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Abstract. Regression analysis is an essential tools in most research
fields such as signal processing, economic forecasting etc. In this paper, an
regression algorithm using probabilistic wavelet network is proposed. As
in most neural network (NN) regression methods, the proposed method
can model nonlinear functions. Unlike other NN approaches, the pro-
posed method is much robust to noisy data and thus over-fitting may
not occur easily. This is because the use of wavelet representation in the
hidden nodes and the probabilistic inference on the value of weights such
that the assumption of smooth curve can be encoded implicitly. Exper-
imental results show that the proposed network have higher modeling
and prediction power than other common NN regression methods.

1 Introduction

Regression have long been studied in statistics [1]. It receives attention from
researchers because of its wide range of applications. These applications include
signal processing, time series analysis and mathematical modeling etc.

Neural network is a useful tools in regression analysis [2]. Given any input
signal {xi, ti}N

i=1, neural network was found to be capable to estimate the non-
linear regression function f(·) such that the equation, xi = f(ti)+ ε, hold, where
ε is the model noise. It outperforms many linear statistical regression approaches
because it makes very few assumptions, such as linearity and normality assump-
tions, as other statistical approaches do [3]. It was also found that nonlinear
neural network exhibits universal approximation property [4].

Researchers have proposed many neural networks for solving regression prob-
lem during past decades. For instance, multilayer network (MLP) [5], and Radial
basis function networks (RBFN) [6] have been explored in previous research. Al-
though the universal approximation property seems to be appealing, it may cause
problem in regression especially when data contains heavy noise. Noisy data is
quite common in applications such as financial analysis, signal processing etc.

Wavelet denoising and regression have been proposed to handle the noisy
data [7]. The idea of using wavelet in noisy data regression is that the signal
is firstly broken down into constituent wavelets, and those important wavelets
are then chosen to reconstruct back the denoised signal. The signal without
irrelevant wavelets or pulses is then used to approximate the nonlinear function



f(·). Such approach has been integrated with neural network to form wavelet
network by some researchers such as [8]. However, the problem of over-fitting
still remains because the number of hidden nodes is unknown before regression.
If the number of hidden nodes is more than enough, over-fitting still occurs.

Inspired by the probabilistic framework of neural network [9] and bayesian
model for wavelets [10] presented recently, probability framework for wavelet
network (wavenet) is proposed in this paper. Under this framework, the weights
in the wavenet will be updated according to the prior assumption of the model
simplicity and smooth curve, instead of minimizing the square error as in other
regression methods. Due to the above assumption, the final curve will be denoised
in certain sense such that it is smooth and is also best fitted to all data points
although the number of hidden nodes can be infinite initially.

2 Probabilistic Wavenet

As described in previous section, the proposed probabilistic wavenet aims at
modeling the nonlinear function or the series of input data without the problem
of over-fitting. In order to model the nonlinear function, simple wavelet analysis is
performed to find out the constituent wavelets of the input series or signal. To be
noise tolerant, wavelet denoising will be performed to remove those unimportant
wavelets. By using the proposed probabilistic wavenet, these two steps can be
performed automatically at once with high accuracy and in short time.

2.1 Wavelet Network

Wavelet network has been used for regression since its introduction [8]. The data
set is in the form of time series data D = {xi, ti}N

i=1, the wavenet will estimate
the regression function f(·) for X = {xi} and T = {ti} by the regression model:
X = f(T ) + ε.

In wavenet, the function is indeed represented by wavelet composition:
f(ti; ω) =

∑K
j=1 ωjψj(ti), where ωj and ψj are the wavelet coefficients and the

wavelet functions respectively.
To limit the number of wavelets to be used, dyadic wavelet is used. In

other words, the wavelet functions are constructed by translating and scaling
the mother wavelet as: ψm,n(t) = 2−m/2ψ(2−mt − n), where m and n are the
scaling and translating factor respectively. Given the signal size N , m is ranged
from 1 to log2(N) and n is ranged from 0 to 2−mN .

