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24  timation of the background is only possible if we locate 
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1 Introduction 

 
The  problem of moving ob ject  detection from a video 

sequence is an open issue of great interest in image anal- 

ysis. Solving it correctly is essential to computer vision 

systems that  perform diverse and complex tasks as ob- 

ject  tracking,  sequence segmentation,  ob ject  recogni- 

tion,  behavior analysis,  and  it  is a  crucial  component 

in surveillance applications. 

One of the most widely used methods for motion 

detection is background subtraction.  The  approach, de- 

rived initially  from a thresholding process over the dif- 

ference between the  observed intensity  (or color) at  a 

point  of the  image and  a  reference value  representing 

the  background  (Fig. 1),  has  evolved into  more com- 

plex schemes where the shared idea is to consider that 

a foreground moving ob ject  does not respond to some 

representation of the background. Indeed, the simple 

inter-frame difference with a global threshold reveals it- 

self as being very sensitive to usual phenomena as noise 

and illumination  changes. 

The  problem consists in obtaining  an accurate rep- 

resentation of the  background or reference image and 

solving for motion detection by an appropriate com- 

parison of the current and reference images. However, 

a “chicken-and-egg”  situation  arises when we want to 

set an optimal approach for both tasks: an accurate es- 

timation  of the background is only possible if we know 

which regions of the image belong to  it,  that  is,  if we 

locate the moving ob jects; conversely, a correct motion 
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Fig. 1 Motion detection by background subtraction. Moving points are those where the current image and the reference image differ
considerably.

detection is achieved if we have a relevant background

representation.

A simplified approach may be considered by means

of alternate decision/estimation steps, allowing one to
solve each task separately and sequentially. This means

to solve motion detection, assuming we know the back-

ground, and then updating the background model from

points classified as background. However, there is no

warranty that the scheme results in an optimal solu-
tion. Decomposing a simultaneous problem into a se-

quence of separate steps, and solving each of them in

a sub-optimal fashion do not necessarily end up in an

optimal solution for the whole problem. Moreover, the
decision step involves a hidden symbolic variable to be

determined. Consequently, it implies an inference pro-

cess which may be complex.

We identify the problem as a simultaneous decision-

estimation problem. One deals with a decision process

(motion detection) together with an estimation pro-
cess (background recovering). Consequently, we explic-

itly recognize two types of intervening values: numeric

values to be estimated (the background image) and

a symbolic value, associated to the motion detection
task and represented by an abstract label. As separate

(alternate) problems, they are solved in different do-

mains: continuous vs. discrete. However, if we want to

exploit the natural relation and interaction that exist

between both tasks, we need to solve the problem in
a unified framework involving a single domain, where

symbolic (discrete) and numeric (continuous) states can

be jointly modeled and/or recovered.

In this work, we present a new way of solving the

aforementioned coupled problems jointly, based on the

so-called mixed-state statistical framework [26,7]. A pre-
liminary version has been published before in [20]. The

key of this approach is to define a single random vari-

able that can take two types of values, instead of defin-

ing a pair of random variables for each image location,
one symbolic and one numeric (Fig. 2). In view of this,

we can redefine the problem of motion detection by

background subtraction as the starting point for our

Layer of continu-
ous states

Layer of sym-
bolic states

a)

Single layer of
mixed-states

b)

Fig. 2 a) Two separate layers of continuous and symbolic states.
b) A single layer where both types of values are jointly modeled
in a mixed-state domain

proposal. Let us consider that a point in the image is

a single process that can take either a symbolic value

(or abstract label) accounting for the presence of mo-

tion, or a continuous numeric value associated to the

brightness intensity of the reference image at that loca-
tion. Consequently, the meaning of solving the motion

detection and the background reconstruction jointly, is

to obtain a single optimal estimate of such a process.

This paper is organized as follows. In Section 2 we

discuss the advantages and drawbacks of state-of-the-

art methods for motion detection by background sub-

traction. This will serve as a guide for defining our

method in the following sections. In Section 3 the gen-
eral mixed-state probabilistic framework is described

and then we introduce the concept of mixed-states con-

ditional random fields (MS-CRF). Then in Section 4 we

specify a MS-CRF for the simultaneous problem of mo-
tion detection and background reconstruction. Results

and experimental comparisons are discussed in Section

5.
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3

2 Background subtraction techniques

For existing background subtraction methods, a nec-

essary step consists in the learning of the background

and this implies either the availability of training frames
with no moving objects, or the assumption that a point

belongs to the background most of the time. Adaptive

schemes have also been proposed in order to update

the model sequentially and selectively, according to the
result of the motion detection step. Anyway, a general

consensus has been established to estimate a proba-

bility density for each background pixel. The simplest

approach is to assume a single Gaussian law per pixel

(see for example [50]), whose parameters may be esti-
mated by simple running averages or median filters. A

valid criticism to this hypothesis is that the distribu-

tion of the intensity of a background pixel over time

can vary considerably. In that direction, multi-modal
density models seemed to perform better. Mixtures of

Gaussians [46] and non-parametric models [22] have

shown good results, able to deal with the variation of

the background distribution. Several improvements on

these ideas have been further developed [53,41,38] on
how to efficiently update the background model. It is

also worthy to mention approaches based on separat-

ing large data clusters representing the background and

small clusters representing the foreground [51]. Princi-
pal component analysis is used for separating low-rank

approximations of the video (the reference image) from

a sparse error component (the moving object).

However, they suffer several drawbacks. The ap-

proach does not assume spatial correlation between pix-

els, neither in the model of the background, nor in

the binary detection map. To cope with this, posterior
morphological operations are applied in order improve

the resulting motion detection map. No regularization

is proposed for the reference model. Also, points de-

tected as foreground are incorporated to estimate the

background model (called blind update [22]) in order
to avoid deadlock situations, where a badly estimated

background value for a pixel results in a continuously

and wrongly detected moving point. This leads to bad

detections as intensity values that do not belong to
the background are incorporated to the model. Many

heuristic corrections are usually applied in order to al-

leviate this drawback, but unfortunately, introducing

others. Finally, these methods are sensitive to the ini-

tialization of the background model, particularly, when
an initial image with no moving objects is not available

in the video sequence.

Instead of looking at the temporal variation of point

intensity statistics, region-based features, as used in [17,

30], are less sensitive to variations of the textured back-

ground, and are more robust in detecting foreground

objects.

Unlike most approaches to moving object detection

which detect objects by building adaptive models of the

background, in [17,45] the foreground is also modeled.
This permits to exploit the temporal persistence of a

moving object. True foreground objects, as opposed to

spurious noise, tend to maintain consistent colors and

remain in the same spatial area. Thus, previous fore-
ground information contains substantial evidence to be

used at the current instant. Other approaches have pro-

posed to model and infer multiple layers of moving ob-

jects combining deformable masks and foreground ap-

pearance maps [28].
The advantages of incorporating spatio-temporal con-

text and regularization, in the background modeling

and also the foreground one, are demonstrated for ex-

ample in [45,39,37] by means of a Markov random field
model and ARMA processes. In [8], a Markovian ap-

proach for motion detection exploiting temporal reg-

ularization between consecutive frames is proposed. In

[9], a technique for motion detection, not based on back-

ground modeling, but on clustering and segmentation
of motion and photometric features, is described, where

explicit spatial regularization is introduced through a

MAP-MRF approach. Related to the class of energy-

based methods for background subtraction, the work by
Sun et al. [47] on Object Cut, models the likelihood of

each pixel belonging to foreground or background along

with an improved spatial contrast term. This term is a

penalty term when adjacent pixels are assigned with

different labels (background or foreground), and the
amount of penalization depends on how similar are the

colors of the pixels. The method relies on a known (pre-

viously learned) background model and an adaptive up-

date scheme is necessary. Finally, conditional random
fields have been used before for background-foreground

segmentation in [17], integrating color and motion cues,

and a temporal dependency model in the detection pro-

cess.

