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Abstract

Among collective behaviors of biological swarms and flocks, the attractive/repulsive (A/R) functional links between particles
play an important role. By slightly changing the cutoff distance of the A/R function, a drastic transition between two distinct
aggregation patterns is observed. More precisely, a large cutoff distance yields a liquid-like aggregation pattern where the
particle density decreases monotonously from the inside to the outwards within each aggregated cluster. Conversely, a
small cutoff distance produces a crystal-like aggregation pattern where the distance between each pair of neighboring
particles remains constant. Significantly, there is an obvious spinodal in the variance curve of the inter-particle distances
along the increasing cutoff distances, implying a legible transition pattern between the liquid-like and crystal-like
aggregations. This work bridges the aggregation phenomena of physical particles and swarming of organisms in nature
upon revealing some common mechanism behind them by slightly varying their inter-individual attractive/repulsive
functions, and may find its potential engineering applications, for example, in the formation design of multi-robot systems
and unmanned aerial vehicles (UAVs).
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Introduction

Collective behaviors of various kinds of self-driven particles have

attracted more and more attention in recent years. One of the

most remarkable characteristics of systems, such as a flock of birds,

a school of fish, or a swarm of locusts, is the emergence of ordered

state in which the particles form difference appealing patterns

moving in the same direction [1–3] despite the fact that the

interactions are merely of short range. Revealing the nature of

aggregation patterns will find direct application in many relevant

engineering systems, such as attitude alignment of satellite clusters,

multi-agent formation control, sensor network data fusion, traffic

systems and so on [4–9]. The forming rule of the patterns [8] can

also help us to understand more deeply the social aggregation

phenomena like escaping panic [10,11], decease contagion

processes, as well as the evolution of cooperation [12–14], and

many other population behaviors in the society [15,16].

A basic yet popular self-driven particles model was proposed by

Reynolds [17], where three heuristic rules are prescribed, (i)

separation: steer to avoid crowding and collision; (ii) alignment: steer

towards the average heading; (iii) cohesion: steer to move towards

the average position. These rules have been proven effective and

are often used to describing the biological groups [18–20]. Later,

Vicsek et al. [1] proposed a well-known collective behavior model

where each particle tends to move in the average direction of its

neighbors. With the increasing intensity of external noise, the system

undergoes a remarkable transition from an ordered state to a disordered

state. In recent years, the Vicsek model has drawn more and more

attention from the physics, biology, engineering and social science

communities [2,3,19,21–27]. As two representative following works,

Jadbabaie et al. [25] have proven that all the individuals should be

jointly connected to guarantee the velocity synchronization, and

Grégoire and Chaté [2] modified the Vicsek model by changing the

way the noise is introduced, which simplified the phase transition

from a second-order to a first-order one.

Apart from the motion synchronization investigation, other

scholars turned to study more deeply into the nature of aggregation

patterns [19,28–33]. Enlightened by the mechanism of the inter-

molecule force, Breder [28] proposed a simplified attraction/

repulsion (A/R) model composed of a constant attraction term and

a repulsion term inversely proportional to the square of the inter-

agent distance, whereas Warburton and Lazarus [29] studied the

effects on cohesion of a family of A/R functions. More recently,

Gazi and Passino [19] derived another A/R model which is closer to

the inter-molecule force function, and analytically proved that a

stable ring-shaped pattern can be yielded in a finite time.
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Analogously, by using a linearized A/R model, Moreau [24] proved

that the group will form a bounded circularly moving pattern if and

only if there exists an agent connecting to all other ones, directly or

indirectly, over an arbitrary time interval.

As another milestone of aggregation pattern exploration,

Couzin [34] designed a Three-Sphere model by inserting an

orientation area governed by the Vicsek model between the

attraction and repulsion areas of the A/R model. With such a

model, three typical types of collective behaviors, i.e., swarming,

torus, and migration, are observed. Particularly, torus well

explains the circular motion pattern among fish schools, ant

groups, bacterial colonies and slime molds. By adopting Couzin’s

attraction/alignment/repulsive mechanism, Tanner et al. [35]

proposed a centralized algorithm and a distributed one leading to

irregular collapse and irregular fragmentation, respectively. Later,

Olfati-Saber [36] developed a general framework for flocking,

which adopts Newton’s gradient descent law of motion and hence

eventually yields to a regular lattice movement pattern. As the

continuation work for Couzin’s [34] and Olfati-Saber’s work [36],

Zhang et al. [37-39] incorporated predictive mechanisms into the

above-mentioned two models to accelerate the aggregation

procedure, and Liu et al. [40] designed a global synchronization

method for a class of dynamical self-driven particle systems.

