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Abstract: A generalized genetic algorithm has been developed to find the global 

optimal reinforcement contents in a concrete solid structure subjected to a general 

three-dimensional stress field. All feasible solutions are examined based on the 

genetic algorithm. The heterogeneous strategy used in the algorithm ensures that all of 

the local optimal regions are searched and the most optimal reinforcement content is 

found. The effectiveness of the proposed approach has been validated by comparing 

the steel contents evaluated using the present method with those obtained from other 

available methods. A more economic design is achieved by the proposed algorithm. 

The method developed provides the designer with a valuable tool for the 

determination of reinforcements in complicated solid concrete structures. 
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Introduction 

Stress distributions in reinforced concrete solid structures such as pile caps, transfer 

plates, dams, etc. are highly complicated. With advances in the use of computational 

methods in various structural analyses, it is not difficult to evaluate the internal stress 

distribution of solid structures using three-dimensional (3-D) finite element methods. 

However, after getting the internal stress fields from the finite element analysis, to 

date, the determination of the required reinforcement in a 3-D solid structure remains 

very complex and computationally tedious.  

 

Clark (1976) developed a two-dimensional (2-D) approach for the provisions of 

tensile and compressive reinforcements to resist in-plane stresses at any point in a 

planar structure by considering the Mohr’s stress circles of the applied stresses and 

concrete capacity. Hsu (1993) proposed a reinforcement design method with the 

consideration of strain compatibility and constitutive relations of concrete and 

reinforcements. Foster et al. (2003) and Law et al. (2007) extended Clark’s approach 

to solve 3-D problems. The two proposed methods require finding an optimal solution 

among the feasible solutions by means of some optimization methods. The 

shortcoming of Law’s approach is that the optimal solution is simply obtained from a 

trial-and-error process. This approach cannot guarantee that all possible solutions are 

exhausted; thereby, the solution obtained may not be the same as the global optimal 

solution.  

 

It is reasonable to believe that the feasible solution region comprises several 

continuous spaces that are independent of each other. This means that (i) the number 

of feasible solutions is countless but Law’s approach cannot identify all of the 
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solutions and (ii) most optimization methods that rely on one continuous feasible 

solution space will not work for these problems. 

 

In this paper, a genetic algorithm (GA) is proposed to perform the global optimal 

reinforcement design of a concrete solid structure. GA is an optimization module that 

simulates the biological evolutionary process (Holland, 1962, 1975). The method can 

find the global optimal solution with high probability because of the inherent implicit 

parallelism even if the optimization problem has a complicated feasible solution space 

(Goldberg and Segrest, 1987; Eiben et al., 1991; Whitely L.D., 1992). Furthermore, 

using the GA, the optimization process and the equation system solution process are 

relatively independent, and there are no data transferred from the two processes 

except design variables and the values of the objective function (Forrest, 1993). This 

feature makes GA particularly suitable for solving the present complicated 

optimization problems. GA has been widely used in different engineering fields and 

its fundamental theory is being developed and improved continuously. Parallel 

genetic algorithm (PGA) (Fogarty and Huang, 1991; Neuhause, 1991; Agrawal and 

Mathew, 2004) was proposed to improve the efficiency of GA. Niche technology 

devotes to increase the population diversity (Beasly et al., 1993; Goldberg et al., 

1992). Hybrid genetic algorithm (HGA) (Espinoza and Minsker, 2006; Martin, 2009) 

combines some traditional searching algorithms in GA to enhance the ability of local 

search. Macro-evolutionary algorithm (MA) (Martin and Sole, 1999; Chen, 2003; 

Chen and Wang, 2010) is a concept of species evolution at the higher level which 

could improve the capability of searching global optima and avoid premature 

convergence during the selection process. Monti et al. (2010) discussed the efficiency 

and correctness of different real-coded genetic algorithms.  
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Formulation of a reinforced concrete design based on a 3-D stress field 

Any point in a 3-D structure has three components of direct stresses and three 

components of shear stresses. Figure 1 shows a small tetrahedron of elements in 

concrete with direct stresses x , y , z and shear stresses xy , xz  , yz  in global 

coordinates (X, Y, Z). 