Our review of background subtraction techniques
has led us to make the following observations:

• Pointwise motion detection [22,46] is not enough for

a correct segmentation. Spatial coherency and con-

textual information is needed [45].

• Region-based image features are more robust to lo-
cal variations [37,30].

• Motion cues combined with intensity cues is better

than considering only one or the other [38].

• Regularization on the motion detection (symbolic)
map should be enforced on neighboring points with

similar intensity (numeric) values [47,17]. Thus, it

was pointed out in the literature that there exists
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a close interaction between the symbolic and the

numeric processes.

• Results of existing methods depend strongly on a

background-foreground learning stage [22,47,17]

In the following sections we propose to deal with
each of these issues by combining the mixed-state frame-

work with the conditional random fields (CRF) ap-

proach [33].

3 The mixed-state approach

3.1 Related work and connections

The concept of a random process that can take different
types of values (either continuous or abstract) includes

diverse situations. A mixed discrete-continuous Markov

random field is formulated in [7] for the modeling of dy-

namic or motion textures. It is demonstrated that the

normal flow scalar motion observations extracted from
these video sequences, show a discrete value at zero

(null-motion) and a Gaussian continuous distribution

for the rest of the values. This model was extended in

[19,18] and applied to the problems of motion texture
segmentation, recognition and tracking. For these ap-

plications, the issue is different than for simultaneous

decision-estimation problems. The mixed nature oper-

ates on the observation itself.

In previous works on fuzzy pixels classification as

[44] and [43], the authors introduce a class of fuzzy
MRF’s or fuzzy Markov chains where each state vari-

able, or classification variable, xi ∈ [0, 1] represents a

classification rate. The fuzzy principle implies that the

two hard classification states xi = 0 or xi = 1 have

a positive probability while all the soft classification
states, i.e. xi ∈ (0, 1) follow a continuous distribution.

Indeed, fuzzy random fields, concept originally intro-

duced in [10], are instances of spatial mixed-state mod-

els with numeric discrete part. Also a class of Markov
chains with mixed states appeared in [12,11], allowing

the coexistence of a hard and fuzzy segmentation.

We can mention other models that exploit the in-

teraction between symbolic and numeric values in com-

puter vision decision problems. The line process intro-

duced by Geman and Geman [24] is an unobservable

binary process L for edge elements. These authors re-
gard the original image I as a marginal process from an

extended joint field X = (I,L) which is recovered from

image observations. The idea behind this formulation

is that the presence of an edge between two image loca-
tions, breaks the link between them and accounts for a

discontinuity. Later in [5], the line process is viewed as

a way of rejecting outliers giving an equivalence with

robust estimators. In [52] a more sophisticated line pro-

cess is used for image segmentation.

Finally, in hybrid Bayesian networks [40,31] the gen-

eralization is that a discrete node can have continu-
ous parents and a continuous node can have discrete

parents. The first case is useful for modeling threshold

phenomena, while the second is associated to a sort of

model selection state. The nature of the values taken

by each random variable (parent or child) associated to
a node is fixed to be continuous or discrete. What this

formulation permits is to model discrete-continuous in-

teraction, but not to infer if a node is discrete or contin-

uous. Other so-called hybrid approaches follow a similar
formulation as the original line process proposed in [24],

by performing joint inference of two coupled fields, one

discrete and one continuous, by means of an EM-like

strategy [36].

3.2 Mixed-state random fields

In this work we extend the original idea of [7] to more

general random fields where the discrete part may take

abstract labels or values related to a decision prob-
lem. Our proposal is different from previous symbolic-

numeric approaches described in the last sub-section.

We deal with a single random field on a lattice, where

each point may display either symbolic or a numeric
value. First, this avoids defining and modeling two dif-

ferent processes as it was done with the line process in

[24]. No marginalization is needed to obtain the desired

field, no complementary hidden states have to be in-

troduced. On the other side, the nature (symbolic or
numeric) of each site variable is not fixed as it occurs

in hybrid Bayesian networks [40,31]. In contrast, deter-

mining the optimum state is what allows us to solve

two coupled problems in a single estimation process.

Definition 1 (Mixed-state random variable) Let
{l} be a symbolic state or label and let I ⊂ R be an

interval of the real line. A mixed-state random variable

x is defined as taking values in a mixed-state space M =

{l} ∪ I and is constructed as follows. With probability
ρ ∈ [0, 1], set x = l, and with probability 1 − ρ, x is

continuously distributed in I.

Since symbolic labels such as l do not have any alge-

braic structure, a probability distribution function can-

not be defined to characterize the random variable. One

proceeds directly to define a probability measure for a
mixed-state random variable, resorting on the theory of

measure and integration [13]. We can then construct a

probability density for x, defined as
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p(x) = ρ1l(x) + ρ∗1∗
l (x)pc(x), (1)

with ρ ∈ [0, 1], ρ∗ = 1 − ρ and where we define the

characteristic functions

1l(x) =

{
1 if x = l

0 if x 6= l
, 1∗

l (x) = 1 − 1l(x) (2)

and pc(x) is a continuous probability density function.

The density p(x) in (1) is given with respect to a refer-

ence measure m(dx) = ml(dx) + λ(dx), where ml(dx)
is a counting measure for the value l and λ(dx) is the

usual Lebesgue measure, i.e. the length of the inter-

val in the real line. Interpret this equation as follows:

the density function p(x) assigns a probability mass ρ
to the discrete value, and acts as a continuous density

function pc(x) for the continuous values.

Let us pin things down and consider a first approach

to the problem of motion detection and background re-

construction with a mixed-state model. Define a mixed-
state random variable xi for each location i of the im-

age plane. Define l as the symbolic state that indicates

a detected moving point, and consider the interval of

the real line I = [0, 255], i.e., the range of gray level

intensity values for the background image.

We are now ready to propose a first very simple
mixed-state model. Following equation (1) we write:

p(xi) = ρi1l(xi) + ρ∗i 1
∗
l (xi)

1√
2πσi

e
−

(xi−mi)
2

2σ2
i . (3)

With probability ρi, xi = l, i.e., the location corre-

sponds to a moving point, and with probability ρ∗i =

1− ρi, the location corresponds to a background inten-
sity value perturbed by Gaussian noise. We may thus

estimate the value of xi by point-wise maximization of

(3). Note that assigning an intensity value implies con-

sidering the point as background, so that (background)

estimation is performed simultaneously with (motion)
detection.

It should be clear that this simple model will be

far from performing well in most of the situations and

that we need to incorporate a more complex scheme

that allows us to introduce spatial interaction, and to
enforce correlation within the random field and between

continuous and symbolic values, as we describe in the

next section.

3.3 Mixed-state auto-models with symbolic values

Markov random field models have been applied suc-
cessfully to estimation problems (e.g. texture modeling

and analysis [35], optical flow estimation [27,34], im-

age restoration and denoising [15,24]) as well as deci-

sion problems (e.g. image segmentation [16,43,19,1,6],

motion detection [2,8], edge detection [52], structural
change detection [29]). Our motivation have been to ex-

ploit the power of mixed-state MRF’s for simultaneous

decision-estimation problems.

How can we formulate a mixed-state Markov ran-

dom field in order to include continuous and symbolic
states within a single random field model?

Let S = {1....N} be a lattice of points or image

locations such that x = {xi}i∈S . Define xNi
as the set

of random variables in a neighborhood Ni of location i,

i.e., xNi
= {xi}i∈Ni

. Then the Markovian property is
expressed in the mixed-state conditional densities:

p(xi | xS\{i}) = p(xi | xNi
)

= ρ(xNi
)1l(xi) + ρ∗(xNi

)1∗
l (xi)p

c(xi | xNi
), (4)

where ρ(xNi
) = P (xi = l | xNi

). Equation (4) defines

the local characteristics of a mixed-state random field

with a symbolic discrete state. However, they cannot be

chosen arbitrarily for every point as they must comply
with a well-defined joint distribution p(x).

