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1 Introduction

We call a nonlinear polynomial f in C[z] prime if there do not exist nonlinear
polynomials ¢; and ¢, in C|z] for which f = ¢ o@,. Otherwise f is called com-
posite or factorized. A representation of f in the form f = @ o---o¢y is a factor-
ization or decomposition of f and a maximal factorization of f into prime poly-
nomials only is called a prime factorization of f. The length of f, with respect
to a given prime factorization, is defined to be the number of prime polynomials
present in that prime factorization. In 1922, J. F. Ritt [35] proved three fundamen-
tal results on factorizations of complex polynomials.

He first gives a necessary and sufficient condition for a complex polynomial to
be composite and shows that a nonlinear polynomial f in C|z] is composite if and
only if its monodromy group is imprimitive (Ritt I), and that the length of a nonlin-
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ear polynomial f in C|z] is independent of its prime factorizations (Ritt IT). The
third result of Ritt tells us how to pass from one prime factorization to another.
Here we use Autc (C) to denote the set of complex polynomials of degree 1 and
Ty, to denote the Chebyshev polynomial of degree k.

Ritt’s Theorem (Ritt II1). Given two prime factorizations of a nonlinear polyno-
mial € C|z], one can pass from one prime factorization to the other one by re-
peatedly uses of the following operations:

(1) hog = (hot ™ Yo(tog) withh, g & Autc(C) non-constant polynomials and
t an element in Autc(C);

(2) Tp o T; = T, o Ty, with p, q prime numbers;
(3) z"g(z)k ozk = zK 027 g(zK) with r, k in N and g a non-constant polynomial.

After Ritt’s original work, many authors have tried to give different proofs or
generalizations of Ritt’s theorems. H. T. Engstrom [13] and H. Levi [24] proved
(Ritt I) in 1941 and (Ritt IT) in 1942, respectively, in the case of an arbitrary field
of characteristic zero, and in 1974 F. Dorey and G. Whaples [12] reformulated the
work by adopting the valuation theory. U. Zannier [40] settled the case of fields
of positive characteristics in 1993 and P. Miiller gave in [26] a group-theoretic
proof of the Ritt theorems in 1995. A new factorization invariant was discovered
by A.F. Beardon and T. W. Ng [5] in 2000, and recently F. Pakovich [30] obtained
very interesting results on the factorization of Laurent polynomials. There is a lat-
tice structure hidden in the problem and this was extensively studied by M. Muzy-
chuk and F. Pakovich [28]. A very subtle relationship between decompositions and
iterations was revealed in a joint paper by M. Zieve and P. Miiller [27].

On the one hand, all these studies are based on algebraic techniques; on the
other hand, Ritt’s original work is simply topological in nature. We shall adopt
Ritt’s topological point of view and explore the theory by means of topological
fundamental groups. This enable us to put Ritt’s theory into a more general analytic
setting and the main goal of this paper is to develop a version of Ritt’s theory for
the unit disk.

Ritt’s theory is closely related to questions about rational points on curves. This
was first observed by M. Fried [14], who applied Ritt’s theory in arithmetics to
study integral points on curves, for the case of rational points see Avanzi—Zann-
ier [4]. The work of M. Fried was completed by Y. F. Bilu and R. F. Tichy in [6],
and a remarkable application of the theory combined with the Bilu-Tichy Criterion
to arithmetic dynamics can be found in a recent paper by D. Ghioca, T.J. Tucker
and M. E. Zieve in [18]. New applications of Ritt’s theory in function theory are
published in Dinh’s paper [11] on sharing sets and in Pakovich’s work [29].
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In analytic geometry or algebraic geometry a finite map refers to a an analytic
or algebraic map which is proper and quasi-finite. As a special case a holomorphic
map between Riemann surfaces is finite if and only if it is non-constant and proper.
This notion was first introduced by Radd, who proved in [31] that a holomorphic
map [ M — N between Riemann surfaces is finite if and only if there exists an
integer n such that f(z) = c¢ has n solutions for all ¢ € Jt and we refer the reader
to [17, p. 27] for a modern treatment. We shall define the number n given above to
be the degree of f and denote it by deg f. One may deduce readily from [8, p. 99]
thatif h : IR — T and g : T — N are holomorphic maps between Riemann sur-
faces, then g oh is finite if and only if both g and h are finite. This suggests that it is
natural to study factorizations of finite maps. Since non-constant polynomials are
all finite self-maps of the complex plane, Ritt’s original theory fits into this more
general setting.

A finite map is called linearif deg f = 1. If f is a nonlinear finite map from JJi
to N, then we call f prime if there do not exist nonlinear finite maps ¢1 : T — N
and @5 : N — T for which f = @1 o ¢,. Otherwise it is called composite or
factorized. We shall call a factorization of f proper if all its factors are nonlinear
and a maximal proper factorization is called a prime factorization. The length of
f with respect to a prime factorization is defined to be the number of its factors.
Then Ritt’s first two theorems can be reformulated for finite maps.

Theorem 1.1 (Ritt I'). If f is a nonlinear finite map from N to N, then it is com-
posite if and only if its monodromy group is imprimitive.

For our version of (Ritt IT) we need an additional hypothesis which is satisfied
for all finite maps with a totally ramified point, in particular for polynomial maps.

Theorem 1.2 (Ritt IT'). If o : [0, 1] — N is a closed cycle on N over which f is
unramified and if the monodromy of o acts transitively, then the length of [ is in-
dependent of the prime factorizations.

The proofs are only slight technical modifications of the original proofs to deal
with the more general situation. We shall apply these two theorems when the Rie-
mann surfaces N and N are unit disks E and carefully develop a complete version
of Ritt’s theory on E. Since Chebyshev polynomials play an important role in
Ritt’s theory, it is natural to find their counterparts in the unit disk case. We solve
this central problem by introducing in Section 5 a new class of finite Blaschke
products, which we call Chebyshev—Blaschke products f;, ; forn € N and ¢ > 0.