With the rapid development of the interdisciplinary collective

behavior investigation, more complex patterns have been revealed

by physicists and biologists. Vicsek [41] exhibited the universal

patterns among many organisms as well as non-living objects.

Later, Juanico [42] proposed a modified kinematic model which

leads to several stellate patterns by changing the distribution of

preferred pairwise length. Impressively, some new basic laws are

found out these years that embody some essential aspects of

coordinated behavior of various systems ranging from colonies of

tissue cells, flocks of birds to collectively moving robots.

Based on the previous works introduced above, one can see that

the A/R interrelation mechanism among the self-driven particles

has played an essential role of forming and enriching the collective

patterns in both living and nonliving multi-agent systems. However,

there are still very few works on revealing the quantitative relationship

between the A/R function’s variation and the evolution of collective dynamic

patterns, which is of great interest for physicists, biologists and system

scientists and hence motivated our present study. Therefore, from

the aspect of physics, we demonstrate in this paper that physical

particle systems also show some resemblance to biological groups,

which bridges the seemingly different procedures of them.

More precisely, we examine the dynamic pattern’s emergence

by modifying the A/R inter-particle interactions. A quite

interesting phenomenon is observed that particles will aggregate

into some liquid-like or crystal-like clusters depending on the cutoff

distance (or the cutoff in short) of the A/R function which

embodies the vision range of each particle. To understand this

observation more deeply, we analyze the forming mechanism of

these two distinct patterns by non-balanced statistical physical

methods, and then find an apparent transition between the liquid-

like and crystal-like patterns merely by slightly changing the cutoff

distance of the A/R interaction function. This work reveals some

common features behind the various aggregation phenomena of

physical particles and biological groups, and may find its potential

engineering applications, for example, in the design of multi-

robots systems, multi-sensor networks and UAVs.

The rest of the paper is organized as follows. In Sec., we present

a self-driven particle model governed by a general A/R function.

The transition phenomenon between the liquid-like and crystal-

like patterns is exhibited with statistical physical analysis in Sec.

Finally, the conclusion is drawn in Sec.

Methods

We consider a group of N particles moving in a square shaped

cell of linear size L with periodic boundary conditions. The

particles are represented by points moving continuously (off lattice)

on the plane as below:

_xxi~vi,

_vvi~ui,

ui~
X

j

f (Exj{xiE) n i,j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A=Rterm

z
X

j

si,j(vj{vi)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
velocityconsensusterm

,

i~1,2, . . . ,N,

8>>>>>>><
>>>>>>>:

ð1Þ

where xi, vi and ui[R2 are the position, velocity and acceleration

of the ith particle moving in a two-dimensional space, respectively,

ExE~
ffiffiffiffiffiffiffiffiffi
xT x
p

is the 2-norm, n i,j is a vector pointing from xi to xj

and si,j is the adjacent matrix (the definition will be given later)

entries of the group’s proximity matrix with

si,j~
1, Exi{xjEƒc

0, Exi{xjEwc

�
i~1,2, . . . ,N: ð2Þ

where c embodies the vision range of each particle, which equals

the cutoff range of the A/R function. Beyond this value c of inter-

particle distance, the link between each pair becomes so weak that

each particle will be invisible to the other. Therefore, we call any

two particles i and j within Euclidean distance Exi{xjEƒc as an

adjacent pair, and with such a definition, the whole group can be

represented by a proximity network with nodes and edges

representing the particles and the connections between the particle

pairs. Note that the A/R term of the acceleration ui can be

attraction or repulsion depending on the distance between each

pair of particles inside the group.

In order to quantitatively study the role of interactions between

particles, it is quite natural to seek assistance from the inter-

molecule functions [43,44], such as Lennard-Jones, Hard-Sphere,

Square-Well and the six-ordered exponential potential models.