 

By rotating the orientation of the axes to where the shear stresses diminish to zero, the 

direct stresses at such orientations will become the “principal stresses”. Timoshenko 

and Goodier (1970) related the principal stresses and principal directions by using the 

following eigenvalue equation: 
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where σi is the principal stress (the eigenvalue) and  Tnm  is the direction cosine 

vector of the principal plane (the eigenvector) of Eq. (1). The principal stresses 

obtained by Eq. (1) were termed the “theoretical” principal stresses by Law et al. 

(2007), to distinguish them from the actual principal stresses in concrete after 

cracking and in the presence of reinforcements. The fundamental assumptions of 

Law’s approach include that (i) the applied shear stress is resisted by the concrete 

only and (ii) the reinforcement is assumed to carry only the uniaxial stress in the 

direction of the bar. In the case that any of the “theoretical” principal stresses 

determined by Eq. (1) are tensile or exceed the allowable concrete strengths , 

reinforcements should be added to resist the all the tensile force.  

cf
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Considering the equilibrium of the tetrahedrons, as shown in Figure 2, the following 

equations can be formulated: 

2
3

2
2

2
1 zzzszz nmf        (2) 

zxzxzxxz nnmm 321        (3) 

zyzyzyyz nnmm 321    ,    (4) 

where 1 , 2  and 3  are the principal stresses at the location considered, z , x , 

and y  are steel ratios provided in the Z，X and Y directions, respectively, and  is 

the allowable stress of steel. 

sf

 

Likewise, similar equilibrium equations can be derived in the other directions. 

 

Summing up the equilibrium equations, we obtain 

2
3

2
2

2
1 xxxsxx nmf        (5) 

2
3

2
2

2
1 yyysyy nmf        (6) 

2
3

2
2

2
1 zzzszz nmf        (7) 

yxyxyxxy nnmm 321        (8) 

zxzxzxxz nnmm 321        (9) 

zyzyzyyz nnmm 321    .    (10) 

 

By considering the fundamental property of direction cosines, one can get 

1222  xxx nm       (11) 

1222  yyy nm       (12) 
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1222  zzz nm .      (13) 

 

The three principal planes are mutually perpendicular. Therefore, 

0 yxyxyx nnmm      (14) 

0 zxzxzx nnmm      (15) 

0 zyzyzy nnmm .     (16) 

Eq.(11) to Eq.(16) are geometric equations. 

 

The 12 equations (Eq.5 to Eq.16) will be used to work out the reinforcement ratios in 

the global directions under known values of applied stress x , y , z , xy , xz  and 

yz . In general, there is no unique solution for this problem, as there are 15 unknowns 

and 12 equations. In view of the complexity of the solution of the system of equations, 

Law et al. (2007) suggested that, in the case that the “theoretical” principal stress 

exceeds  or is less than zero (i.e. in tension), the principal stress cf 3 is set to  or 

zero, leaving 

cf

1  and 2  to be determined. These assumptions are also adopted in the 

formulation in this paper. To find the optimal reinforced design, Law et al. (2007) 

further narrowed down the range of component of unknown direction cosines to 

search for feasible solutions. The optimal solution is chosen from a set of feasible 

solutions, which makes the total reinforcement ratio zyx     to a 

minimum. 

 

In this paper, the set of equations (Eq.5 to Eq.16) is solved by the commercial 

software MatLab (MathWorks Inc, 2007a and 2007b). Unfeasible solutions are 

rejected by the abandon strategy (Gen and Cheng, 1997; Horst and Tuy, 1996), 
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whereas numerical feasible solutions are transferred into the GA as a selecting 

individual. The optimal solution is obtained by the improved GA. The details of the 

GA will be presented in the following sections. 

 

Optimization module and generalized genetic algorithm 

In contrast to the binary code of Standard Genetic Algorithms (SGAs), General 

Genetic Algorithms (GGAs) employ real code. Real code and corresponding genetic 

operators improve the fitness of the optimal population and optimization efficiency 

(Gerald et al., 2009; Martin, 2009; Pei et al., 2009). A GGA is adopted in this paper, 

and the details will be discussed in the following sections. 