We adopt the formulation introduced by [26], who

generalize the auto-models of Besag [3] to the so-called

multiparameter auto-models. According to these authors,

if pc(xi | xNi
) belongs to the d-parameter exponential

family of distributions, the mixed-state conditional den-

sity (4) belongs to the (d + 1)-parameter exponential

family. This leads to:

log pc(x | xNi
) = −{Θ̃T

i (xNi
)S̃i(x) + C̃i(x) + D̃i(xNi

)}
(5)

with S̃i(xi) ∈ R
d, Θ̃i(xNi

) ∈ R
d, C̃i(xi) and D̃i(xNi

)

∈ R. It then results that

log p(xi | xNi
) = −{ΘT

i (xNi
)Si(xi)+Ci(xi)+Di(xNi

)}

with

Si(x) =
[
1∗

l (xi), 1∗
l (xi)S̃i(xi)

]T

Θi(xNi
) =

[
log

ρ∗
i (xNi

)

ρi(xNi
) + D̃i(xNi

), Θ̃T
i (xNi

)
]T

Ci(x) = 1∗
l (xi)C̃i(xi)

Di(xNi
) = log ρi(xNi

). (6)
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The second assumption is that the family of con-

ditional densities in (4) correspond to a second-order

mixed-state Markov random field, i.e. p(x) = exp−Q(x)/Z

with

Q(x) =
∑

i

Vi(xi) +
∑

i,j

Vij(xi, xj) (7)

With the aforementioned hypothesis it was shown

in [7,26] that

Vi(xi) = αT
i · Si(xi) + Ci(xi), (8)

Vij(xi, xj) = Si(xi)
T βijSj(xj). (9)

with βij ∈ R
(d+1)×(d+1) and αi = [α1....αd+1]

T ∈
R

d+1.

Discussion A mixed-state auto-model is defined by ei-

ther the conditional densities (4) or by the potential
functions (8) and (9). Both are in turn defined by the

parameters αi and βij . Now, let us decompose these

parameters by writing

βij =

(
dij YT

ij

Yij β̃ij

)
, αi = [αD

i α̃
T
i ]T , (10)

where YT
ij is the first row of βij minus the first element,

dij , and Yij is the first column of βij minus the first

element. β̃ij is the lower-right d × d submatrix of βij .

Equivalently, α̃i is a d-dimensional vector, and αD
i the

first element of αi.

In view of this, we can write the shape of the mixed-

state Gibbs energy as follows:

Q(x) =
∑

i

αD
i 1∗

l (xi) + α̃
T
i 1∗

l (xi)S̃i(xi) + Ci(xi)

+
∑

<i,j>

dij1
∗
l (xi)1

∗
l (xj)

+
∑

<i,j>

YT
ij1

∗
l (xi)1

∗
l (xj)S̃j(xj)

+
∑

<i,j>

YT
ij1

∗
l (xj)1

∗
l (xi)S̃i(xi)

+
∑

<i,j>

1∗
l (xi)1

∗
l (xj)S̃i(xi)

T β̃ij S̃j(xj) (11)

Note that this model allows us to introduce dif-

ferent types of terms in the mixed-state Gibbs energy

function. On one side we have purely discrete terms of
the form αD

i 1∗
l (xi) or dij1

∗
l (xi)1

∗
l (xj) as in a discrete

Markov random field. On the other side, we can include

unary continuous terms α̃
T
i 1∗

l (xi)S̃i(xi) or second-order

terms as 1∗
l (xi)1

∗
l (xj)S̃i(xi)

T β̃ij S̃j(xj). S̃i(xi) is a func-

tion of the continuous values of xi. Finally, we are able

to include mixed-state second-order terms as

YT
ij1

∗
l (xi)1

∗
l (xj)S̃j(xj). In this latter case, the model

is able to exploit the interaction between continuous
and symbolic states of neighboring points.

Indeed, many applications in computer vision are

formulated directly as an energy-maximization prob-

lem where the energy terms are Gibbs potentials, usu-
ally up to second order cliques [23,52,27,21,32,33]. In

these cases, the model is completely designed through

the energy function, although the conditional densities

can be eventually obtained, for example when apply-

ing certain optimization methods (e.g. ICM [3]). For
us, equation (11) is the basis for designing a mixed-

state energy that corresponds to a mixed-state Markov

random field.

3.4 Conditional random fields with mixed-states

In the MRF framework, the problem of estimating a

random field x from a set of (image) observations y is

expressed using the Bayes rule as

max
x

p(x | y) ∝ max
x

p(y | x)p(x). (12)

For classical MRFs models [4,24,14], the prior knowl-

edge on x is modeled as a Markov random field and
p(y | x) is the observation model. In order to obtain

a computationally tractable (also markovian) posterior

distribution, some restrictive assumptions need to be

imposed on defining p(y | x). For example, assuming a
factorized form p(y | x) =

∏
i p(yi | xi) the markovian-

ity is assured. However, this is a strong restriction that

may not be able, for example, to account for textured

patterns.

As pointed out in [42], what one usually seeks is
the markovianity of p(x | y). This can be guaranteed

by directly assuming the markovianity of p(x,y) in the

form of pairwise Markov random fields (PMRF) [42].

Thus, p(x) need not be markovian. This relaxes the re-
strictions of classical MRFs and permits to build more

complex, and yet tractable, models. This approach was

later extended in the triplet Markov field (TMF) model

[1,6] introducing a third (auxiliary) process u and as-

suming (x,y,u) is now markovian. This allows having a
non-markovian (x,y) and thus, a more general setting.

The latter approaches require modeling the observa-

tion process y, either in the form of p(y | x) or through

the joint distributions p(x,y) or p(x,y,u). This can
sometimes be viewed as a limitation if one wants to in-

troduce arbitrary observations in the inference process

of x.
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A different approach which avoids modeling y is

given by the so-called conditional random fields (CRFs)

framework [33,32,49] which has gained interest in the

last years. It considers a different point of view in esti-

mating the posterior probabilities over x given the ob-
servations. The idea is to directly model the posterior

p(x | y) and directly imposing its markovian form. As

a consequence, this conditional probability can depend

on arbitrary features y without making any model ap-
proximations as one does not have to take care of its

distribution [32]. This of course permits to relax any

independence assumption. Furthermore, it allows us to

define these models in a flexible way, in particular it en-

ables to exploit a large set of observations (e.g., a block)
at each site, something that in the classical MRFs no-

tably increases the complexity of the model. That is, it

is able to integrate at an image location any informa-

tion extracted from the input data and obtained across
any spatial or temporal (or both) neighborhoods, or in-

formation from previously reconstructed variables, or

even the association of both.

It is not our intention to extensively describe the

conditional random fields theory but to exploit its ad-
vantages within the mixed-state framework. Then, it is

enough to give the following extension to the definition

given in [33]:

Definition 2 (Mixed-state Conditional Random

Field (MS-CRF)) Let x be a mixed state random

field and y an observation process. Then (x,y) is said

to be a mixed-state conditional random field if x condi-
tioned on y is a mixed-state Markov random field.

In addition, this framework will permit to involve

not only the comparison between the current image
and the reference image but to explicitly integrate mo-

tion measurements obtained between consecutive im-

ages, contributing to make the overall scheme complete,

accurate and powerful.

Introducing the observations y in the mixed-state
auto-model is straightforward, by making the parame-

ters depend on y, i.e. αT
i (y) and βij(y), and in turn,

αD
i (y), α̃

T
i (y), dij(y), YT

ij(y), β̃ij(y).