Main Theorem 1.3. Let [ be a finite map from E to E,

EXA B2y 50— 5E
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and
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decompositions of f into a product of prime finite maps. We can pass from the first
decomposition to the second by applying repeatedly the following operations:

(1) hog = (hot Yo (tog) with h, g nonlinear finite endomorphisms of E and
t a linear map from I to another Riemann surface;

(2) (to fpge)o(fgro))=(to fq.pt) 0 ([fpr o)) with p,q prime numbers, t a
positive real number and t, ] elements in Autc (E);

(3) (toz"g(2))o(zF 0 j) = (1o zFK) o (z7g(zF) o }) with r, k rational integers,
g a finite endomorphism of E and t, ] elements in Autc (E).

In Section 2 we introduce some basic results on finite maps and their mono-
dromy groups. We then modify Ritt’s proof of his first two theorems to deal with
the case of finite maps (Theorem 1.1 and Theorem 1.2) in Section 3. In Section 4
we show how to deform a finite map between unit disks to obtain a polynomial.
By making use of monodromy groups we introduce in Section 5 the Chebyshev—-
Blaschke products f, ; and we shall then explain carefully in Section 6 and 7 how
Jn.r can be expressed in terms of elliptic rational functions, which are intensively
used in filter design theory. The reader may skip Section 6 and Section 7 for the
first reading since they do not contribute to the proof of our Main Theorem 1.3 in
Section 8. Finally, we sketch very briefly in Section 9 how our results extends to
the case of polydisks.

The results of this paper, except Section 7 and Section 9, are part of [39], which
was submitted in November 2007.

Throughout this paper E is the standard unit disk, T is the unit circle and H 1s
the upper half plane. We denote by Autc (C), Autc (E) and Autc (P1) the groups
of automorphisms of C, E and P! as complex manifolds. The divisor of critical
points and the set of critical values of a finite map f are denoted by ©¢ and dy.
Finally, F;, denotes a free group of rank r and | K| is the cardinality of a set K.
The set of all homotopy classes of loops with base point g forms the fundamental
group of N at the point ¢ and is denoted by 71 (N, ¢). For path-connected spaces
we can write 1 () instead of 71 (N, ¢) without ambiguity whenever we care
about the isomorphism class only. Following usual notations, we write Ey), 4, for
the elliptic curve C/A 4, ,w,, Where Ay, o, 1s the lattice given by Zw; + Zws.

2 Finite maps and their monodromy groups

Finite maps between Riemann surfaces give a nice category in explaining funda-
mental groups detect morphisms, which is one basic principle of Grothendieck’s
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letter [20]. In this section we shall review finite maps by characterizing them in
terms of functions fields, fundamental groups and topological monodromy action,
but we shall start with discussing several examples.

Any annulus #4 is conformal to the set A(r, ) = {z : r < |z| < t < oo} with
0 <r <t < o0. The modulus of A, denoted by (), is defined to be In(¢/r).

Example 2.1. If /' : A — A’ is a finite map between annuli, then it is unramified
and we have

(A = deg f - ju(A).

Fatou proved in [16] the following (in an earlier paper [15], he proved the ratio-
nality of finite endomorphisms of E by Schwarz reflection principle).

Example 2.2 (Fatou’s theorem). If f is a holomorphic map from E to [E, then it is
finite if and only if it is given by a finite Blaschke product

f@ =61 +—==
i=1 !

withé € T,n € Nanda; € E.

For the details of finite maps between C, E or annuli we refer the reader to
[32, p. 211-217]. In contrast, there are no finite maps between C and E. This is a
consequence of Liouville’s theorem and the following

Lemma 2.3. If f is a finite map from E to N, then N is biholomorphic to E.

Proof. Let M be the universal covering of N. By [8, p. 99] we deduce that the fi-
niteness of f implies the finiteness of the lifting map 7 : E — 9% and of the pro-
jection map 7 : M — N, which leads us to 71 (N) = 1. Firstly, N cannot be the
Riemann’s sphere because there is no proper map from a non-compact space to a
compact space. Now we claim that 9t cannot be the complex plane and therefore it
has to be biholomorphic to the unit disk as claimed. Otherwise we may assume that
f is a finite map from E to C and then a bounded holomorphic function of E de-
scends to a bounded holomorphic function of C by taking the symmetric product.
This will imply that there is a non-constant bounded holomorphic function on C,

which is impossible. m]

From the point of view of birational geometry one can put Ritt’s theory into a
general geometric setting by employing the analytic function field C(Jt) of a Rie-
mann surface N. It is known that 9t is uniquely determined by C () (see e.g. [3])
and from [37] that finite maps f : It — It are in one-to-one correspondence with
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finite fields extensions C(N) C X givenby f +— f¥#: C(N) — CON). Alterna-
tively, we can also characterize finite maps in terms of the fundamental group.

Theorem 2.4 ([37]). Let X be a discrete subset of t and g & X be a point in .
There is a one-to-one correspondence between finite maps | : (M, p) — (N, q)
of degree n with by C X and subgroups H of w1 (N \ X, q) of index n given by

[ H=m@\ 712, p).

We call two proper factorizations

m T T T — N
and
mI e g, s, B

equivalent if r = s and there exist biholomorphic maps ¢; such that the diagram

@1 2 Pr

EIJ} %1 ?’2 e %r—l - m

j id L 1 l 2 l dr—1 L id
Y1 Yo Yy

m 581 582 P SBI‘—I -

commutes.

Corollary 2.5. Let X be a discrete subset of N, p be a point in M, q & X be a point
inNand f: (M, p) — (N, q) be a finite map with d ¢ contained in X. There is a
one-to-one correspondence between proper factorizations of f and proper chains
of groups between T (M \ F~UZ), p) and 11 (M \ T, q).

Let f be a finite map from It to It of degree n and ¢ ¢ Dy be a point in .
If we write f~Y(q) = {p1, p2.,..., pn), then for all @ € m( (N \ D7, q) and for
alli € {1,2,...,n) there is a uniquely determined (p;)* € f!(g) and a path B
from p; to (p;)%, unique up to homotopy, such that fx = «. There is a uniquely
defined p(o) € Sy such that (p;)* = pjow forall 1 <i < n and we call the
group homomorphism p : 71 (N \ dr,q) — S, the monodromy and the image of
p the monodromy group of f. The monodromy group of f is transitive because
I is connected. We shall need the following useful remark which complements
Theorem 2.4:

@M\ fTHOs). p) = e e m(N\ dr.q) : p* = p). (2.1)

Here we write p“ instead of (p)“.
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If f is the Chebyshev polynomial 7}, then
{-1,1} ifn >3,
b = {1} ifn =2,
@ ifn=1.
In any case we can look at the monodromy representation of 1 (C \ {—1,1}),
which is a free group of rank 2 generated by o and = with o and 7 represented by

closed paths around —1 and 1 with counterclockwise orientation. We claim that if
n = 2k, then

p(0) = (2,2k)(3,2k — 1) --- (k, k + 2),
p(t) =2, D)3, 2k)---(k+ 1,k +2),
and if n = 2k + 1, then
plo) = 2,2k +1)(3,2k)---(k + 1,k + 2),
p(r) =2, 13,2k +1)---(k + 1,k +3).