 

Optimization module 

As an optimization problem, one can construct an optimization module for the 

reinforcement design method based on 3-D stress fields. First, the objective function 

can be described as 

 

zyx  min .      (17) 

 

Second, the number of design variables is 2 because there are 14 unknowns and 12 

equations ( 3  has been assumed to reach  or zero). Two design variables can be 

selected in 9 direction cosines. For simplicity, and  are selected as design 

variables in the following optimization process. In the GA, the design variables 

and  are called chromosomes, denoted by  and . A vector assembled by the 

design variables is called an individual, denoted as : 

cf

xl

T
iX

xm

xl xm 1x 2x
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 T
i

T
i

T
i xxX 21 .       (18) 

The superscript T  represents the current generation ordinal. The subscript i  

represents the population number of the individual. 

 

The range of and is 1x 2x

         (19) 11 1  x

 .        (20) 11 2  x

 

Third, the principal stresses 1  and 2  of concrete should not be negative, as 

concrete tensile strength is ignored and all of the applied tensile stress is resisted by 

the steel reinforcement. Furthermore, 1  and 2 should not exceed . Thus, the 

constraints are 

cf

cf 10          (21) 

cf 20  .        (22) 

 

We then obtain the optimization module of the reinforcement design method based on 

3-D stress fields. 

 

Macroscopic genetic strategy 

The population isolation mechanism (De Jong, 1975; Goldberg, 1987), which can 

quickly converge and effectively avoid pre-maturity, is adopted in this paper. Before 

optimization, the parameter space is divided into several subspaces. Seed selection 

and genetic operations are performed in each subspace independently in the following 

genetic processes. Finally, the global optimal solution is acquired by comparing the 
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local optimal solutions. The essence of the population isolation mechanism is an 

artificial intervention method in the genetic optimization process, which can advance 

the computation parallelism of the GA. The efficiency of the population isolation 

mechanism has been proven elsewhere in the literature. 

 

The whole optimization process was divided into two phases, i.e., an asymptotic 

phase and a cataclysmic phase. In the asymptotic phase, the GA searches for feasible 

solutions in any possible region. In the cataclysmic phase, the GA searches for the 

local optimal solution precisely in the local optimal region. The two phases are 

transformed gradually by the inherent property of the arithmetic crossover operator 

and the adaptive zoom of the mutation operator, which will be elaborated in the next 

section. 

 

Genetic operators 

There are 3 fundamental genetic operators in GAs, i.e., selection, crossover and 

mutation. The selection operator, also called the reproduction operator, is used to 

determine if an individual should be reproduced or eliminated from the population 

based on its fitness value. In general, the selection operator ensures that an individual 

with a high fitness value survives with higher probability, and, as a result, the better 

gene can be reserved and reproduced in the next generation (Goldberg, 1989; Davis, 

1991). In SGAs, the selection of the operator is performed based only on probability, 

i.e., the parent generation is forbidden to compete with the progeny generation. 

Therefore, the best individual may not be preserved in the next generation. To 

improve the convergence probability and find the global optimal solution effectively, 

the optimum reserved strategy, which allows the parent generation to compete with 
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the progeny generation, is adopted in this paper. The validity of the optimum reserved 

strategy is justified in theory and practice. According to the schema theorems 

(Whitley, 1992), SGAs with the optimum reserved strategy can converge to the global 

optimal solution by probability; whereas SGAs without the optimum reserved strategy 

cannot converge to the global optimal solution by probability. This finding shows the 

importance of the optimum reserved strategy. 

 

The crossover operator simulates the reconstructive process of sexual reproduction in 

biology. Genes are exchanged among individuals by the crossover operator, and then 

new individuals, including more complex genes, are reconstructed (De Jong, 1975). 

The crossover operator is always selected by the special problem under study. The 

Arithmetic crossover operator, a widely used crossover operator in real code GGAs, is 

adopted in this study. Assuming and  are two individuals that will cross in T
iX T

jX

T generation population, the progeny generation, and , created by the 

arithmetic crossover operator are 

1T
iX 1T
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 ,     (23) 

where 1  and 2 are two random numbers that are uniformly distributed in the range 

of [-1, 1]. The arithmetic crossover operation ensures that all neighborhoods of 

and  are searched and the area between and  is well considered. If there 

is only one local optimal solution in the solution space or one of the local solutions is 

obviously better than others (which occurs with high probability in many optimization 

problems), then the arithmetic crossover operation moves individuals to the global 

optimal solution gradually. The mean distance of individuals is then shortened, and 

the GGA is transferred from the asymptotic phase to the cataclysmic phase. 