4 A MS-CRF for simultaneous motion

detection and background reconstruction

4.1 Our method

Recall section 2 where we have discussed several aspects

that the method has to take into account in order to
solve the problems of motion detection and background

estimation. Now, we are ready to deal with each of these

issues:

• We introduce spatial context and correlation in both

types of values by exploiting a random field model

with second order potentials as in (11).

• We exploit both image intensity and motion obser-

vations as input for the inference process. This can
be done thanks to the Conditional Random Fields

framework.

• We exploit the interaction between estimation (back-

ground intensity) and detection (moving points).
The mixed-state approach allows us to achieve this

joint modeling by designing the continuous, discrete

and mixed potentials involved in (11).

• We solve the two problems in a single inference step.

Optimization of mixed-state fields implies obtaining
both types of values at the same time and in a uni-

fied way.

We now specify the MS-CRF that is able to handle

simultaneously the problems of motion detection and
background reconstruction. As mentioned before, there

is a strong coupling between the two tasks.

4.2 Definitions

Let us call I(t) = {Ii(t)}i∈S the intensity image at time

t, where Ii(t) ∈ [0, 255] is the brightness intensity value

at location i ∈ S = {1....N} of the image grid. Then I =

{I(t)}t is a sequence of images that we call observations.
We define a mixed-state random field xt = {xt

i}i∈S for

time instant t, where xt
i ∈ M = {l}∪ [0, 255] is a mixed-

state random variable.

4.3 Background update strategy

Suppose we have an estimate of the mixed-state field

xt for a given instant t, that is, the location of the

moving points and the estimated intensity values for
the background at the non-moving points. We can use

this information and the past estimated xt′ (for t′ < t)

to reconstruct the reference image at t, that we call

zt = {zt
i}i∈S . We propose to update the background

image as follows:

zt
i =

{
xt

i if xt
i 6= l

zt−1
i otherwise.

(13)

The rationale of this rule is that when we do not
detect motion, we have a good estimation for the refer-

ence intensity value at a given point, so we can keep this

value as a background intensity value. As the objects

in the scene move, we can progressively reconstruct the
background for different parts of the image. In other

words, we can fill the gaps at those moments where the

background is not occluded.
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4.4 Design of the energy terms

Let us call Q(xt | I, zt−1) the energy function associ-

ated to a conditional mixed-state Markov random field,

given the observations I and the previously available

background image zt−1. In the sequel we define the

mixed-state energy terms.
We will consider three types of energy terms. The

discriminative term, which plays a role in the decision

process, penalizing or favoring the presence of motion

at a point given the observations; the reconstruction
terms, involved in the estimation of the background in-

tensity values, which also affects the motion detection

decision process by means of background subtraction;

and the regularization terms, related to the smoothing

of the mixed-state field. In Table 1 we give the complete
expressions. The mixed-state energy is therefore given

by:

Q(xt | I, zt−1) =
∑

i

{
V D

i (xt
i | I) + V R

i (xt
i | I, zt−1)

}

+
∑

<i,j>

V S
ij (xt

i, x
t
j | I). (14)

The objective is to minimize this expression with

respect to the mixed-state field xt at each time instant.

This implies minimizing the contribution of the poten-
tials V D

i (xt
i | I), V R

i (xt
i | I, zt−1) and V S

ij (xt
i, x

t
j | I).

Discriminative term The discriminative term V D
i (xt

i |
I) (Tab. 1a) is related to the symbolic part of the field,

which can be associated to the motion detection map.

The weight αD
i (I) depends on the observations and aims

at tuning the belief of presence of motion at a point.

The idea is that, when motion is present, αD
i (I) should

take a large value so that we penalize that 1∗
l (x

t
i) = 1

(or equivalently, we favor xt
i = l). Conversely, a low

value of αD
i (I) favors xt

i 6= l.

Here we adopt the a-contrario decision framework

[48] for obtaining αD
i (I). In this method moving re-

gions appear as low probability events in a model corre-

sponding to the absence of moving objects in the scene,
namely a model of the background.

In general terms, a point in the image is likely to

correspond to a moving object if its local normal flow

magnitude is important, which is defined as

υ
(n)
i (t) =

∣∣∣∂Ii(t)
∂t

∣∣∣
‖ ∇Ii(t) ‖

. (15)

This quantity is computed between two consecutive

frames of the sequence: I(t−1) and I(t). In order to deal

with occlusion and disocclusion of the scene background

by moving objects, a three-image scheme is considered.

Taking I(t) as the central image, the normal flow mag-

nitude map is obtained for the pair I(t − 1), I(t) and

for the pair I(t), I(t + 1). Then, the minimum value

υ
(n,min)
i (t) = min[υ

(n)
i (t), υ

(n)
i (t + 1)] is kept as the

considered measure. Looking forward and backward in

time ensures that a meaningful motion observation is

obtained, since the two pairs of images cannot be si-

multaneously affected by an occluding situation at the
same time. Taking the minimum avoids assigning high

motion values to the static background.

In an image with no moving objects present, the lo-
cal motion measures can be assumed to derive from

an independent and identically distributed temporal

noise. The background is assumed to dominate the fore-

ground, and thus, the inverse cumulative distribution

function F (µ) = P (υ
(n,min)
i (t) > µ) of the normal flow

magnitude for the background can be learned empiri-

cally from the whole image. Now, consider a region Ri

around image location i and let kµ denote the observed

number of pixels at which the motion measure exceeds
the threshold µ. According to the learned background

distribution, the probability that kµ or more motion

values of a total of n, exceed µ is the tail of a binomial

distribution:

B(kµ, n, F (µ)) =
n∑

j=kµ

(
n

j

)
F (µ)j(1 − F (µ))n−j . (16)

This probability measures how likely the background

model is for displaying an observation of at least kµ ex-

ceeding motion values. It corresponds to the probability

of rejecting the hypothesis of no-motion although it is
true, when kµ is viewed as a threshold for detecting

a moving point. Then, it can be interpreted as a false

alarm rate for region Ri.

Setting the threshold µ arbitrarily may be problem-

atic as a suitable value may depend on the image and

the region. To avoid this, a set of Nµ thresholds µj

are tested and the minimum false alarm probability

PFA(Ri) = minj=1..Nµ
B(kµj

, n, F (µj)) is computed.
Taking the minimum means that it is sufficient that

one of the probabilities B(kµj
, n, F (µj)) is low to con-

sider that the region Ri does not correspond to the

background model.

Instead of considering the false alarm probability

as in usual hypothesis testing, the method proposes to

compute the average number of occurrences of the mo-
tion detection event under the hypothesis of the back-

ground model, termed Number of False Alarms (NFA)

and defined as



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9

Table 1 Energy potentials of the conditional mixed-state model for the motion detection and background reconstruction method

(a)
V D

i
(xt

i
| I) = αD

i
(I)1∗

l
(xt

i
)

αD
i

(I) = − log NFA(Ri) (see eq. 17)

(b)

V R
i (xt

i | I, zt−1) = γ

[
1∗

l
(xt

i)

[
xt

i
−m(zt−1

i
,Ii(t))

]2

σ2
i

+ 1l(x
t
i)α

R
i (I(t), zt−1)

]

αR
i

(I(t), zt−1) = σ2
i

[
n−1

∑
j∈Ni

(zt−1
j
− Ij(t))

]−2

m(zt−1
i

, Ii(t)) = czt−1
i

+ (1− c)Ii(t)

(c)
V S

ij (xt
i, x

t
j | I) = βc

gi(∇I(t))
1∗

l
(xt

i)1
∗
l
(xt

j)

[
(xt

i
−xt

j
)2−K

σ2
i

]
− βm

gi(∇I(t))
1l(x

t
i)1l(x

t
j)

gi(∇I(t)) = max(1, ‖ ∇Ii(t) ‖
2)

NFA(Ri) = NRi
· Nµ · PFA(Ri)

= NR · Nµ · min
j=1..Nµ

B(kµj
, n, F (µj)) (17)

where NR is the number of tested regions in the im-

age and Nµ the number of tested thresholds. In [48] the

number of candidate regions NR can vary across the se-
quence by applying a meaningful region extraction algo-

rithm. In our case, we have implemented the simplest

scheme where we compute the value of NFA(Ri) for

each image location over square regions of a fixed size

and thus NR and Nµ are constants so that NFA(Ri)
depends essentially on PFA(Ri). We fix Nµ = 10 where

the tested µj are those corresponding to regularly spaced

probabilities F (µj) = p
Nµ−j+1

Nµ
, j = 1...Nµ with p =

F (µ1) the probability associated to a minimal thresh-
old µ1 = 0.2. The sequence µj is thus increasing and kµj

is decreasing. In other words, the method tests Nµ = 10

different thresholds starting from µ1 = 0.2. This results

in a non-parametric and unsupervised approach.