We shall call a group homomorphism p : F> = (0,t) — S, a Chebyshev repre-
sentation 1f it agrees with the one described above. For instance, the monodromy
of T}y is illustrated by the following figure.

s s ? il T
CORT Q08 =T COR — COR — cosf)

—1 1
2 '_{‘4
0@—0—0—0—@0 —_— @ @
1 s 2 s 4~ 3
T 7 T T a7

19=1, 2°=4, 39=3, 1"=2, 4*=3

Figure 1. Chebyshev representation.

Proof of the claim. Since this fact is well known, we only verify it forn = 4. It is
easily checked that under the polynomial map 74 the preimage of the closed inter-
val [—1, 1] is [—1, 1], the preimage of the point —1 is {cos (377/4), cos (r/4)} and
the preimage of the point 1 is {cos 7, cos (7r/2), cos 0}. We mark the 4 copies of
the preimage of open interval (—1, 1) with {1,2, 3,4} as in Figure 1 and then see
that 1 goes to 2 under the action of 7, 2 goes to 1, 3 goes to 4 and 4 goes to 3. This
gives u(t) = (1,2)(3,4) and similarly (o) = (2,4). i

It is known that a finite map can be uniquely recovered from its monodromy by
virtue of the so-called ‘Schere und Kleister’ surgery [37, p. 41] and this leads us
to the following restatement of Theorem 2.4.
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Theorem 2.6 (Riemann’s existence theorem). Let It be a Riemann surface, % be
a discrete subset in W and p : 1 (N \ X) — Sy be a transitive representation.
There exists a unique Riemann surface IR and a finite map f from IN to N with
the monodromy of f given by p.

The uniqueness part of the above theorem implies that if finite maps f : It — N
and g : T — It have the same monodromy, then there exists a biholomorphic map
¢ : M — T making the diagram

¢
S

id

m— T
Kt
n . ¢,

commutative.

Remark 2.7. As a permutation group, the monodromy group of a given finite map
S (M, p) — (N, q) is isomorphic to the image of the action of w1 (N \ dr,q)
on the coset space 71 (N \ f_l(bf), PINTL(NN\ Dr,q) (cf. [37, p. 41]). It is also
isomorphic to the image of the action of the group Gal(K/C(N)) on the coset
space Gal(K/C(IM)\Gal(K/C(N)) (cf. [38, Theorem 5.14]), where K is any
Galois extension of C(9t) which contains C ().

We call a Riemann surface M finite if 71 (IN) is finitely generated. By Ahlfors’
finiteness theorem [1], this is equivalent to saying that 9t is homeomorphic to a
compact Riemann surface with finitely many disks and points deleted. We shall
make use of the following version of Riemann—Hurwitz’ formula.

Lemma 2.8. Let It be a finite Riemann surface. If there exists a finite map | from
another Riemann surface N to N such that deg Dy < oo, then I is also finite and

deg Oy =deg f - xn — xam: (2.2)
where ygn and x5 are the Euler characteristic of Y1t and N respectively.

We shall prove Lemma 2.8 by Schreier’s index formula applied to fundamen-
tal groups and give an example in explaining “fundamental groups detects mor-
phisms”.

Theorem 2.9 (Schreier’s index formula). If G is a subgroup of F, with index i,
then G is a free group with rank

rg =i(r—1)+1.
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Proof of Lemma 2.8. Let & C It be a nonempty set with by C X and |X| = n.
We shall calculate 771 (I} \ £~ 1(Z)) in two different ways. By elementary topol-
ogy, 11 (N \ ) = Fu41—yy and by Theorem 2.4 we have

deg f = [miN\Z): m (M fTHD))].

Schreier’s index formula implies that

TN\ fHE)) = Fuaeg fr—yo)+1- (2.3)

The map iy : Ty (M \ F~H(T)) — 71 (IMN) obtained from the inclusion map i is
surjective, and so i is also finite. Elementary topology again gives

ﬂl(gﬁ\f_l(z)) = Fndegf—dengf—I—l—xgm- (2.4)

Using the main theorem of finitely generated abelian groups, we see that Fy, ~ Fy,
implies that n = m. A comparison of (2.3) and (2.4) leads us to

deg f(n — yp)+1=ndeg f —degOr + 1 — yam,
and hence deg Oy =deg f - yqn — 1m- m]

3 Ritt’s first two theorems

In this section we give a proof of Theorem 1.1 and of Theorem 1.2. Even though
our proof carries no essentially new ingredients compared with Ritt’s original
work [35], we present it with the aim to clarify that Ritt’s original ideas extend
to the more general category. Moreover, a number of consequences which results
from the proofs are needed to prove our Main Theorem 1.3. Notice that a topolog-
ical version of Theorem 1.1 was already discussed in [23, p. 65].

Proof of Theorem 1.1. Choose g ¢ by in Jt and p € M with f(p) = g; then
we deduce from Corollary 2.5 that £ is prime if and only if 71 (I \ f~1(d 7). D)
is a maximal subgroup of w1 (M \ dr,q) and this is equivalent to 1 (It \ D)
acting primitively on 71 (MM \ 71D ))\7w1 (N \ ds) (see for instance [9]) and
now Remark 2.7 gives the desired result. i

We shall recall some basic lattice theory and we shall follow the notation x < y,
x < y,xVyandxAy asdescribedin [7]. A lattice & is said to satisfy the Jordan—
Dedekind chain condition if the length of maximal proper chains depends only on
the endpoints. We say that & is of locally finite if every interval of £ is of finite
length. We call & modular if

x<z=>xV(yAz)=(xVvy) Az forall ye&.

