighting
can also help improve the approximation.

Data: Pre-Processing of Model

A priori configuration of macromodels should be chosen based on thelédge of
the algorithms (SK iteration) and data for a convenient apipnation. For example,
an a priori model order selection helps generate a minimum size mactehfor
efficient simulations with accuracy control. The model ol be selected by applying
experimental observation of the frequency response iruénegy-sampled data [26], or
the Hankel Singular Value (HSV) in (discrete) time-samplath [24].



ALGORITHMS

Given a set of input data, an algorithm is used to determieanibdel parameters. A
good algorithm should have an appropriate identificatioteigon and should be easy
and robust for numerical implementation. We first discussalgebraical minimization
criteria, then the numerical implementation for a numelydavorable model parame-
ters calculation.

Algorithms: Identification Criterion and Framework

The selection of approximation criteria is important for debapproximation. The
approximated model should be reliable, obtained withiregoaable computation time,
and should admit an exact description of the true systemt&Hgtion with arlL.,-norm
prediction error is usually used since it is applicable féedent response models. Other
criterion extensions are also developed recently for fipegplications [27].

Massive-port macromodeling VF handles multi-port macromodeling by stack-
ing the system equation matrices of responses of all potts dansingle column of
over-determined equation for solutions. However, nunaé¢miifficulties exist in mod-
eling the systems with a large number of ports (e.g., packagasitic networks and
electromagnetic-aware circuits). To model a system witlarditrary number of ports,
a reformation of the VF framework is proposed to approxinthge eigenpairs rather
than the matrix elements [28]. It gives a more accurate aqmation for systems with
a large ratio between the largest and smallest eigenvalues.

Parametric macromodeling Variabilities in geometry and material properties are
generated during the manufacturing process, and beconigcaldactor in nano-scale
high-frequency circuit simulation and design. In orderdowrately predict the behavior
and reduce the computation time of repeated simulationayanmetric macromodel is
used to describe the variational structures

Zwio (25:1 Pnpdp (9)) (s -
S0 (Zh-1Bnotp(9)) an(s)

where ¢h (s) is the frequency-dependent basis aflg) is the variability-dependent
basis with a single variational paramegesindP samples in the variability domain. The
variational structures can be described by a macromodél avppolynomial basis or
rational function basis [29, 30, 11].

H(sg) ~ (13)

Algorithms: Numerical Implementation

Due to the nature of iterative calculation, its implemeiotais usually numerically
sensitive. Although VF solves the ill-conditioned caldida by a partial-fraction ba-
sis, some other problems, such as inappropriate initiabgaad noise-contaminated
responses, tend to damage the algorithm convergence. $gonevements have been
proposed to address these problems.
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Initial poles and applied basis The algorithm gives a set of model parametdxs (
andby, in (1)) according to the given set of basig(6)), the sampled data and the initial
poles. The selected basis affects the conditioning of tiséeay equation matrix in (8)
and the solution accuracy.

One approach to address this problem is to select an apateet of initial poles.
The initial poles can be obtained by a simple calculatiog.(é&rony method [15]), or
intuitively assigned as a set of weakly-damped initial pdte » = a+ j0.01a) [1]. An-
other approach is to select a robust basis for calculatibiglwminimizes the numerical
disturbance due to the inappropriate set of poles. Ortlmabbasisg: n(s) [31] and
discrete-time domainz{domain) basisp, (z) [3] have been proposed based on this
idea, namely,

(8) = knv/20 (e (5200 ) 2 (14)
PornS) = Kn " Jlleraj s+an’
1
®n(2)= Z1ita, (15)

wherekp is the normalization coefficient anddenotes complex conjugate. Orthonormal
basis, from a mathematical perspective reduces the conditumber of the system
equation matrix, while the discrete-time basis calcufatitaps the left Laplace plane to
a unit circle plane, and thus improves the numerical comdliiom a signal-processing
perspective. Furthermore, discrete-time domain orthmabbasis is proposed recently
for further robustness improvement [32]. Other basis gairations are also available
for different requirements, e.g., modeling the responstsnepeated poles [31].

Macromodeling with noisy signals Experiences show that the convergence is
slowed down in noise-contaminated signals and biased irotudrequency region.
This is because the unity basis@fs) in (6) impairs the LS normalization of equation
solving. To address this problem, a variable unity bagi$ flormalization (16) with
an additional relaxed nontriviality condition (17) is adeq for a relaxed least-squares
normalization (Relaxed VF) [33, 19],

N CEP ® N yrgt)
— |t = +¥ |H(s)
nZl s+al nZl s+al) , (16)

(aH)(s) al(s)

(% (N Yt (s )) =Ns+1. a7)

Eq. (17) imposes that the sum of the samples approaches tozenoovalue. This
improves the normalization of the transfer function coédfits and the linearization
of the iterative SK iteration without affecting the convenge.