T
iX T

jX T
iX T

jX
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The mutation operator simulates gene mutation in biology. In SGAs, the mutation 

operator randomly switches several bits of the bit string from 0 to 1 or from 1 to 0. 

This mutation operator is not suitable for GGAs because GGAs are coded with real 

numbers. Therefore, many mutation operators are created to adapt GGAs. Adaptive 

random mutation, as a practicable real code mutation operator, is adopted in this paper. 

Assuming that the code of the mutation individual is T
iX

 T
i

T
i

T
i xxX 21  ,      (24) 

a chromosome is selected as the mutation bit arbitrarily, e.g., . The mutation result 

is 

T
ix 1

bxx T
i

T
i 

1
1

1 ,      (25) 

where   is a random numbers which is uniformly distributed in the range of [-1, 1], 

and b  is the radius of the value range. This mutation ensures that  is acquired in 

the neighborhood of that is represented by 

1
1
T

ix

T
ix 1  bxU T

i ,1  and the radius b is a variable 

that is varied by the generation and determined by 





 


else

2

1
when

2

1

l

lsTsT

b

bbb
b ,    (26) 

where and  are, respectively, the lower and upper bounds of the mutation range. 

Eq. (26) ensures the adaptive zoom ability of the mutation operator. The mutation 

range constantly decreases with evolution processing. In the asymptotic phase, the 

range is big and the mutation operator participates in the global search. In the 

cataclysmic phase, the range is small and the mutation operator is used to search the 

local optimal area precisely to find the local optimal solutions. The lower bound  is 

lb sb

lb
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used to ensure the functionality of the mutation operator, because it is meaningless if 

the range becomes too small. 

 

 

Inbreeding criterion and heterogeneous strategy 

Generally speaking, GAs are good at global searching, whereas GGAs are 

accomplished at local searching. Although the population isolation mechanism 

decreases the probability of pre-maturity, it is not guaranteed that the global optimal 

solution will be found by a GGA. In fact, the convergence efficiency obtained by 

arithmetic crossover and adaptive random mutation occurs at the expense of random 

searching. To avoid inbreeding and pre-maturity, a heterogeneity strategy is proposed 

to improve the GGA. 

 

Mechanism of the heterogeneous strategy 

The heterogeneous strategy is a new genetic strategy that selects seeds out of the 

current search region with low probability in the course of evolution and sends them 

into the population to obtain population diversity. The heterogeneous strategy 

simulates the manual intervention operator in biology, and the aim is to obtain more 

optimal species. The procedural property of the GA ensures the achievement of the 

desired strategy. The mechanism of the heterogeneous strategy is to 

(i) monitor the optimization procession and startup the heterogeneous strategy 

if inbreeding occurs in the present population; 

(ii) select several heterogeneous seeds out of the present searching region and 

substitute the inbreeding individuals that have low fitness; 
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(iii) reproduce the progeny generation by the population including 

heterogeneous seeds and start the next evolution circulation. 

 

Inbreeding criterion 

Inbreeding can be judged by calculating the mean distance of the population. 

Assuming and are two individuals of the current population: T
iX T

jX

)( 21
T
i

T
i

T
i xxX         (27) 

)( 21
T
j

T
j

T
j xxX         (28) 

The distance between and can be calculated by T
iX T

jX

2
22

2
11 )()(),( T

j
T
i

T
j

T
i

T
j

T
i xxxxXXd      (29) 

Given a critical value , the probability of the distance of 2 random different 

individuals in the 

rd

T  generation population less than can be examined by Eq. (30). rd

   r
T
j

T
i dXXdPTP  ),()(       (30) 

If  exceeds the given inbreeding criterion , one can judge that inbreeding 

occurs in the 

)(TP bp

T  generation population. In other words, the inbreeding criterion is 

       (31)  ,T T
i j rP d X X d p   b



 

It can be seen that a minority of individuals in the population inevitably approach 

each other. However, if many individuals assemble in a small feasible solution region, 

a manual intervention strategy, such as the heterogeneous strategy, should be adopted 

to ensure the optimization efficiency of the GGA. This is consistent with the rule of 

manually controlled species optimization in biology. 
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The inbreeding criterion should be different in the asymptotic phase and the 

cataclysmic phase. In the asymptotic phase, the GA needs to search all of the solution 

space. As we know, even slight inbreeding may lead to searching of the dead ends in 

this phase. For this reason, the inbreeding criterion should be more critical in this 

phase. In the cataclysmic phase, individuals assemble in several optimal regions and 

the final optimal solution is likely found. Accordingly, the declaration of inbreeding 

should be performed more carefully. The transformation of the inbreeding criterion is 

realized by the modification of the critical value : rd

 