Among these models, we adopt the Lennard-Jones potential [?] for

its effectiveness in describing non-polar monatomic systems, and

hence utilize a derivative exponential potential function and a

second order polynomial to represent the attractive and repulsive

interactions, respectively, as below,

f (r)~
Ar2zBrza r[½0,g),

b
s r{gð Þ exp { (r{g)2

s

� �
r[½g,?),

8<
: ð3Þ

where g is the preferred distance between two particles. To

guarantee the continuity and differentiability of the proposed A/R

function (3), the function f (r) satisfies the following equations at

the threshold r~g:

f (r)jr?g{ ? f (r)jr~g,

f ’(r)jr?g{ ? f ’(r)jr~g:

(
ð4Þ

One should not be intimidated by the six parameters A,B,a,b,s
and g in the proposed A/R model since only two of them are free

parameters under investigation. Let us explain this as follows. First,

A and B can be determined by the continuity and differentiability

Aggregation Pattern Transitions
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condition (??). Secondly, the effects of the parameters a and b are

much weaker than those of s and g, respectively. Thereby, without

loss of generality, we set a~5 and b~0:2 and focus on the effects of

the essential factors s and g in the rest of the paper. To fulfill such a

task, we demonstrate the A/R functional curves with different

values of s and fixed g in Fig. 1. It can be analytically proven that

larger parameter s implies smaller peak value of f (r), larger cutoff c
and longer settling time Ts. Therefore, the parameter c can be

regarded as a vision range measurement of each homogenous

particle as give in Eq. (2), beyond which the attraction vanishes. For

example, if the vanishing threshold is 1% (i.e., beyond the cutoff c,

the attraction intensity is less than 1% of its peak value), cutoff c can

be approximated as c~gz
ffiffiffiffiffi
7d
p

. Regarding the other free

parameter g, it represents the equilibrium distance between each

pair of adjacent particles, or f (r)~0 at r~g, which is also essential

to form different kinds of aggregation patterns.

Results and Discussion

With the proposed model (3), we are now ready to investigate

the role of A/R function on the forming and evolution of the

collective motional patterns. In a two-dimensional ½L|L� square

with periodic boundary conditions, N particles are initialized with

identical velocities EviE~v. The initial locations and directions are

randomly selected from ½L|L� and ½0,2p), respectively. The

dynamics of all the particles are updated every 0:02s.

Figure 1. A/R function f (x) with different values of s. Here, the
preferred distance g~1, and cc,ct,cl denotes the cutoffs of the crystal-
like, transition and liquid-like patterns, respectively. It can be analytically
proven that the vision range (or cutoff) c rises monotonously with
increasing parameter value s for fixed equilibrium g.
doi:10.1371/journal.pone.0022123.g001

Figure 2. (Color online) Liquid-like pattern of N~100 particles moving in a square-shaped cell with periodical boundary conditions.
Here, L~40, s~0:2, v~1 and g~1. Subfigures (a), (b) and (c) are the snapshots at the 0th, 1600th and 4000th running steps, and (d) shows the
zoomed in liquid-like cluster or ‘‘drop’’. In order to highlight the shape of the clusters or ‘‘drops’’, we use green circles to mark their contours along
the entire evolution. The initial locations and directions are randomly selected from ½L|L� and ½0,2p), respectively.
doi:10.1371/journal.pone.0022123.g002
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A remarkable transition phenomenon from so-called liquid-like

pattern to crystal-like one emerges in the numerical simulations

along with increasing s (see Eq. (3)). In detail, for the liquid-like

pattern as shown in Fig. 2 and Fig. 4(a), some small clusters of

particles are formed with structures quite similar to liquid drops

among which the particle density is decreasing from the drop

kernel to the surface due to the ‘‘surface tension’’. Moreover, when

multiple clusters or ‘‘drops’’ encounter, they will merge into a

larger ring-shaped cluster or ‘‘drop’’ no matter what the original

orientations and velocities the former ‘‘drops’’ were in. In

comparison, for the crystal-like pattern, larger clusters are formed

with much more evenly distributed particles as shown in Fig. 3 and

Fig. 4(b), where a regular lattice-shaped formation emerges, which

resembles molecules’ distribution in crystal phase. When multiple

crystal-like clusters encounter, the merged cluster will form an

irregular shape determined by the original orientations and

velocities of the previous clusters. Furthermore, the collective

dynamics of the self-driven particles is more complex than these

two aforementioned patterns, as there still exists a quasi-stable

transient intermediate pattern [45] between them as show in

Fig. 4(c). This pattern embodies a mixture of the crystal-like

internal lattice together with the liquid-like ring-shaped external

features. We call it a transient status since such a ‘‘partially

melted’’ pattern is much weaker than the liquid- and crystal-like

ones, whose corresponding range of s is much smaller than those

of the two latter ones. Thereby, the dynamics of the self-driven

particles is dominated by the liquid-like and crystal-like patterns,

whose characteristics are the focus of our investigation.

Apart from the emergence of the three distinct patterns, it is also

observed from Figs. 2 and 3 that the connectivity of the group’s

communication proximity net cannot always be guaranteed, which

means that some particles will lose the connections with the others

and hence the whole multiple particle group will always be

separated into smaller clusters.