The following modular lattices play an important role in Ritt’s theory.
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Example 3.1. Let &, = { e N : ¢ |n}sothati < j if and only if i | j. Then
(£4; <) is a lattice and x vV y = lem(x, y), x A y = ged(x, y). This lattice of
devisors of n is modular and any sublattice §§ of (£,; <) is also modular.

If a locally finite lattice £ is modular, then it satisfies the Jordan—Dedekind
chain condition. Furthermore, there is a dimension function d : & — 7. such that
x < yifandonlyif x < y and d(y) = d(x) + 1 for all x, y € £. In addition, we
have d(x)+d(y) = d(xVvy)+d(xAy). Ritt [35] proved an important property for
sublattices of (£,; <). The following proposition extends Ritt’s result to general
modular lattices.

Proposition 3.2. Let & be a locally finite modular lattice, a,b € & witha < b and
€, €’ be maximal proper chains of & with the same endpoints a and b. There exist
m > 0 and a sequence of maximal proper chains €;, 0 < i < m, with endpoints a
and b such that €y = €, €, = €’ and €; and €; 1 differ in only one element.

Proof. We write € and €’ as

C:a=Xx9<X] <X» <X3<++=<Xx, =00,

Cia=y9< Vi <y2<y3<-<y,=h,

choose a dimension function d and prove the claim by induction. If » = 2, nothing
requires a proof. Assuming that the claim holds forall 2 < n < k — 1, we will
prove it forn = k.

If x; = y1, we apply the induction assumption to B : x; < X2 < X3 < -++ <
xx =band B’ : y1 < y» < y3 < -+ < yx = b and this proves the proposition
inthecasen <korn =k, x; = y1.

It remains to treat the case that n = k, y; # x1. We first show that y; £ x1.
If not, then y; < x1 and this leads us to d(a) < d(y1) < d(x1), a contradiction
to d(x1) = d(a) 4+ 1. Since y; < xx = b, there exists 1 <i < k — 1 such that
V1 £ Xi, 1 < xjq1. Ifi =1, we put € = € and define €; : x9 < y1 < x2 <
X3 < +++ < xg. To go from €; to €/, we note that here the case where n = k and
x1 = y1 applies and we are done.

Now we assume that the proposition holds when 1 <i <[ — 1 and we prove it
fori = [. Since

d(y1 vV xp—1) = d(y1) + d(x;—1) —d(y1 A xp-1)
= d(y1) + d(x1-1) — d(xo)
= d(xl_l) +1

and since y; < xy41 implies x;—; < y1 V x;—1 < X741, we conclude that
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Xj—1 < Y1 V Xj—1 < X741. This shows that we can choose €9 = € and €1 =
Xo < X] <Xp e =<Xj_1 <V VX_1=<X41 << Xxg. To go from €; to €,
we see that the case i = [ — 1 applies and we are done. m|

As an illustration we give the following

Example 3.3. Let § be a sublattice of £, and €, €’ be maximal proper chains of
& with endpoints 1 and n. There exist m € N and a sequence of maximal proper
chains €;, 0 < i < m, with endpoints 1 and n such that €y = €, €,,, = €’ and any
two consecutive ones €; and €; 4 differ only in one element. This means that we
can write €; as -+ < @; < @j+1 < @j42 < - and €jpras--- < a; < a; ;<
ajy2 < --- respectively. Both chains are proper and a; 1 # a; 415 as a conse-
quence we have

7
ng(ai+1 ai—i—l) _ gcd(aiﬂ ai+2) _1
ai = a; Ait1 djiq

or equivalently

/
ai+1 ai+2 ai+2 a; ai+1 aji42
i+ _ i+ i+2 z+1’ gcd( i+ i+ ): 1. 3.1)

a; ai 1 @it a; ai ajy1
For the proof of Theorem 1.2 we also need

Dedekind’s modular law ([36]). Let G be a group and let H < K < G and
L < G be subgroups. Then we have (LHY N K = (L N K)H.

Proof of Theorem 1.2. We write n = deg f, a(0) = g and choose f~1(q) =
{p = p1,p2,..., pn}. According to Corollary 2.5, it suffices to prove that the
lattice & consisting of all intermediate groups between G = 71 (I \ dr,q) and
H = 71N\ f_l(bf),p) is modular. For K € & we write K, = K N {(a).
Trivially, G, = (o). Moreover, by the transitivity of the action of & on f~1(g)
we have

Hy=Hn(a) = {fela):p=p=pf=p=py)

The fact that H N (&) = (a”) immediately leads us to o’ H # «/ H for all
0 <i < j <n— 1. This together with [G : H] = n yields G = | JI—§ o' H and
in particular G = {(a) H. Since £, is isomorphic to the lattice consisting of inter-
mediate groups between {(«) and {(a"), we shall treat them equally and our above
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discussion defines amap g : & — &, by g(K) = K. By Dedekind’s modular
law and by G = {(«) H, we have

KeH=({)NK)H=(a)HNK=GNK =K. (3.2)

This implies immediately that g is injective. Since K is a group, we deduce from
(3.2) that Ky H 1s also a group and this leads us to

KoH = HK,. (3.3)

To prove that g is a lattice morphism, it suffice to verify that Ko, "M, = (KNM),
and (K, M), = (Ky, M) forall K, M € £. The former is trivial since

Ky NMy=KnNn{@NMna)=(KNM)N )= (KN M),
(3.3)

By (K,M) = (KqH, MyH) =" HKyM, and Ky M, = MyK,, the latter fol-
lows from

(K,M), = (K, M) N () = HKe My N (o) = (H N {)) Ke My = Ko Mo,

where the second last equality relies on Dedekind’s modular law. We have proved
that g is an injective lattice morphism and this gives that £ ~ g(%) and the latter
is a sublattice of £,. We conclude from Example 3.1 that £ is modular. m]

A much shorter proof exists, but our proof gives more information. In particular,
it implies that £ is a sublattice of £,. According to equation (3.1), we can pass
from one maximal factorization of f to another with each step given by a solution
(¢i. pi+1. 9}, $/, 1) to the two finite maps equation

giogit1 =@/ opiyy, degd; =degd .
ged(deg i, deg ¢iy1) = 1.