 


elsed

ddwhend
d

rl

rlrsTrsT
r 2

1

2

1
,    (32) 

where  and  are the lower and upper bounds of , respectively. This setup 

ensures that the heterogeneous strategy works effectively but does not interrupt the 

evolution excessively. 

rld rsd rd

 

Heterogeneous seed selection 

Assuming and are two inbreeding individuals and the corresponding fitness 

values are and , without loss of generality, consider 

T
iX

(Xf

T
jX

f)T
i )( T

jX

        (33) )()( T
j

T
i XfXf 

The fitness value of  is smaller and the individual i  is substituted by a 

heterogeneous seed. 

T
iX

 

There are two methods to select heterogeneous seeds. In the first method, one can 

select heterogeneous seeds randomly in the neighborhood of the inbreeding 

individuals. This method is similar to the aforementioned mutation operator. If 
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T
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T
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T
i xxX 

assuming is the design variable to be operated (which is selected then randomly): T
ix 1

 ,       (35) h
T
i

T
i bxx  11*

where   is a random number that is uniformly distributed in the range of [-1, 1], and 

is the radius of the range.  is also varied by the generation ordinal hb hb T : 





 


elseb

bbwhenb
b

hl

hlhsThsT
h 2

1

2

1
, 

where  and are the lower and upper bounds of , respectively. The selected 

heterogeneous seed is then 

hlb hsb hb

 ) .       (36) *(* 21
T
i

T
i

T
i xxX 

By substituting  with  in the present population, the heterogeneous operator 

is achieved. 

T
iX *T

iX

 

In the asymptotic phase, the random selection method improves the diversity of the 

population and avoids inbreeding. In the cataclysmic phase, inbreeding individuals are 

usually alike, and the difference always occurs in several specific design variables 

because of the imbalance of the optimization process. Except for these several 

specific design variables, the other variables are identical. This feature can be used to 

yield more efficient heterogeneous seeds by considering the evolution trend. 

Assuming and are two inbreeding individuals and only the 2nd variable is 

different  

T
iX T

jX

        (37) 
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considering , the 2nd variable of the heterogeneous seed can be 

determined by 

)()( T
j

T
i XfXf 

 .    (38) 
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The heterogeneous seed is then 

 .       (39) )*(* 1
T
ik

T
i

T
i xxX 

It can be seen from Eq. (39) that the principles of the latter method of heterogeneous 

seed yielding are  

(i) to consider the relationship between the fitness function and the kth design 

variable while ignoring the other identical variables; 

(ii) as the identical value of variables is determined by T
iX or T

jX ,  assume that 

the fitness function is monotonic or that there is only one local optimal 

solution in the neighborhood of T
jkx ; 

(iii) to determine the evolution trend of the population and to find the better 

design variable *T
ikx  so as to obtain the more valuable individual *T

iX . 

 

Figure 3 illustrates the heterogeneous seed selection based on the trend of evolution. 

This figure is based on a hypothesis that the design space and fitness function are all 

continuous in a little neighborhood of . This hypothesis is valid for most 

engineering optimization problem. In this hypothesis，  can be found in the range 

of  as . Besides, if is to the right of the local optimal 

solution, the function in the range  (  is monotonous.  can be selected 

using a similar process.  

T
jkx

T
jkx 

, T
jkh x

*T
ikx

),( T
jkh

T
jk xbx  T

jk
T
ik xx  hb

)bT
jkx  *T

ikx

 17



 

The probability fitness function that has only one peak value in the neighborhood 

of is very high. Consequently, heterogeneous seeds selected based on the evolution 

trend are always better than the inbreeding individuals; therefore, the convergence 

speed is increased, especially in the cataclysmic phase. 

T
jkx

 

It should be noted that if most individuals are inbreeding, only several heterogeneous 

seeds will be selected to enter the population because the intensity of manual 

interference should not be so strong that it destroys the stability of the population 

structure, or else the inherent virtue of the GA will be lost.  