To facilitate our investigation, we assume there are totally M
connections in the proximity net of the group, and then define dk

and lk (k~1, . . . ,M) as the Euclidean distance of the k-th link and

the distance between the geometric center of each cluster and the

middle point of k-th link. With these definitions, we study the

density’s variation from inside to outside of each cluster by

exhibiting the distribution of dk along with increasing lk as shown

in Fig. 5. Apparently, it is shown in Fig. 5(a) that dk rises with

increasing lk, implying that the particles will become sparse from

the kernel to the surface of each cluster, and hence this case

corresponds to the liquid-like pattern. By contrast, Fig. 5(b) is self-

consistent with the crystal-like pattern, where dk are independent

of lk since the distance between each particle pair remains

constant. Per the intermediate phase, Fig. 5(c) shows a mixture of

crystal-like and liquid-like pattern, in which the neighboring

distances dk’s also rise slightly with increasing lk. Nevertheless, the

standard variance of dk is much larger than those of the crystal-like

and liquid-like phases, which well explains the irregular features of

the ‘‘partially melted’’ phase.

In order to quantitatively analyze the dynamics of the different

patterns, we adopt two indexes, namely da and va, to measure the

average neighboring distance and average velocity, respectively, as

Figure 3. (Color online) Crystal-like pattern of 100 particles with s~0:06. Subfigures (a), (b) and (c) are the snapshots at the 0th, 1600th and
4000th running steps, and (d) shows the zoomed in crystal-like cluster. All the other settings are the same as Fig. 2.
doi:10.1371/journal.pone.0022123.g003
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below,

da~

PN
i~1

PN
j~iz1 si,jExi{xjEPN

i~1

PN
j~iz1 si,j

, ð5Þ

va~
E
PN

i~1 viEPN
i~1 EviE

ð6Þ

with si,j given in Eq. (2). Clearly, the value va?1 and _dda?0 as the

velocities of the particles achieve synchronization, so both va and
_dda can be regarded as an order parameter. Note that _dda demonstrates

the evolution of the average inter-particle distance, thus it contains

more information than va and we display both va and _dda in Figs. 6

and 7, respectively. Indeed, due to the periodical boundary

condition, the particles can communicated with the other ones for

a sufficient number of times, and hence the particles in all these

three patterns will eventually reach a synchronized velocity [18],

which is also verified by Fig. 6. Moreover, it is also exhibited that

the synchronization procedure of the liquid-like pattern is quicker

than that of the crystal-like one. The underlying reason is that the

former has larger individual vision scope and tighter clustering

formation, which implies more connections in the proximity net

who accelerate the consensus procedure [18].

One can understand more deeply about the dynamics of the

system from the evolution of the average neighboring distance da

and its derivative _dda in Figs. 7 and 8, respectively. For the liquid-

like pattern since the average distance da is much smaller (see

Figure 4. (Color online) Aggregation patterns with N~50. (a)
The ‘‘liquid-like’’ pattern with s~0:2. (b) The ‘‘crystal-like’’ pattern with
s~0:06. (c) The transitional pattern with s~0:13. All the other settings
are the same as Fig. 2.
doi:10.1371/journal.pone.0022123.g004

Figure 5. (Color online) The distance dk distribution with increasing lk. Here, the particle number N~100 and g~1. (a) ‘‘Liquid-like’’ pattern
with s~0:2, (b) ‘‘Crystal-like’’ pattern with s~0:05, (c) Intermediate pattern with s~0:13. All the other settings are the same as Fig. 2.
doi:10.1371/journal.pone.0022123.g005
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Fig. 2(d)) than that of the crystal-like one (see Fig. 3(d)), its average

distance derivative _dda will experience a negative value during a

long period until reaching a sufficiently small da in Fig. 8, which

well explains the negative overshooting of the liquid-like pattern in

Fig. 7. Afterwards, its _dda value settles down to zero quicker than

that of crystal-like pattern due to its larger number of neighboring

connections induced by larger individual vision scope and tighter

clustering formation, which reveals the distinct forming procedures

of the different aggregation patterns.