This functional equation in polynomials is a major difficulty solved in [35] and we
shall solve this functional equation in finite Blaschke products.

(3.4)

4 Deformation

We shall make use of the fact that finite endomorphisms of [ can be deformed to
finite endomorphisms of C. This follows from Riemann’s covering principle, for
which we refer to [2, p. 119-120]. A Riemann surface is a pair (8, ®) with T a
connected Hausdorff space and ® a complex structure, see [2, p. 144]. However,
we shall simply write E and C when ® is canonical.
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Theorem 4.1 (Riemann’s covering principle). If f : B — W, is a covering sur-
face and if ‘B3, admits a complex structure ®,, then there exists a uniqgue com-
plex structure ®1 on B8y which makes [ a holomorphic map from (B, ®1) to
(W2, @2).

Let f be a finite map from E to E and let iy be a homeomorphism from E
to C. The canonical complex structure on C induces a new complex structure ®g
on [E and we obtain a new Riemann surface (E, ®g). By Theorem 4.1 applied to
f i E — (E, @), there exists a Riemann surface (E, @) such that f is a holo-
morphic map from (E, ®;) to (E, ®¢). Consequently, there exists a holomorphic
map (i1, ig)« f : (E, ®1) — C such that (i1,ig)« f ©oi1 = ip o [, where iy is the
topological identity map iy : E — (E, ®;). We shall call i a lifting of ip by f
and (i1, ip)« f adescent of f by the pair (i1, ip). In summary, we have

s
E E
(i1vio)w f
(B, ®;) ——", C.

The uniqueness part of Theorem 4.1 shows that if i, i] are two liftings of i,
then there exists a holomorphic isomorphism o between (E, ®1) and (E, ®}) such
that o o iy = i{. The classical uniformization theorem for simply connected Rie-
mann surfaces together with Lemma 2.3 shows that (E, ®1) and (E, ) must be
biholomorphic to C. To sum up, we may state the following

Corollary 4.2. Let [ be a finite map from E to E, iy be a homeomorphism from
E to C and iy, i : E — C be liftings of i by f. There exists o in Autc (C) such
l‘hal‘l'{ =0 oiyand (l'{,l'())*f oo = (i1,i0)«f.

This can be illustrated by the following diagram

S
E E
i
ji] jio
C o=az+b C (i1,i0)+ f C,

where (i1,i9)« f is a finite endomorphism of C and therefore is a polynomial. Our
construction of liftings is functorial.

Proposition 4.3. Let f1, f> be finite endomorphisms of E, iy be a homeomorphism
fromE to C and f = f1o f>. Ifi1 and iy are lifting of ig by f1 and of i1 by f>
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respectively, then i is a lifting of io by [ and (iz,i0)« [ = (i1,i0)x f10(i2,i1)x f2
is a composition of polynomials:

2 S
E E E

le 1 10
(i2,i1) f2 (i1,i0)x f1
C C C.

Proof. By definition, the maps igo f1o0i Landijo fro Iy 1 are both holomorphic
and by Theorem 4.1 it suffices to show ig o f 0i; ! is holomorphic. This follows
fromioofoiz_l:(ioofloil_l)o(ilofzoiz_l). i

In general, compared with finite Blaschke products, polynomials are easier to
deal with since much more algebraic techniques (such as the place at infinity) are
available.

5 Chebyshev-Blaschke products

In this section we shall construct Chebyshev—Blaschke products using the geo-
metric monodromy action. If @, b is a pair of distinct elements in [E, then the
group 71 (E \ {a,b}) can be generated by two elements ¢ and t with o and t
represented by closed paths around a and b with counterclockwise orientation.

Lemma 5.1. For n € N there exists a finite endomorphism f, , 5, of E such that
(1) deg fn,ap = nand

{a,by ifn>2,
bfn,a,b = {Cl} lf n = 29
0 ifn=1.

(2) The monodromy representation p : (0,7) — Sy is a Chebyshev representa-
tion.

Moreover, the map fy, , p is unique up to composition on the right with an element
in Autc (E).

Proof. Theorem 2.6 gives a finite map f : I — [E which satisfies the mono-
dromy condition. By Lemma 2.8, a direct calculation leads us to y(J) = 1 and
it follows from elementary topology that Mt is either C or E. Liouville’s theorem
rules out the possibility of C, and the uniqueness part of Theorem 2.6 completes
the proof. m]
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We will call those f, ,» Chebyshev—Blaschke products. In order to describe
normalized forms of f, , 5, we denote by y(¢) for any positive real number ¢
the unique number in (0, 1) such that w(E \ [—y(¢), y(¢)]) = t. Given ¢t > 0 and
n € N,wetakea = —y(nt) and b = y(nt).

Proposition 5.2. For all positive real number t and positive integer n there is a
finite endomorphism f of T with deg f = n which satisfies

(1) by ={a, b} (ifn > 2)or{a} (ifn =2)or@ (if n = 1).
Q) fTH=y(0).ym)]) = [~y @), y(O)] and f(y(2)) = y(n1).

(3) The monodromy representation p : (0,7) — Sy is a Chebyshev representa-
tion.

Before the proof we recall some geometry and topology. The isometry group
Isom(E, ds) of E with respect to the Poincaré metric ds is given by the semidirect
product Autc (E) x (i), where i is complex conjugation. We write Isom™ (E, ds)
for the set of holomorphic automorphisms and Isom™ (E, ds) for the antiholomor-
phic ones. The fixed point set Fix(¢) of an element ¢ in [som([E, ds) is either empty,
a point, a geodesic line or E. Let f be a finite map from It to 91, ¢ be a homeo-
morphism from Jt to N, ¢ & by be a point in N and p1, p> be points in I with
f(pi) = q. Elementary topology shows that the map ¢ lifts to a homeomorphism
t: (O, p1) = (M, p») making the diagram

M —— I

"

t

N—N

commutative if and only if # restricts to a bijection on by and if (£ o f )« (w1 (N \

F7H0p), p1)) = fulmi (N 710y, p2)).