Massive-port macromodeling VF suffers from computational inefficiency when
macromodeling massive-port systems due to the unnecesatmylation ofcy in (8)
during iterative pole calculation (Step 3). Based on the nlagi®n of shared common
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poles in the macromodel, a QR decomposition is applied t@eixthe calculation ofy,
of each port response and formulate a compacted calcul@nThe computational
complexity is then reduced fro® ((PnPout + 1)2n?NsRnPout) t0 O (i?NsRnPout) for a
system withR,, input ports andP,; output ports, without any lost of accuracy.

MODELS

The macromodel (model) describes the Input-Output (I/@)atteristics of the approx-
imated system, for analysis and simulation with other é¢incwdels. The model should
be accurate, physically consistent and of low complexitysfmulation. Necessary post-
processing techniques are adopted to ensure a correcasiomul

Models: Post-Processing for a Physically Consistent Model

The macromodel should be physically consistent, i.e.;vehled, stable, passive and
causal [35].

Real-valued Real-valued macromodels do not generate complex-valugabnses
for real-valued input data. However, the original VF may g@ate complex-valued
macromodels if the complex poles are not restricted to gatpipairs. Some modifica-
tions in (7)-(9) are required to construct a real-valued nm@odel, as explained in [1].
Complex-valued computations of (8) are separated into #saed imaginary parts to
avoid numerical errors, at the expense of an increasederosize.

Stable Stable macromodels do not generate response beyond fiomasy bounded
input signal. An unstable pole can be stabilized through a-lmear pole flipping
in (11). The flipping, however, does not affect the norm cigiein (3) and the algorithm
convergence.

Passive Passive macromodels do not generate energy, yet VF mayajerstightly
non-passive macromodels due to numerical errors. Therefmssivity enforcement
through perturbation of model parameters is required teifyathe model, and a detailed
study is shown in [36].

Causal Causal macromodels do not generate output signal accaxlthg future in-
put. However, modeling electrically-long structures.(iresponses with a signal delay)
using a purely rational macromodel may suffers from inagatile fitting and often gen-
erates a non-causal model. A reformulated VF is developéH ¥8ith the D obtained
time delays{ 14}, the response can be fitted via

Y03 g1 bnath (5) e~SH
H(s) ~ = : (18)
( ) Z”:obndan (S)
Models: Post-Processing for Simulation

The approximant macromodel is used to generate the freguesponse, time-
domain reflectometry (TDR) waveforms, time-domain transonsetry (TDT) wave-
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FIGURE 2. Magnitude responses of the power distribution networkafaroximation usind., norm,
and (b) approximation usingns (L) norm.

(@) (b)
10° 10°
= Original = Original
------- Relaxed «oo Relaxed
10° = = = Weighted = = =Weighted
o R S A I PO U —
Q
£
= R PR
10°F  e==m=-TTT
5 ‘
= ’
e} \4
c 2 v
8 10
10"
5 10 15 20 5 10 15 20
No. of Iteration No. of Iteration

FIGURE 3. (a) Condition number of the system equation matrix in (8}l ) L, error of the approxi-
mation using original VF (6), relaxed VF (16) and weighted VF

forms and eye diagrams for channel analysis, or coupled atiter models for overall
simulation. Therefore, the models should be fully integdatvith simulation tools for
efficient analysis. The macromodel can be described by arpsldue form in Matlab
Simulink or Verilog-A description for high-level simulatis. The macromodel can also
be described as an equivalent circuit in a SPICE netlist fesiswlation with other
(non-linear) macromodels [38]. A standard equivalentutrcan be generated using
differential-equation realization.



P-NORM APPROXIMATION IN VF

To satisfy different macromodeling requirements and giveaae realistic description
of the system, the approximation framework (3) is extendealR-norm (p) approxi-
mation. The minimization framework (3) is generalized to

|l N®(s DY (s
min D<t_l)( ()s) — D<t—1§ ()s)H 9| , (29)

p

for which the over-determined equations can be efficiendlyesl by convex program-
ming. The approximation framework can be generalized toea-dsfined norm (e.g.,
region-dependent norm) approximation or (horm-)consé@iapproximation to meet
different macromodeling requirements. For examble(Chebyshev norm) approxima-
tion gives a smaller macromodel for a linear-phase (timaysel) response,, approx-
imation gives a more accurate macromodel for a noisy resp@mslL, approximation
is favorable for system identification with an impulsiveisescontaminated signal.