Note that the value of NFAi(Ri) constitutes a mea-

sure of the belief that a point belongs to the background

(or conversely, to moving objects). As explained in [48]
one can apply a detection test specified as follows: ac-

cept the motion hypothesis for region Ri if NFAi(Ri) <

1 and reject it otherwise. This results in less than one

false detection on average. In Fig. 3 this rule was ap-
plied for computing an initial motion detection map.

Note that the discriminative term alone is not able to

correctly detect the moving regions, nonetheless pro-

viding valuable information. We then set

αD
i (I) = − log NFA(Ri) (18)

where a low value of log NFAi favors xt
i = l.

Our method does not rely only on the compari-
son between the current image and the reference image

but explicitly introduces (normal flow) motion measure-

ments as explained above. The overall scheme gains ac-

curacy and completeness, integrating this low-level fea-

ture in the decision process.

Reconstruction terms We elaborate now the potential

V R
i (xt

i | I, zt−1) in Tab. 1b). On one side, it aims at

estimating the intensity values of the background (ref-

erence) image, taking into account their interactions

with the symbolic values. On the other side, it exploits
the information of the intensity difference between the

current image and the reconstructed reference image,

which provides the basis for the decision process in a

background subtraction method.
The first term of Tab. 1b ,

1∗
l (x

t
i)

[
xt

i − m(zt−1
i , Ii(t))

]2

σ2
i

favors that, when there is no motion, i.e. 1∗
l (x

t
i) = 1,

the estimated intensity value for a point is close to the
previous estimated reference intensity value. Simulta-

neously, it penalizes the absence of motion if this dif-

ference is eventually large 1. Both types of values inter-

act consequently, in order to minimize the energy. Note
that this term also performs a temporal smoothing of

the reference estimates zt
i by the interpolation form of

the m(·) function. Furthermore, it is normalized by a

local variance σ2
i estimated over a 9x9 window centered

at location i in It. The second term of Tab. 1b,

1l(x
t
i)α

R
i (I(t), zt−1)

1 We set m(zt−1
i

, Ii(t)) = Ii(t) if we do not have an available
previously estimated value for the reference image at that point.
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Fig. 3 Initial motion detection by computing the Number of False Alarms. The motion map is obtained by thresholding this quantity
as explained in [48]. From left to right: the results are shown for the sequences Basketball, Forest, Traffic Circle, Route and Van.
Note that this quantity, with the basic implementation used here, over-regularizes the motion detection map at that stage, as it is a
block-based detection strategy.

results in a penalization of the presence of motion when

the difference of intensity between the observation and

the reference image is small. A local average of intensity

differences is introduced in order to reduce the effect
of the observation noise. The parameter γ controls the

influence of the reconstruction term in the total energy.

Regularization terms The potentials introduced so far

are first-order terms, that relate the random variable
at a point i w.r.t. the observations. Next, we introduce

terms related to the regularization of the field. The

objective is to have connected regions for the motion

detection map, and a reconstructed background with

a reduced amount of noise, but preserving edges and
contrast of the image.

A combined spatial regularization of both types of

values is achieved through the energy potential in Tab.

1c. First, a Gaussian term,

βc

gi(∇I(t))
1∗

l (x
t
i)1

∗
l (x

t
j)

[
(xt

i − xt
j)

2 − K

σ2
i

]

is introduced in order to obtain homogeneous intensity

regions for the objects in the background. This regular-

ization is only done when both points are not in motion
and is stronger for those points where the image gradi-

ent is small, in such a way that we avoid the blurring of

edges. Then, regarding the motion detection map 2, we

observe that the amount of regularization depends as

well on the continuous part, that is, is favored in homo-
geneous intensity regions. The constant K is set to the

value K = 1
2 (xmax − xmin)2 = (255)2/2, centering the

range of values for this term, and is introduced to favor

this regularization when two neighboring points tend to

2 More precisely, its complement, the non-motion map

have similar intensities. If K = 0, the whole term can

become null in that case, suppressing the regulariza-

tion between adjacent points over non-moving regions.

Another term for the smoothness of the moving points
is added as well in Tab. 1c, in order to improve reg-

ularization and reduce false negative detections. The

parameters involved in Tab.1 are set to achieve a cor-

rect regularization in both the motion detection map
and the background intensity values. Their influence is

analyzed in section 5.4.

4.5 Estimation

The problem reduces to the task of estimating the field
xt by minimizing Q(xt | I, zt−1). The ICM (Iterated

Conditioned Modes) algorithm [3] is used for this task

which is an iterative procedure for maximizing p(xt |
I, zt−1). By choosing the value of xt

i at site i that max-
imizes the conditional probability p(xt

i | xt,Ni
, I, zt−1),

it results that p(xt | I, zt−1) increases [25]. Passing by

each point a sufficient number of times, an optimal so-

lution is obtained. Then, we only have to compute the

conditional mixed-state density at each location, which
can be derived directly from (14).

Defining H(xt
i) = V D

i (xt
i | I) + V R

i (xt
i | I, zt−1) +∑

j∈Ni
V S

ij (xt
i, x

t
j | I) this conditional density is given

by:

p(xt
i | xt,Ni

, I, zt−1) =
exp−H(xt

i)

Zi

, (19)

where Zi is a normalization factor that does not depend

on xt
i. Then, for each point the following rule is applied:
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xt
i =

{
l if H(xt

i = l) < H(xt
i = x∗

i )

x∗
i otherwise,

(20)

where x∗
i is the continuous value that maximizes the

continuous part of (19), i.e. when x 6= l:

x∗
i =

βc

gi(∇I(t))

∑
j∈Ni

xt
j1

∗
l (x

t
j) + γm(zt−1

i , Ii(t))

βc

gi(∇I(t))

∑
j∈Ni

1∗
l (x

t
j) + γ

. (21)

Note that when xt
i 6= l, the conditional distribution

of xt
i given its neighbors is Gaussian as one can infer

from the quadratic terms in V S
ij (xt

i, x
t
j | I) and V R

i (xt
i |

I, zt−1). Thus the maximizing value x∗
i coincides with

the mean of this conditional continuous density, and is
the estimated value for the reference image at point i.

5 Results and experimental comparisons

5.1 Mixed-state field

For our method, we use the 8-point nearest neighbor
set as the neighborhood Ni for the mixed-state Markov

random field. The parameters of the model were set

as follows: γ = 8, βc = 1, βm = 5 and c = 0.7. For

all the sequences these same values were used. This
is justified observing equation (21). Assume all neigh-

bor points are not in motion, then the estimated value

for the background intensity is a weighted average be-

tween the 8 neighbors and the previous estimated back-

ground. Setting βc = 1 we get a total weight of 8 for
the surrounding points (if the local gradient is small),

and then with γ = 8, we give the same weight to the

previous estimated value. This situation establishes an

equilibrium working point of the algorithm, from which
we derived the order of magnitude of the parameters.