In the proposed system, the mother wavelet function is set as the ”Maxican
Hat” function: ψ(ti) = (1 − ( ||ti−µψ||

σψ
)2)exp(−||ti−µψ||2

2σψ
2 ), where µψ and σψ are

the transition and scale factor of the mother wavelet.
Given a finite number of wavelet functions ψm,n, regression is done by find-

ing optimal solution set of wavelet coefficients (ωj). In most neural network
applications, the value of such wavelet coefficients or weights are estimated by



minimizing the total error as shown:

ω∗ = minω{
N∑

i=1

(xi −
K∑

j=1

(ωjψj(ti)))2} (1)

Though it is usually possible to estimate the value of ω using common op-
timization methods, over-fitting may occur. To overcome such problem, proba-
bilistic inference is proposed to estimate the value of the wavelet coefficients.

2.2 Probabilistic Framework

In order to handle the problem of over-fitting because of noisy data, probabilistic
framework is adopted to estimate the value of the wavelet coefficients (or weights
in wavenet) and thus estimate the original signal (or smoothened signal).

As described in previous subsection, wavenet perform regression analysis on
time series data. Using the same set of notation as above, the regression model
and the wavelet composition model can be combined in matrix form as
X = Ψω + ε, where Ψ is the N × K design matrix formed from the wavelet
functions and ω is the weight vector.

With reference to the regression model, at any time ti, the probability of
having signal value xi or the likelihood of the model is given by:

p(xi|ti) ∼ N(f(ti), σ2) (2)

where ε ∼ N(0, σ2) in the regression model.
To be more specific, the matrix form of the regression model can be used in

expressing the probability of having data X given certain wavenet:

p(X|ω, σ2) = (2πσ2)
−N
2 exp{− 1

2σ2
||X − Ψω||2} (3)

In common neural network, the weights (ω) are found by error minimization
and thus may cause over-fitting. In contrast, hyperparameter (α) is introduced
in probabilistic wavenet to limit the number of wavelets with large weight value.
The distribution of the value of weights is proposed as the following:

p(ω|α) = ΠK
i=1N(ωi|0, α−1

i ) (4)

From above, it is clear that the mean value of all weights is set to be zero.
Thus, there is a preference to have fewer constituent wavelets. Those constituent
wavelet should have large variance (α−1

i ). This conditional probability is served
as the prior probability in estimating optimal wavelet coefficient such that the
preference of fewer number of constituent wavelets is included in the estimation.

Given the weight (ω), the hyperparameter(α), the system noise (σ) and the
time series data D = (xi, ti) (or X = {xi}), the prediction can also be done.
Prediction is represented as the following through marginalization:

p(x∗|X) =
∫ ∫ ∫

p(x∗|ω, α, σ2)p(ω, α, σ2|X)dωdαdσ2 (5)



Estimation of the value of weights, hyperparatmeters and system noise is
indeed done by maximizing the prediction power of the regression model.

The second term can be expressed as:

p(ω, α, σ2|X) = p(ω|X,α, σ2)p(α, σ2|X) (6)

From above, the posterior probability of having certain weight can be now
represented as:

p(ω|X,α, σ2) =
p(X|ω, σ2)p(ω|α)

p(X|α, σ2)
(7)

Suppose the normalizing term above follows Gaussian distribution, the pos-
terior probability can be simplified using Equation (3) and Equation (4):

p(ω|X, α, σ2) = (2π)−
N+1

2 |Σ|− 1
2 exp{−1

2
(ω − µ)T Σ−1(ω − µ)} (8)

where Σ = (σ−2ΨT Ψ + A)−1, µ = σ−2ΣΨT X and A = diag(α1, ..., αN ). This
gives expected value of weights, µ.