Proof of Proposition 5.2. Lemma 5.1 gives a finite map f : E — E which satis-
fies (1) and (3). Moreover, if we can prove that £~ ([—=y(nt), y(nt)]) is a geodesic
segment, then statement (2) is immediately fulfilled by composing f with an ele-
ment in Autc (E). We only verify this fact for n = 2k since similar considerations
apply ton = 2k + 1.

By condition, f is an unramified map from E\ f~!([—y(nt), y(nt)]) to an an-
nulus E \ [-y(nt), y(nt)]. This implies that E \ f~1([—y(nt), y(nt)]) is an an-
nulus and therefore f~1([—y(nt), y(nt)]) is connected.

Choose g € (—y(nt), y(nt)) and write f~1(q) = {p1, p2, ..., pax} with the
numbering i chosen such that p¥ = p;e@ for1 <i <2k,a € m1(E \ {a,b},q).
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We show now that there is a commutative diagram

(E, p1) — (E, p1)

b

(E.q) — (E.q)

with an isometry ¢ in Isom(E) such that f~!([—y(nt), y(nt)]) C Fix(:). As a con-
sequence, f ' ([—y(nt), y(nt)]) will be a geodesic segment. By the remark above,
it suffices to show that the isometry i restricts to a bijection on {a, b} and that
(i o Nx(m(EN f~Ha, b}, p1)) = fu(m(E\ f~{a.b}, p1)). The involution
i :E\{a,b} —» E\{a,b}inducesamapix : m1 (E\{a, b},q) — n1(E\{a, b}, q).
The base point ¢ of ¢ and 7 is in the interval (—y(nt), y(nt)) and therefore our
involution i on o and 7 simply changes the orientation, and this means that

ix(0) =01, iy(t)=1L

By condition that p is a Chebyshev representation, we have that both p(o) and p(7)
are of order two and therefore p(i(0)) = p(0) as well as p(ix(t)) = p(r). This
gives poiyx = pon {0,7) = 71 (E \ {a, b}, g) which displays as

plis(a)) = p(a) forall o € n(E \ {a,b},q). (5.1)

We use (2.1) to deduce that

L (fe(m(E N £ Ha, b}, p1)) = ix({e i a € m(E\ {a,b},q), 1°® = 1})

and observe that B to be in the group on the right is equivalent to i, !(8) to be
in the group {o : @ € 71 (E \ {a, b}, q), 17® = 1}. Therefore the right hand side
equals {o : o € m (E \ {a, b}, q), 1pG @) — 1}. Using (5.1), we find that this
1s the same as

oo em(E\{a,b}q), 1”® =1} = fi(m(E\ f'{a,b}), p1)).

This shows that the involution i lifts to a homeomorphism ¢ : (E, p1) — (E, p1)
and from the diagram we deduce with elementary topology that

((p?) = p* @ forall @ € 7y (E\ {a.b}.q) = (0.7).

In particular, ¢(p]) = pi*(t) and therefore ((ps) = p». Similar arguments show
that ((p;) = p; forall 1 < j < 2k and we get f~!(g) C Fix(:). We differentiate

the equation f(¢(z)) = f(z), which follows from the diagram. This implies that
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dt/dz = 0, which means that ¢ is an antiholomorphic homeomorphism of the unit
disk. As a consequence, ¢ € [som™ (E, ds) is an isometry and therefore it suffices
to prove that £~ ([—=y(nt), y(nt)]) C Fix(1). The paths o and t, the preimage p;
and the lift ¢ vary continuously if g varies continuously in (—y(nt), y(nt)). In ad-
dition, for given f andi the equationio f = f o has only finitely many solutions ¢
inIsom™ (E, ds). Indeed, choose a fixed point x € E; then any solution ¢ takes val-
ues at x in a finite set £~ !(i(f(x))) and since ¢ is an antiholomorphic automor-
phism, it 1s uniquely determined by the image at two distinct points. This shows
that there are only finitely many possibilities. We conclude that ¢ is locally con-
stant and therefore independent of g. This shows f~!([—y(nt), y(nt)]) C Fix(1)
as claimed. i

Proposition 5.3. For all positive real number t and positive integer n there ex-
ists a unique finite endomorphism f, ; of the unit disk E with the property that

FH =y @), y(o)]) = [=y @), y(O)] and f(y(1)) = y(n1).

Proof. The existence of f, ; comes from Proposition 5.2 and therefore it suffices
to prove that any two such maps fj and f> coincide. As a first step we show that
by C{=yn1),y(nt)} for fin{f1, f2}.

The map f restricts to finite maps from the annulus E \ £~ ([—y(n?), y(nt)]),
whichis E \ [—y(¢), y(2)], to the annulus E \ [—y(nt), y(nt)]. In Example 2.1 we
have seen that such a map is unramified, which shows that b C [~y (nt), y(nt)].
Moreover, the moduli of these annuli differ by a factor n and this shows that
deg f =n.

Taking ¢ € (—y(nt),y(nt)) and a point p in f~1(q) C (—=y (1), y(1)), we
deduce that the preimage of an open neighborhood of ¢ in (—y(nt),y(nt)) is
an open neighborhood of p in (—y(¢), y(¢)). Consequently, the preimage of two
trajectories in (—y(nt), y(nt)) at g consists of two trajectories in (—y(¢), y(¢)) at
p and this implies that f is unramified at p. This gives that f is unramified over
any point g in (—y(nt), y(nt)) showing that by C {—y(nt),y(nt)} as stated.

To continue with the proof, we distinguish between two cases.

Case n = 2k. Because f is an unramified cover of (—y(nt), y(nt)), the preim-
age of (—y(nt),y(nt)) under f is a disjoint union of n real 1-dimensional con-
nected curves in [—y(¢), y(¢)]. As such they have to be open intervals of the form
(ai,bi) or (bj,ajq1) fori = 1,...,kwithay < by <az < by < --- < b <
ag+1, f(ai) = y(nt), f(b;) = —y(nt) and {aa, ...,ar} U {by,..., by} arc the
critical points. This leads us to a picture similar to Figure 1, and an argument simi-
lar to that given in the proof of the statement there shows that the monodromy rep-
resentation p : (0, ) — S, is a Chebyshev representation. The uniqueness part of
Theorem 2.6 leads us to the existence of ¢ € Autc (E) with fi = f> o«. Taking
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inverse images and using that fl-_l([—y(nt), y(nt)]) = [y (@), y(¢)] leads us to
=y @), y(@)]) = [—y (@), y(t)], whence we conclude that ((£y(¢)) = £y(t) or
t(xy()) = Fy(¢). In the former case, ¢ = id and therefore f1 = fr oid = f>.
In the latter case, ¢ = —id and therefore f; = f> o (—id), and finally to conclude
f1 = fa, it suffices to prove f2(z) = fa(—z2).