βm was set empirically in order to effectively remove

isolated points. A complete analysis of the parameter

values is left for section 5.4.

Let us first present the result of applying our method
to the sequences Parking and Tennis as depicted in Fig.

4. In the figure we observe the process of joint motion

detection and background reconstruction at different

frames. These examples illustrate how the algorithm

works. Fig. 4b) and 4e) contain the estimated mixed-
state fields where for some points the mixed-state vari-

able xi takes the symbolic value (red in the figure) in-

dicating a detected moving point and for the rest, an

intensity value is assigned as the background intensity
estimate. This is the single output of the estimation

process in eq. (20). The background update rule (13)

is then applied to recover the reference image at those

points where motion is absent. Observe in Fig. 4c) how

the moving car is detected and the background is grad-

ually reconstructed. At the first frame, on the region

where the car is detected, there is no information of

the background image. This is shown as a black hole in
the estimated image.

5.2 Focus on the motion detection performance and
comparisons

We have applied our motion detection method to real

sequences consisting of rigid and articulated motion.
We compare the results with the standard methods of

Stauffer and Grimson [46] and Elgammal et al. [22].

We also consider two more recent methods. The one

by Zivkovic and Van der Heijden [53] which exploits
the unsupervised learning method introduced in [54] .

The other by Criminisi et al. [17] employs, as in our

approach, a conditional random field which includes a

temporal persistency model of the labels and a contrast-

dependent regularization term. However, the temporal
model has to be learned from ground truth data for

the processed sequences and the background model is

learned adaptively using color histograms by process-

ing an initial extended observation of the background.
Then, its distribution is static over time.

Additionally, we compare the performance of the

full mixed-state model, with two sequential implemen-

tations based on non-mixed versions of the proposed en-

ergy potentials (Algorithms 1 and 2), in order to show

the importance of the mixed-state terms and the simul-
taneous approach. In both latter cases, the first step is

to estimate the moving points and then, with a fixed

detection map, the background is reconstructed and up-

dated. In Algorithm 1 we have only left the unary and
purely discrete terms, not including any type of spa-

tial regularization. In Algorithm 2, we add the spatial

regularization terms for the discrete states, and for the

background reconstruction as well. In other words, we

take out the mixed potentials from the energy.

Next, we compare the motion detection performance
of each of the six methods considered here (Stauffer-

Grimson, Elgammal et al., Zivkovic, Criminisi et al.,

Seq1, Seq2 and MS-CRF) and display the values for:

Precision, Recall and the so-called F-score. The latter is
computed as the harmonic mean of precision and recall,

and is a global measure of the method accuracy. These

quantities are defined as
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Simultaneous motion detection and background reconstruction with our MS-CRF method. a) Frames 2,22,42,62,72 of the
Parking sequence. b) Mixed-state field estimated for each frame. Red indicates a detected moving point (xt

i = l). c) Background
reconstruction process (image {zt

i}). As the sequence advances, reconstruction of the non-moving regions is performed to obtain
the complete background image. Note how the car virtually disappears. d) Frames 20,30,40,46,77 of the Tennis sequence. e) Mixed-
state field and f) reconstructed background. The player is replaced along the sequence by the reference image estimates though the
background is never completely uncovered.

precision =
#true positives

#true positives + #false positives

recall =
#true positives

#true positives + #false negatives

F−score = 2 · precision · recall

precision + recall
. (22)

They were computed with respect to the ground-

truth detection map, which we have determined by man-

ual segmentation of the video sequences. We have tested
the video sequences Basket, Forest, Tennis, Van and

Traffic Circle.

Basketball sequence In Fig. 5 we present the results
for the Basketball sequence. The method by Stauffer

and Grimson (Fig. 5b) yields wrongly detected moving

points in the background. The method by Elgammal et

al. (Fig. 5c) performs better, but has some problems to
correctly recover connected regions. The result apply-

ing the method of Zivkovic (Fig. 5d) shows less false

positives but the segmentation is not that smooth. The
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Algorithm 1 Sequential without spatial regularization

(Seq1)

for each t do

minimize w.r.t all wi ∈ {0, 1}

∑

i

αD
i (1− wi) + γwiα

R
i

for each i do

if wi = 0 then

zt
i
← m(zt−1

i
, Ii(t))

else

zt
i
← zt−1

i

end if

end for

end for

Algorithm 2 Sequential with spatial regularization

(Seq2)

for each t do

minimize w.r.t all wi ∈ {0, 1}

∑

i

αD
i (1− wi) + γwiα

R
i −

∑

i,j

βm

gi(∇I(t))
wiwj

for each i do

if wi = 0 then

zt
i
← eq. (21)

else

zt
i
← zt−1

i

end if

end for

end for

approach of Criminisi et al. (Fig. 5e) yields a good seg-
mentation, though it seems oversmoothed. It is impor-

tant to point out that for these last methods, there are

images available without moving objects for estimating

the background model. Finally, the mixed-state method
(Fig. 5h) shows an improved regularization of the mo-

tion map, reducing false positives and false negatives,

also compared with the sequential non-mixed versions

of the algorithm (Fig. 5f and 5g). In the comparative

table given in Fig. 5a) we observe that the methods by
Stauffer-Grimson, Elgammal et al. and Zivcovic show a

better Precision but at a cost of numerous false nega-

tives. This is reflected in the Recall rate which is poor

compared with MS-CRF, Seq1 and Seq2. At the same
time, MS-CRF shows less false positives than Seq1 and

Seq2, with a similar Recall value. The method by Cri-

minisi et al. also shows a high F-score due to a high

Recall, but diminished by a lower Precision. Overall,

our method has the best F-score.

Forest sequence The Forest sequence (Fig. 6) depicts a
complex scene of two men walking through the woods.

In this example the background is not completely static

as there is swaying vegetation. Our method (Fig. 6h)

supplies very good results discarding practically all the

background motion, even compared with multi-modal

density models (Fig. 6b and 6c). The proposed motion-

based measures NFA(Ri) (17) introduced in the dis-

criminative term are in theory able to cope with this
kind of background dynamics. However, by themselves

they generate many false detections as shown in Fig. 3

in the case of the Forest sequence. Embedding these ob-

servations in the mixed-state conditional random field
notably improves the overall motion detection.

The performance of MS-CRF is clearly better in

Precision (Fig. 6a) w.r.t. the other methods. This is
a consequence of a large reduction of false positives, as

one can confirm visually. Seq1 and Seq2 show a high

Recall, but are not able to correctly segment the two

men from the background. Criminisi et al. again over-
smoothes the detection map but performs very well giv-

ing the best F-score.

Van sequence In the Van sequence (Fig. 7), the video

is shot on a rainy day and thereby the background con-
tains again some variation. In this case, the variation is

more uniform and weaker than for the Forest sequence,

so that the methods by Elgammal et al. (Fig. 7c) and

Stauffer-Grimson (Fig. 7b) gave satisfactory results in

this sense. However, our method (Fig. 7h) delivers a re-
duced amount of false negatives (note the windows of

the van) and more compact detected moving regions.

Meanwhile, the method by Criminisi et al. is not able to

achieve a good Precision with many false positives. The
algorithms Seq1 and Seq2 show many artifacts around

the Van which is also reflected in a low Precision (Fig.

7a).