 

 In this paper, the improved GGA adopting the heterogeneous strategy will be used to 

find the best provision of reinforcements in concrete solids. 

 

Implementation of GGA with the heterogeneous strategy 

The computational procedure of GGA with the heterogeneous strategy is listed below. 

(i) Divide the solution space into several subspaces. The calculation steps (ii 

to ix) are performed in each subspace independently and simultaneously; 

(ii) Initialize all of the variables involved in the GGA; 

(iii) Select the initial population randomly; 

(iv) Place half of the individuals of the population randomly into the crossover 

pool and perform arithmetic crossover; 

(v) Perform the selection operator on the population including the crossover 

parent generation and the generating progeny generation. Reserve the 
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(vi) Select half of the individuals of the population randomly and perform 

adaptive random mutation; 

(vii) Perform the selection operator on the population including the mutation 

parent generation and the generating progeny generation. Reserve the 

better half and join them into the un-mutated parent generation to 

constitute the next population 

(viii) Start up the heterogeneous strategy if inbreeding occurred in the present 

population, or else move to the next step; 

(ix) Compute the mean fitness of the population. If the optimal individual is 

unchanged in p  evolution circulation, go to the next step (considering that 

the algorithm has converged and the termination conditions have been 

met ), otherwise go back to step (iv); 

(x) Compare the local optimal populations in the subspaces and select the best 

individuals to constitute the final optimal population; 

(xi) End the program and terminate the genetic optimization. 

The crossover probability and mutation probability are different for different SGAs 

because of the intermediate population. 

 

GGAs divide the optimization into an asymptotic phase and a cataclysmic phase. 

Cooperation of rough searching in the cataclysmic phase and precise searching in the 

asymptotic phase ensures that the global optimal solution can be found with high 

probability.  
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Examples 

Twelve examples were computed to verify the accuracy and effectiveness of the 

proposed method. The design parameters of the former two examples are the same as 

described by Foster et al. (2003). The concrete cube strength is MPa and 65cuf

51.148.1  cuc ff  MPa, and the steel strength is 400sf MPa. The design 

parameters of the last ten examples are the same as those given in Law et al. (2007). 

The design was carried out in accordance with BS 8110 (1997), including (i) 

MPa (grade 35 concrete with fcu=35MPa) for the case of no cracking; 

(ii) 

144.0  cuc ff

65.108.1  cuc ff MPa with concrete cracking; and (iii) steel strength as 

2.40046087.087.0  ys ff

1

MPa. The “theoretical” principal stresses determined 

by Eq. (1) are denoted by  , 2  and 3 . The applied stresses for the twelve cases 

are tabulated in Table 1. 

 

To perform the heterogeneous strategy, two critical parameters,  and , need to be 

selected beforehand. These parameters are decided by the characters of the design 

space and population size . In this paper, as the design space is a square, the upper 

bound of (denoted as ) can be computed by 

rd hb

N

rsdrd

2582.0
4

1 minmax 



N

xx
dd trs      (40) 

where is the “deserved distance” of individuals based on the hypothesis that all 

individuals are evenly distributed in the design space. By the same hypothesis, one 

can let , where  is the upper bound of . 

td

hsb td4 hsb hb
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The present calculations revealed that the average startup time of the heterogeneous 

strategy in these 12 examples is 7.58, and most inbreeding occurred in the last 5 

generations.  

 

The results obtained in the present study together with those described by Forster et al. 

(2003) and Law et al. (2007) are presented in Tables 2 and 3 for comparison. To 

demonstrate the efficiency of GGA and SGA, the first two examples were studied 

using SGA and GGA approaches. As shown in Table 2, lesser amount of total steel 

contents were determined by the GGA for all of the cases, which demonstrated that 

GGA can converge to the global optimum solution in a higher probability than SGA. 

Furthermore, by comparing the amount of steel determined by using Law’s method 

and GGA, lesser amount of total steel contents were found by the GGA. This finding 

means that a more economic design can be achieved by the proposed method. As GAs 

have been integrated in many popular commercial packages, this method can be easily 

applied to reinforcement design in general practice. 