To study the distinct features of the different aggregation

patterns, we hereby demonstrate the density da and average

distance index da along with increasing parameter s of Eq. (3) in

Figs. 9 and 10, respectively. It is apparent from Fig. 9 that the

particle density remains at a quite low level below 1.6 in the

crystal-like pattern and then rises abruptly to the high lever over

2.3 representing the liquid-like pattern. Moreover, the intermedi-

ate range of s[½0:115,0:148� is so narrow that highlighting a clear

pattern transition from the crystal-like pattern to the liquid-like

one. Remarkably, in the crystal-like pattern as shown in Fig. 10, all

pairwise distances remain constant roughly at g~1. However,

beyond a threshold of s~0:115, an evident declination of index da

appears from about 0:95 to around 0:65 roughly at s~0:148,

corresponding to the transient intermediate phase (see Fig. 4(c))

between liquid-like (see Fig. 4(a)) and crystal-like (see Fig. 4(b))

phases. Afterwards, the index da reaches a low level corresponding

to the liquid-like pattern. Significantly, this intermediate region in

Fig. 10 nicely matches the one of r evolvement at Fig. 9, which

strongly supports the existence of the transition from the crystal-

like pattern to the liquid-like one.

Now, we are ready to derive that the dominating factor of the

aforementioned three aggregation patterns is the cutoff distance c
of the attraction interaction as shown in Fig. 1, which is measured

by parameter s in Eq. (3). The physical rule behind such appealing

phenomena can be summarized as follows. For a small cutoff c,

each particle will be attracted merely by the closest particles or

neighbors. As a result, the distance between each neighboring pair

eventually converges to an equilibrium value of g and hence

particles will be evenly distributed in the aggregations clusters like

regular lattices (see Fig. 4(b)). Conversely, for a sufficiently large

cutoff c, particles will be attracted not only by the adjacent

particles but also by the ones far away. Consequently, the inner

particles will be pressed closer to their neighbors whereas the outer

ones enjoy larger separations as the pressure exerted on them is

much weaker (see Fig. 4(a)), which eventually leads to a circular

shape resembling liquid drops caused by surface tension.

Figure 6. The average velocity va of particles in three patterns
with N~200 and L~14:1. This curve is the average over 100
independent runs. All the other settings are the same as Fig. 2.
doi:10.1371/journal.pone.0022123.g006

Figure 7. The evolution of the derivative of average neighbor-
ing distance _dda of particles in three states. All the settings are the
same as Fig. 2.
doi:10.1371/journal.pone.0022123.g007

Figure 8. The evolution of average neighboring distance da of
particles in three states. All the settings are the same as Fig. 2.
doi:10.1371/journal.pone.0022123.g008

Figure 9. The particle density r with g~1 and particle number
N varying from 50 to 400.
doi:10.1371/journal.pone.0022123.g009
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Finally, due to its significance, we still emphasized the

resemblance between forming procedures of the liquid-like pattern

and natural liquid drops as below. In both cases, each particle

round the kernel is pulled/pushed equally in every direction in

½0,2p) by its neighboring particles, resulting in a net force of zero.

By contrast, the particles at the surface are mainly pulled inwards

by other particles deeper inside the cluster, whose intensity is much

less than that of the inner particles and is balanced merely by the

group’s resistance to compression. That is why the aggregation

particle cluster forms a spherical-shaped liquid-like pattern with

particle density decreasing from the inside to the outside.

Conclusion
In this paper, we investigated the mechanism of the attraction/

repulsion function of forming the different aggregation patterns of

self-driven particles. In this function, the cutoff distance plays an

essential role in the sense that, with a larger cutoff the particle

aggregation shows a liquid-like pattern in which the outer particles

are distributed sparsely while the inner ones densely. In

comparison, however, when the value for the cutoff distance of

attraction decreases to a sufficiently small value, the particle

aggregation exhibits a crystal-like pattern as the distance between

each pair of neighboring particles remains constant. An obvious

spinodal or transient intermediate phase has been observed in the

curves average inter-particle distances and the densities with

respect to the increasing cutoff distance, indicating an evident

pattern transition between the liquid-like and crystal-like

aggregations.

From biological/physical interdisciplinary point of view, the

contribution of this work lies in bridging the aggregation

phenomena of physical particles and swarming of organisms in

nature by revealing some common mechanism behind them. With

such a revelation, our investigation helps to explain the natural

aggregation pattern switching mechanism evolved by biological

groups, e.g., during migration, an antelope herd generally forms

like the crystal pattern or rigid lattice, but upon being attacked by

predators, strong antelopes will quickly form a circle surrounding

the weak one and hence the whole group will switch into the

liquid-like pattern. From the aspect of engineering, designing

different A/R functions for different aggregation patterns can be

useful for various tasks like multi-robot and UAVs formation

control. More importantly, this work bridges the forming

procedures of phase patterns in both biological groups and

physical substance’s molecular clusters, which may brood more

appealing findings in each area by seeking assistance from the

relevant rules of the other one.
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