NUMERICAL EXAMPLES AND DISCUSSIONS

The VF is coded in Matlab m-script files and run in the Matlab @n a 1GB-RAM
3.4GHz PC. The first example arises from a power distributitwark of an IC power
plane [2], whose admittance responses range from DC to 9Gkiz port response is
fitted using relaxed VF [33] with a 35th-order macromodelha iterations (18.28
seconds) and a set of linear-spaced initial poles, whicasgd0064_, and 0.0022_,
error in fitting. Fig. 2 plots the magnitude-domain respenskthe converged approx-
imant. Fig. 3 shows the condition number of the system eguatiatrix (8) and the
L, error during iterations. In general, VF converges quicklyl(Q iterations), especially
for minimum-phase (passive) response. For further arabfgieneralizations of VF, we
repeat the example using VF without relaxed constraint ataked VF with a inverse-
magnitude weighting. The quantitative comparison is showfig. 3. It shows that the
weighting does not contribute much to the numerical coodjtbut it affects the conver-
gence. The relaxation may affect the numerical conditiothefcalculation, but it also
significantly improves the accuracy of the approximatiotla&t, we repeat the example
under an SNR of -35dB. In this case, relaxed VF converges withd3BL, and 0.0014
L. error. This shows the relaxed VF is robust to the noisy respapproximation.

The responses are also fitted usingnorm approximation with the same configura-
tion and clean signal, which gives an approximation witil8%L, error and 0.0016.,
error. The magnitude-domain response of the convergeaxgippation in Fig. 2 shows
thatL..-norm approximation renders a more accurate low-frequémegr DC) approxi-
mation which is important for simulation, afdnorm approximation can be used as an
alternative approximation criterion.

The performance of VF is also verified by a large macromodetirample of a
fourteen-port power distribution network of a communioatboard. The tested intel-
ligent network communicator (INC) board contains digitatio frequency (RF) and
optoelectronic sections on a single 83 en65 cm test bed. The board has two FPGA
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chips, one multiplexer (MUX), one RF amplifier, one signaHayne irregularly shaped
ground layer and one irregularly shaped power plane layex 14 admittance param-
eter matrix is generated at 1286 frequencies ranging froHz(o 9GHz [39]. Fig. 4
plots the signal energy distribution of the approximatestesy, from which we can see
that some pairs of ports are not coupled with each other. Byaetktg the coupled re-
sponses from all the responses, the approximation is signify reduced from fitting
196 responses to fitting 54 responses. The frequency-sdmgdponses are fitted us-
ing VF with a 100-pole approximant. It takes VF 99 seconds&itdrations for VF to
converge, with the average relative error being 0.0096.3-mots some typical approx-
imations. Fig. 6 plots the distribution of the relative eérod energy. This example has a
large amount of response data to be fitted, but VF is compuiaty well-conditioned
and gives an accurate approximation within a few iterations

Some discussions about the macromodeling process aredn ord

1. The computation time is exponentially proportional te #tmount of fitting data,

which depends on the number of ports and the number of samples

2. The computational difficulties are related to the chanastics of the underlying

structure and sampling distributions. In some situatiding,approximation accu-
racy does not get improved much with higher order models oreniterations,
which implies some generalized models (e.g., grey-box fsddee required to bet-
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ter describe the system. Some prior application-specififigarations can be ap-
plied based on physical insights of the measured data. ongbe, pre-processing
techniques (e.g., frequency warping or delay extractionptay-based macromod-
eling techniques are used to model delayed responseseFfudte, it is not feasi-
ble to model multi-pole structures (e.g., RF circuits) byg&apole partial fraction
basis, in which case multi-pole basis are required for appration [31]. Auto-
matica priori response characterization procedures and specializedlssttbuld
be developed to facilitate the macromodeling process.

. Measured responses are generally more difficult to mazlebared to simulated
responses. It is because measured responses have irrdigtilsbances, which
affect the convergence and accuracy of iterative numecalallation frameworks.
On the other hand, the amount of fitting data is not necegsegiited to the
approximation accuracy.

. In addition to the effort to improve its accuracy and speeg should also make
sure that the macromodeling algorithm requires least mMasardigurations. For
example, the order of the model, the locations of initialgsolthe number of
iterations and the criterion of approximation should beomatically determined
instead of manually selected.

. An alternative choice of macromodeling process is thealmse matrix-based tan-
gential interpolation algorithm [40, 41], which is a noeritive and manual con-
figurations free macromodeling method using frequencypsadnresponses. The
order of the underlying system is also automatically recgph

CONCLUSIONS

By applying a partial fraction basis, Vector Fitting (VF) hdamonstrated its numerical
robustness in broadband system identification. The goofbrpeance and versatile

extensibility of VF render it an attractive tool for sigrnadiver integrity analyses. In

this chapter, different issues related to VF have been s&smiion how to obtain a good
macromodel for simulation. FurthermoreRanorm approximation criterion is proposed
to provide an alternative measure to meet different requergs.
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