Tennis sequence For the Tennis example (Fig. 8), the

algorithms Seq1, Seq2 and MS-CRF have shown a sim-
ilar performance yielding the best results compared to

the other methods. This can be observed in both the

motion detection map and the values of Precision, Re-

call and F-score (Fig. 8a). As for Elgammal et al. (Fig.
8c), the background model is wrongly estimated since

it includes the player at different frames as part of it,

resulting in a ghost effect. The method by Stauffer-

Grimson (Fig. 8b) gave a satisfactory result but with a

lower Recall rate, which is related to its inability of ob-
taining compact and smooth segments. Notice that the

missed detections in the segmentation obtained with

the method by Criminisi et al. (Fig. 8e) is a conse-

quence of a behavior observed also in the previous ex-
amples. Basically, it is unable to segment small moving

structures, as for example the tennis ball, due to an

oversmoothing effect.
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Method Precision (%) Recall (%) F-Score (%)

Elgammal et al. 80.7 65.2 72.1

Stauffer-Grimson 83.1 55.3 66.4

Zivcovic 82.5 66.3 73.5

Criminisi et al. 71.2 100 83.1

Seq. 1 (No Reg) 57.4 89.8 70.1

Seq. 2 64.6 88.7 74.8

MS-CRF 79.2 88.8 83.7

a) Performance of each method

b) Stauffer-Grimson c) Elgammal et al. d) Zivkovic e) Criminisi et al.

f) Seq1 g) Seq2 h) MS-CRF

Fig. 5 Basketball sequence: motion detection results for different algorithms compared to our method.

Method Precision (%) Recall (%) F-Score (%)

Elgammal et al. 34.7 50.8 41.2

Stauffer-Grimson 22.2 57.6 32.1

Zivcovic 30.1 46.2 36.4

Criminisi et al. 75.9 90.5 82.4

Seq. 1 (No Reg) 35.1 91.6 50.8

Seq. 2 50.1 86.1 63.3

MS-CRF 85.6 72.9 78.7

a) Performance of each method

b) Stauffer-Grimson c) Elgammal et al. d) Zivkovic e) Criminisi et al.

f) Seq1 g) Seq2 h) MS-CRF

Fig. 6 Forest sequence: motion detection results for different algorithms compared to our method.
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Method Precision (%) Recall (%) F-Score (%)

Elgammal et al. 76.1 85.6 80.5

Stauffer-Grimson 91.0 65.1 75.9

Zivcovic 69.7 64.0 66.7

Criminisi et al. 68.1 96.3 79.8

Seq. 1 (No Reg) 66.1 88.9 75.8

Seq. 2 61.6 91.9 73.7

MS-CRF 84.5 90.2 87.3

a) Performance of each method

b) Stauffer-Grimson c) Elgammal et al. d) Zivkovic e) Criminisi et al.

f) Seq1 g) Seq2 h) MS-CRF

Fig. 7 Van sequence: motion detection results for different algorithms compared to our method.

Method Precision (%) Recall (%) F-Score (%)

Elgammal et al. 39.9 51.2 44.9

Stauffer-Grimson 86.2 66.1 74.9

Zivcovic 88.1 67.9 76.7

Criminisi et al. 89.0 72.6 79.9

Seq. 1 (No Reg) 84.4 84.0 84.2

Seq. 2 86.3 79.9 83.0

MS-CRF 90.7 76.7 83.1

a) Performance of each method

b) Stauffer-Grimson c) Elgammal et al. d) Zivkovic e) Criminisi et al.

f) Seq1 g) Seq2 h) MS-CRF

Fig. 8 Tennis sequence: motion detection results for different algorithms compared to our method.
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Traffic Circle sequence Finally, in the Traffic Circle se-

quence (Fig. 9) we have multiple rigid motions. In this

case, a complete background image is never available

during the sequence. The cars continuously pass around

the square entering and leaving the scene. The method
by Stauffer and Grimson (Fig. 9b) is affected by a dead-

lock situation due to the lack of training samples. Ini-

tially the algorithm includes in the background some of

the moving cars, resulting in a continuously wrong de-
tection for subsequent frames It takes too long for the

model to remove them from the reference image. More-

over, some regions of the background are never correctly

updated. For the same sequence the non-parametric

method of Elgammal et al. (Fig. 9c) failed in generating
valid results, yielding absence of motion for mostly ev-

ery point and every frame. The lack of training samples

for the background, on which the method relies, is likely

to be the cause of the failure. Also for Criminisi et al.
(Fig. 9e) this is a problem as the color likelihoods for

the background cannot be learned and thus computed

correctly.

For our method (Fig. 9h), these problems are not

present. The cars are well detected with less false posi-

tives for the mixed-state method. The algorithm is not

able to distinguish the small cars entering the scene

from the street in the top, grouping all in a single con-
nected region. In this case, the separation between the

cars in that region is about 4 pixels (the image is of size

256x256), which is in the order of the size of the con-

sidered neighborhoods used in the regularization terms.
Nevertheless, it results in a well segmented scene where

the regions occupied by the moving objects are obtained

compactly. Note how most of the cars are indeed de-

tected as uniformly connected regions. From the table

in Fig. 9a) we deduce that MS-CRF gave the best F-
score, basically due to a notably better Precision. Mean-

while, for Seq1 and Seq2 this value is lower as a con-

sequence of the many artifacts that appear around the

car.

Regarding the computation time for processing the

tested sequences, the algorithm solves the motion de-

tection and the background reconstruction at a rate of
1 frame/sec on average, for 320x240 gray-scale images.

This was obtained with a non-optimized implementa-

tion in C++, running on a standard desktop PC.

5.3 Focus on background reconstruction

The proposed algorithm generates, at each time instant,
estimates of the background image, not a model of it.

We have really tackled a problem of reconstruction. The

approach uses all the information about the background

across time to build a complete image. In this case, mov-

ing objects can be removed from the scene as shown

in Fig. 10. Moreover, this reconstruction also involves

smoothing of the background image, over homogeneous

intensity regions, filtering out the observation noise, but
preserving the edges. In the third row of Fig. 10 we dis-

play a small region for each sample, in order to more

clearly observe the effect of the background reconstruc-

tion. In Fig. 10a), the basketball court is smoothed,
and the lines are well preserved. In the Forest sequence

10b), we see how the algorithm preserves the texture

of the trees and does not blur the intensity borders. In

c), d) and e), the cars are correctly removed even in a

complex situation where the background partially oc-
cludes the moving object, as in e), and the image noise

is reduced as well.

Finally, in order to assess the efficiency of the algo-

rithm in obtaining the background, we have computed
the percentage of the reference image left to be recon-

structed until each frame in the video sequence. We

compare the full MS-CRF algorithm with the sequen-

tial algorithms Seq1 and Seq2 on the sequences Traffic

Circle and Highway (Fig. 11). Observe that for the MS-
CRF method it takes less video frames to perform the

reconstruction, that is, at a particular instant t it has

estimated a larger part of the background. It means

that our method for reconstructing the background im-
age can also be viewed as properly addressing the video

inpainting issue.

5.4 Experimental parameter analysis

The parameters involved in the MS-CRF model were

set to fixed values for all the experiments. They were

obtained by an experimental analysis of the motion de-

tection and background reconstruction results, which is

presented in what follows. One could say that it would
be more appropriate to learn or estimate them from

ground truth data. However, our methodology permits

us to sweep a range of values and observe the perfor-

mance of the method in order to establish how sensitive
it is to their values.