Choose g € (—y(nt), y(nt)) and write fz_l(q) = {p1, p2,..., par} with the
numbering i chosen such that p;?‘ = pio@ forall 1 <i <2k andalla € (0, 7).

Similar to the proof of Proposition 5.2, the map id : (E, g) — (E, g) lifts to a map
t: (E, p1) = (E, pr41) different from the identity in Autc (E) such that f, o1 =
ido f5 and again ¢([—y(¢), y(¢)]) = [—y(?), y(¢)]. This together with the property
that ¢ # id implies that ¢(z) = —z and therefore f>(z) = f2(—z) as desired.
Case n = 2k + 1. The preimage of the open interval (—y(nt), y(nt)) is a dis-
joint union of n = 2k + 1 open intervals of the form (a;,b;) or (b;,a;41) for
i=1,....k+1lorj=1,...,k with
k+1 k
flai) =ymo), fb)=—-y@r) and Dy =) (@) + ) ().
i=2 i=1
Similar considerations to that as above proceed up to the existence of ¢ in Autc ()
such that f; = f> ot and ((xy(¢t)) = £y(¢). The latter identity implies ¢ = id
and therefore f; = f> as desired. i

If n > 3 andif f, , 5 is the Chebyshev—Blaschke product constructed in Lem-
ma 5.1, then there exist uniquely an element € in Autc () and a positive real
number ¢ such that e(a) = —y(nt) and €(b) = y(nt) and now € o f, , has the
same monodromy as the function f, ; constructed in Proposition 5.3. Therefore
there exists £ € Autc(E) such thate o f,, , , o0& = fu ;. The maps f; , obtained
in this way are called normalized Chebyshev—Blaschke products. We sum up with
the following corollary

Corollary 54.If f is a finite map from K to E with degree at least three and
if its monodromy representation is a Chebyshev representation, then there exist a
positive number t and €, & in Autc (E) such that

fn,a,b =€c fn,t c¢e
and this factorization is unique.

Chebyshev-Blaschke products have the following special nesting property.

Theorem 5.5. For any positive real number t and positive integers m and n we
have

fmn,t = fm,nt o fn,t-
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Proof. Direct calculation leads us to

(St © fa, )~ (=y(mnt), y(mno)]) = £} (e (=y(mnt), y(mar)]))
= four [=y@0), y(n0)])
= [—y(®), y ()]
and from Proposition 5.3 we deduce that finr = finne © fui- m|

The topological nature of f, ; may be illustrated by Riemann’s ‘Schere und
Kleister’ surgery applied to copies of the unit disk. If we take f¢,; as an example,
then we shall obtain Figure 2.

8 T 9 10
+ + + +
@ +
I

Figure 2. The topology of f¢ ;.

Figure 3 illustrates the factorization fs; = f3,2: © f2,; and Figure 4 illustrates
the factorization f6; = f2.3: © f3,.

A DN IATAT)

G @ G5
%J

J2::7—>6,8—>59—->410—3,11—->2,12 - 1.

Figure 3. The first factorization of fe ;.
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13 5 2 7 9 6 11 F)ﬁ
(y\/] N 2 N
}fil,t

SN

1 3 T 2
|
a b

f3::5>4,6—->37—-28—->19->1,10—-2,11>3,12 -4

Figure 4. The second factorization of f ;.

6 Jacobian elliptic functions

The reader who is only interested in Ritt’s theory on the unit disk may read Sec-
tion 8 first and return to this section and Section 7 later if he wants to know more
about Chebyshev—Blaschke products, especially their relationship with elliptic ra-
tional functions in filter design theory.

We give in this section a brief account of the theory of Jacobian elliptic func-
tions. For more details we refer to [10]. For all T € H we write ¢ = ™% with the
branch of ql/ 4 chosen such that ql/ 4 = ¢77™/% gt = i and recall, following the
notation of Tannery—Molk, the four theta functions

o0
(v, 1) = Z i2”_1q(”+%)2e(2”+1)vi,

n—=——00

o0
P, 1) = Z q(’H‘%)Ze(Zn-l—l)vi’

n—=——00

00
193(1)’_[): Z aneznvi’

n—=——00

and
o0

o(v. 1) = Y (—1)'q" e

n—=——00
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as well as the following special functions:
w1 = w1(t) = 7930, 1) = n(1 +2q +2¢* +--)?,
w2 = w2(7) = w1(7) - T,
k = k(1) = 93(0,7)/93(0, 1),
Vie = V() = 92(0,7)/93(0, 7),
k' =k'(t) = 95(0.)/93(0, ),
Vi = VI (x) = 96(0,7)/93(0,7),
A= A1) = k*(x) = 950, 7)/95(0, 7).

If r € H is purely imaginary, then ~/k and w; are both positive real numbers.
We shall write simply #; (v) instead of 9 (v, T) when no ambiguity arises and
similar remark applies to many other functions. Following Jacobi [21, p. 512] his
elliptic functions can be defined by

1 (u/wr) Vi 92u/on) N D3(u/wi1)
sny = . , cnu = . , dnu =Vk/ - ————=.
Vi Bou/wi) vk Pou/wr) Vo(u/w1)
The elliptic function sn takes 2w and w; as a pair of primitive periods and satisfies
sn(xwy/2) = £1 (6.1)
as well as
sn(wy —u) = snu. (6.2)

Moreover, the critical points are

w1 3w w1 +wy 3w+ wr
Ssn — {_ ) ) s ) } + A2(x)1,(x)2-

2
In [21, p. 145], Jacobi expressed his functions as infinite products

k4 k4

00
190(11) —c 1_[ (1 _ q2n—1e2niv)(1 _ q2n—le—2niv)’ (6.3)
n=1
00
$1(v) =cqg'/*2sinnv 1_[ (1 = g% ™) (1 — g?Me 271V, (6.4)
n=1