On the other hand, the second term in Equation (6) can be expressed as:

p(α, σ2|X) ∝ p(X|α, σ)p(α)p(σ2) (9)

It is possible to consider the likelihood function alone to obtain the optimal
values of α and σ. Here is the likelihood expression:

p(X|α, σ2) =
∫

p(X|ω, σ2)p(ω|α)dω (10)

= (2π)−
N
2 |σ2I + ΨA−1ΨT |− 1

2 exp{−1
2
XT (σ2I + ΨA−1ΨT )−1X}

According to [9], the optimal value (αMP and σMP ) can be obtained by
iteration:

αnew
i =

γi

µ2
i

(σ2)new =
||X − Ψµ||2
N −∑

i γi
(11)

where γi = 1− αiΣii.
After estimated the value of ω, α and σ at each stage, the prediction of the

trend of the signal can be made as the following:

p(x∗|X, αMP , σ2
MP ) =

∫
p(x∗|ω, σ2

MP )p(ω|X, αMP , σ2
MP )dω

∼ N(x∗|µ∗, σ2
∗) (12)

where µ∗ = µT ψ(tN+1) and σ2
∗ = σ2

MP + ψ(tN+1)T Σψ(tN+1). The predicted
value (µ∗) and its variance (σ2

∗) is thus obtained.
In regression, the whole inference process repeats with the new values of

wavelet coefficients, the new values of both hyperparameters and system noise
are evaluated using Equation (8) and Equation (11) respectively until the equilib-
rium state is achieved. In making prediction, the predicted value and its variance
can be obtained using Equation (12).



3 EXPERIMENTAL RESULT

The proposed system was implemented using Visual C++ under Microsoft Win-
dows. Two experiments was performed to test the system. The experiments were
done on a P4 2.26 GHz computer with 512M ram running Microsoft Windows.

In the first experiment, the denoising and modeling power of the proposed
network was tested. A Doppler function (f(t) =

√
t(1− t)sin(2π(1 + a)/t + a))

with a = 0.05) which contains additive noise (10dB) was used in this experiment.
This function has been commonly used in research in wavelet denoising such
as [10]. Noisy signal generated from such function which with signal size 1024
was analysed by the network. The result of Doppler function modeling is shown in
Figure 1. The average relative square error ((|xoriginal−xdenoised|2)/(x2

original))
is 0.153. The processing time is around 4 seconds. Except the highly oscillated
region in the begining of the signal (up to signal point 180), the relative square
in later part is usually lower than 2. It shows that the modeling power of the
proposed network is good without susceptible to noise.

In the second experiment, the prediction power of the proposed network
was tested. Mackay-Glass chaotic time series were used in this experiment. The
Mackay-Glass series (xt+1 = (0.2xt−∆)/(1 + (xt−∆)10) + 0.9xt with ∆ = 17,
xt = 0.9 for 0 ≤ t ≤ 17) has been used in prediction test for a long time and a
comparative study in regression methods using such series can be found in [11].
In the experiment, a range of data of size 64 was analysed by the network each
time and the prediction is made at the time slot 65. Prediction result is obtained
by performing predictions using the appropriate range of data shifting along
the input signal (with size 1024) generated from Mackey-Glass series stated
above. The result is shown in Figure 2. The average relative square error is
0.317. The processing time is usually less 1 second in making each prediction.
The normalized prediction error (ε = (

∑
t(xt − xpredict

t )2)/(
∑

t(xt − xmean)2))
is 0.4777%. This result is relatively lower than the result given by other neural
network approaches or linear approach as indicated in [11] (normalized error of
MLP is 1.0%, those of RBF is 1.1%, those of polynomial fitting is 1.1%, those of
local linear fitting is 3.3%). It shows that the prediction power of the proposed
system is better than those of the other common neural network approaches.

(a) (b) (c) (d)

Fig. 1. In (a), it shows the original Doppler function. In (b), it shows the Doppler function

contains 10dB noise. In (c), it shows the denoised signal in black solid line compare with the

noisy signal in cyan dotted line. In (d), it shows the relative square error with peak value 0.67

and average value 0.153.



(a) (b) (c)

Fig. 2. In (a), it shows the Mackay-Glass series. In (b), it shows the prediction curve in black

solid line compare with the noisy signal in cyan dotted line. In (c), it shows the relative square

error with peak with 0.56 and average value 0.317.

4 Conclusions

In this paper, an regression algorithm using probabilistic wavelet network is
proposed to perform nonlinear regression reliably such that it can be applied
to real life applications such as economic forecasting. Experimental results show
that the proposed network have relatively high modeling power and prediction
power compare with common neural network regression methods. The proposed
method can model nonlinear functions reliably without susceptible to data noise.
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