 

Conclusions 

As an improvement of the reinforcement design approach based on 3-D stress field 

proposed by Law et al. (2007), this paper is devoted to finding the optimal 

reinforcement design via an improved GGA. Since the feasible solutions are solved 

by MatLab and the global optimal solution is acquired by the GA, the optimal 

reinforcement design is robust.  

 

An improved GGA is proposed in this paper based on the inbreeding criterion and 

heterogeneous strategy. The inbreeding criterion is used to judge the occurrence of 
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inbreeding whereas the heterogeneous strategy is used to eliminate the inbreeding 

individuals. Many effective techniques such as the population isolation mechanism, 

optimum reserved strategy and arithmetic crossover were also adopted in the 

computation. It has been demonstrated from the solution of the optimization problem 

that the improved GGA is suitable for solving complicated optimization problems. 

The reinforcement design method based on the improved GGA can find the global 

optimal design solution of a general reinforced concrete element. The method 

provides the designer with a valuable tool for the dimensioning of reinforcements in 

concrete solid structures.  
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Table.1. – Applied stresses of the 12 examples 

 1 2 3 4 5 6 7 8 9 10 11 12 

x (kPa) 3000 -3000 -3000 -3000 -3000 -3000 17000 17000 -2000 3000 17000 5000 

y (kPa) 15000 15000 15000 5000 10000 -5000 15000 15000 2000 7000 15000 15000 

z (kPa) 4000 16000 -4000 -4000 -4000 -4000 16000 0 -5000 0 16000 16000 

xy (kPa) 2500 2500 2500 2500 2500 2500 2500 2500 -6000 -6000 2500 2500 

xz (kPa) 2000 2000 2000 2000 2000 2000 0 0 4000 4000 2000 2000 

yz (kPa) 3000 3000 3000 3000 3000 3000 0 0 -2000 -2000 3000 3000 

1 (kPa) 1437 -3472 -2272 -3163 -2576 -7664 18693 18693 8280 3280 12336 4263 

2 (kPa) 4157 12481 -5601 -5656 -5618 -5358 13307 13307 4320 -680 14642 12500 

3 (kPa) 16406 18992 15873 6819 11194 1023 16000 0 -7600 -1260 21023 19238 

 
 

Table 2- The steel contents of Examples 1 and 2 
 Example 1 Example 2 

 x (%) y (%) 
z (%) total (%) 

Difference 

in total  

( % ) 
x (%) y (%) 

z (%) total (%) 

Difference 

in total  

( % ) 
Foster et al. 

approach 
2.302 0.970 2.301 5.573 N/A 0.942 0.000 0.942 1.884 N/A 

SGA approach 2.456 0.964 1.986 5.406 -3.00 0.961 0.023 0.927 1.912 1.49 

GGA approach 2.469 0.890 2.031 5.390 -3.27 0.974 0.000 0.886 1.860 -1.25 

 
 
 

Table 3- Summary of the steel contents of Example 3 to Example 12 
Law et al. approach GGA approach 

Example 
x (%) y (%) 

z (%) total (%) x (%) y (%) 
z (%) total (%) 

Difference 

in total  

( % ) 

3 1.859 1.612 1.777 5.248 2.094 1.494 1.637 5.224 -0.45 

4 0.004 1.664 1.251 2.910 0.009 1.611 1.268 2.888 -0.77 

5 0.003 0.701 0.000 0.705 0.002 0.698 0.004 0.703 -0.26 

6 1.020 2.065 2.399 5.485 1.015 2.045 2.395 5.455 -0.55 

7 1.337 1.666 1.458 4.462 1.336 1.633 1.449 4.418 -0.99 

8 1.277 0.000 1.855 2.799 1.255 0.000 1.521 2.777 -0.80 

9 1.344 0.417 1.455 3.216 1.356 0.416 1.441 3.213 -0.11 

10 1.165 2.191 1.601 4.957 1.158 2.194 1.600 4.951 -0.12 

11 1.374 0.874 0.500 2.749 1.368 0.871 0.498 2.737 -0.45 

12 1.374 0.874 0.000 2.249 1.368 0.871 0.000 2.239 -0.45 
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A List of Figure Captions  

Fig. 1. Three-dimensional stress field 

Fig. 2. Equilibrium of forces on a 3-D brick element 

Fig. 3. Selection of heterogeneous seeds based on the evolution trend 
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Fig. 3. Selection of heterogeneous seeds based on the evolution trend 

 