The first parameter we analyze is the size of the

regions Ri where NFA(Ri) is computed in equation

(17). This determines the motion likelihood for the dis-

criminative term (Tab. 1 a) in our mixed-state energy
function. As in Fig. 3, we can threshold log NFAi com-

puted using different region sizes to obtain the detection

maps depicted in Fig. 12a). Note that this is done only

for visualization in order to clearly distinguish where
the motion likelihood is high or low, but it is not the

result of the MS-CRF method. For a small region size

as 4 × 4, we can see that the discriminative term is
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Method Precision (%) Recall (%) F-Score (%)

Elgammal et al. - - -

Stauffer-Grimson 54.8 63.9 59.0

Zivcovic 64.8 85.1 73.6

Criminisi et al. 38.0 26.5 31.2

Seq. 1 (No Reg) 49.2 88.5 63.3

Seq. 2 57.1 86.3 68.7

MS-CRF 68.9 85.2 76.2

a) Performance of each method

b) Stauffer-Grimson c) Elgammal et al. d) Zivkovic e) Criminisi et al.

f) Seq1 g) Seq2 h) MS-CRF

Fig. 9 Traffic Circle sequence: motion detection results for different algorithms compared to our method. The method by Elgammal
et al. c) did not give valid results.

not sufficiently reliable, giving a low likelihood to a big
proportion of the moving region. Consequently, the final

result of the MS-CRF method in Fig. 12b) is poor. As

the region size increases, the discriminative term over-

estimates the moving regions but thanks to the recon-

struction and smoothing terms (Tab. 1 a-b), the result
of the detection improves notably. On the other side,

taking bigger regions Ri implies that the learning of the

background is slower (Fig. 12c) and the initial detection

performance is lower (Fig. 12d). As the background is
learned, the F-score values grow up to a steady state.

Indeed, at the beginning of the sequence the detection

relies mostly on the motion likelihoods, as there is no

background information. Of course, for regions of size

4 × 4, though the learning process is faster, the back-
ground is wrongly estimated. At the same time, if the

regions are too big, this affects the detection precision

as we can see in the F-score curves (Fig. 12d). A value

of 20× 20 have shown to be the best choice, and it was
applied to all the tested sequences. Note that between

12 × 12 and 32 × 32 the performance does not vary

drastically.

Next, we analyze the effect of the parameters in-

volved in the reconstruction and smoothing terms (Tab.

1 a-b), that is, γ, βc and βm. The values chosen for all

the processed sequences in the previous sections were
γ = 8, βc = 1 and βm = 5. As mentioned in section

5, this sets an equilibrium working point for the algo-

rithm.

In order to observe the sensitivity of the method

to variations of the parameters, we have swept their

values around the working point. We have tested γ ∈
{2, 6, 10, 14}, βc ∈ {0.2, 0.6, 1, 1.4} and βm ∈ {2, 4, 6, 8}.
The results are shown in Fig. 13. We have chosen the

Forest sequence given its complexity due to the pres-

ence of a noisy and highly dynamic background. This

will permit us to have a better view of the performance

variations.

In the first row we observe the effect of a varying γ.

This parameter weights the reconstruction potential.
Thus, for low values the information given by the re-

constructed background image is underestimated and

the motion likelihood governs the energy. As a result

the detection is incorrect, similarly to what is shown

in Fig. 3. With increasing γ the improvement is clear.
However, taking a high value may mask the effect of

the smoothing terms and one obtains a noisy detection

map, as seen in the last image of the first row.

In the second row we vary βc, related to the mixed-

state term, and which affects the joint spatial regu-
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a) b) c) d) e)

Fig. 10 Top row: original sequences. Center row: background images estimated with our method. Bottom row: a close-up over a small
region of the original (left) and reconstructed (right) images. The spatio-temporal reconstruction of the background is achieved jointly
with motion detection, resulting in virtually removing the moving objects from the scene. The reference image is also filtered over
homogeneous intensity regions in order to reduce noise, while preserving borders.
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Fig. 11 The plots show the percentage of the background image that remains to be reconstructed for the algorithms MS-CRF, Seq1
and Seq2 and for the sequences a) Traffic Circle and b) Highway. The values represent the proportion of the reference image that each
algorithm was not able to reconstruct during the elapsed time.

larization of the background estimates and the non-
moving regions. Increasing this value permits to obtain

more compact regions. However, if this value is too big,

the number of false negatives may also increase as ob-

served in the last figure of the row.

Finally, in the third row we observe the effect of βm.

This parameters is involved in the regularization of the
motion detection map and, as we can see in the figures,

a high value gives more compact regions at the risk of

an increased number of false positives.

This same behavior, exemplified here for the Forest
sequence, was observed in all the cases. As said before,

we have obtained good results for γ = 8, βc = 1 and

βm = 5 and in general, the performance did not de-

creased considerably for γ ∈ [8, 12], βc ∈ [0.6, 1.2] and
βm ∈ [4, 6.5].

6 Conclusion

We have proposed a simultaneous motion detection and

background reconstruction method using a mixed-state
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Fig. 12 Detection and reconstruction performance as a function of the region size in eq (17). a) Motion map obtained by thresholding
log NFAi. b) Result of the MS-CRF method for different region sizes. c) Percentage of the background image remaining to be learned
as a function of the frame number. d) F-score for the motion detection result as a function of the frame number.

conditional random field. The algorithm outperforms

state-of-the-art motion detection methods, as confirmed

by the experiments. As well, it improves the perfor-
mance compared with algorithms that follow a sequen-

tial strategy, both for the motion detection map and

the reconstructed background.

It is worthy to say that the parameters involved in

the energy terms were set empirically, in order to ob-
tain a correct motion detection and background estima-

tion. The values were the same for all the experiments,

though it is fair to emphasize the necessity of study-

ing the problem of on-line optimal parameter estima-
tion, making the method fully unsupervised. This will

be studied in a future work.

In summary the method has the following charac-

teristics:

– Reduction of false positive and false negatives
Through a more complex regularization of the mo-

tion detection map, exploiting spatial priors, and

the interaction between symbolic and continuous

states.
– Reconstruction of the background Obtaining

a reconstructed reference image, not just a model

of it, allowing us to exploit the local information of

the intensity difference between the true background

and a foreground moving object.

– No need of training samples Through a tempo-
ral update strategy which can be adopted thanks to

a correct regularized estimation of the motion map,

the reference image is reconstructed on-the-fly in the

regions not occluded by the moving objects.

– Joint decision-estimation solution Exploiting
simultaneously the information that the reference

image provides for motion detection, and vice versa.
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9. A. Bugeau and P. Pérez. Detection and segmentation of mov-

ing objects in highly dynamic scenes. In CVPR ’07: Proc.
of the 2007 IEEE Conf. on Computer Vision and Pattern
Recognition, Minneapolis, MI, 2007.

10. H. Caillol, A. Hillion, and W. Pieczynski. Fuzzy random
fields and unsupervised image segmentation. IEEE Trans.
Geosci. Remote Sensing, 31:801–810, 1993.

11. C. Carincotte, S. Derrode, and S. Bourennane. Unsupervised
change detection on sar images using fuzzy hidden markov
chains. 44(2):432–441, February 2006.

12. C. Carincotte, S. Derrode, G. Sicot, and J.M. Boucher. Un-
supervised image segmentation based on a new fuzzy hmc
model. In ICASSP’04, pages 17–21, 2004.

13. B. Cernuschi-Frias. Mixed states Markov random fields with
symbolic labels and multidimensional real values. Technical
Report 6255, INRIA, July 2007.

14. R. Chellappa. Two-dimensional discrete gaussian Markov
random field models for image processing. PPR2, 85:79–112.

15. J. Chen and C. Tang. Spatio-temporal Markov random field
for video denoising. In Proc. IEEE Conf. on Comp. Vision
and Pattern Recognition, 2007. (CVPR’07), pages 1–8, June
2007.

16. C. Collet and F. Murtagh. Segmentation based on a hier-
archical Markov model. Pattern Recognition, 37(12):2337–
2347, december 2004.

17. A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer
segmentation of live video. In CVPR ’06: Proceedings of
the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 53–60, Washington,
DC, USA, 2006. IEEE Computer Society.

18. T. Crivelli, P. Bouthemy, B. Cernuschi-Fŕıas, and J.-F. Yao.
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