1 g4 2sin Z [T (1 - g¥e? ™ aT) (1 — g2ne o)

VE T2 (1= g2 Rn 1 - g te T

sn(u) = . (6.5)
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where ¢ = ]_[Zozl (1 — g®™). Glaisher introduced nine other elliptic functions in
[19, p. 86], among which cdu := cnu/dnu is of particular importance in the se-
quel. By the addition formula of sn, we have

cdu = sn(u + w1/2). (6.6)
Since both cn and dn are even, we have
cdu = cd(—u). (6.7)

The elliptic function cd also takes 2w and w; as a pair of primitive periods. It
follows immediately from (6.7) that for T € H the function cd is a special analytic
representation of the Kummer map, namely

cd: Eswp.n — Erwp.,/ (—1) — PL.
Later we shall make use of the nice relation

vty = Jx (‘ﬁ) 6.9)

T

between y introduced in Section 5 and the elliptic modulus k.

7 Elliptic rational functions

The concept of elliptic rational function is rarely found in the mathematical litera-
ture, but it is of central importance for advanced filter design. A nice treatment of
elliptic rational functions in engineering can be found in [25, Chapter 12]. Here we
shall consider more generally elliptic rational functions in a universal family 75 .
parameterized by v € H to be constructed below. This will be more satisfactory
in mathematics. In this section we shall work out that normalized Chebyshev—
Blaschke products f;, ; agree with the set {7, : T € R4i}.
For r € H and n € N there is a natural isogeny

(7] : Esp (0).02(r) = E20)(1),0a(nr)  giVen by [n](z) = nzwi(nt)/w1(7)

which descends through the Kummer map to a rational function 7, ;. and one ob-
tains the commutative diagram

(7]
E2w1(t),w2(r) - E20)1(7IT),0)2(”T)
l cd l cd
p! e Pl
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The map given by the function cd is an analytic representation of the Kummer
map. Obviously,

z1 = £z, mod A2w1(t),w2(t) implies that nzy = £nz, mod A2w1(nr),w2(nr)

and this shows that the map [n] is invariant under the action given by the involution.
By the theory of descent, it induces therefore a rational map 7, as stated.

We call a rational function f € C(z) elliptic if there exist a positive integer 7,
7in H and €, ¢ in Autc (P!) such that € o f o & = 75, ;. The nesting property

rad rad g rad
Jmpur ©JIn,e = Jnmr © Im,z

easily follows from the construction and is very important for elliptic filter theory.

If £ is a finite Blaschke product, then | f(z)| = 1 forall z € T! and this follows
from |z —a| = |1 —az| for all z € T!. By similar but more involved arguments,
we use Jacobi products and prove

Proposition 7.1. If t is a purely imaginary point of the upper half plane H and if

there exists m € 7 such that ’%Tv = ZLF, then

Do (V)| = |1 (v)].

Proof. The elliptic function g(l)—g; has primitive periods 2 and t and therefore it

suffices to prove the claim under the assumption ’STU = % or ’STU = %. We shall
only verify this in the case ’?ST” = % since similar arguments apply in the remaining
case. By (6.3) and (6.4) and by the trivial fact that v = v 4 /4, we have

o'o)
190(1)) = 1_[(1 _ e(2n—%)m’r e2m’§Rv)(1 _ e(2n—%)m’r e—2m’§Rv)
n=1
and

Tit

h@)=ce 4

o0
2 sin(7rv) 1_[ (1 — e@ntDmit 2mivyq _ ,@n—3)mic ,~2mwidiv)
=1

and we have to show that both terms have the same absolute value. Our assumption

. . Lygi
—it > 0 gives e@"+2)7IT ¢ R and leads us to

1 . . 1 . .
1 — e(2n—§)mt e2m§Rv -1 e(2n—§)mr e—2m§Rv

k4

. . 1 R R
1 — e(2n—|—%)mr e2mifv — 1 — e(2n—|—§)mt e 2mify

We use these two identities to compare the infinite products above and see that for
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the proof of the proposition it will be sufficient to verify that

Tit

4 sin(mv)|.

Tit

|1 —e 2

e—27‘ri§ﬁv| — |2€

This follows from

TiT

|1 —e 2

e~2mi%Y| _ | P 2miy|
— |1 — 27V
= |1 — cos(2mv) — sin(2w v)i |
=12 sinz(m)) — 2sin(v) cos(mv)i |
= |2sin(zv) e V3|

— |2sin(mv) e Y|

Tit

= |2¢ 4 sin(mv)|

and completes the proof. i

Corollary 7.2. Let T be a purely imaginary point of the upper half plane H and m

. . 4m+1 v 4m+3
be a rational integer. If —7— < == < ==, then

[Do(v)| < [D1(v)],
andif% < ’%Tv < 4’”#44'1, then
[P0 (V)] > |1 (V).
Proof. The elliptic function ¢(v) = g(l)—g; is of order 2 and takes 2, t as a pair

of primitive periods. We take the parallelogram with vertex 0,2,2 4 7,7 as a
fundamental domain. By Proposition 7.1 each of the images of

i3z _4m—|—3

T

{ RY4 4m + 1
7 =
T

,meZ} and {z: ,meZ}

under ¢ covers T'. Together with the fact that deg ¢ = 2, this leads us to

i?sz_Zm—i—l

(p_l(T):{Z: ,mEZ}.

If our second claim is not true, then there exists w such that —% < ii Y o< % and
[Fo(w)| < |1 (w)|. Moreover, by ¢(0) = 0 we have |#9(0)] = 0 = [#1(0) and
by the continuity of |¢(v)]| there exists z such that —% <E< % and |p(2)| = 1.
This contradicts our previous conclusion on ¢! (T) and proves our second claim.
The first assertion 1s obtained in a similar way. i
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Corollary 7.3. If T is a purely imaginary point in the upper half plane H, then

1 1 iSw  2m+41
sn” e zizl=—=p =qw: = ,meZ;,
vk w2 4

_1 1 dm—-1 iSw 4dm+1
sn ziz| < —=; = qw: < < .meZl;,
\/E 4 wo 4

1 1 dm+1 iSw  4m—+3
sn” 3z |z > —= =qw: < < ,meZ
\/E 4 w2 4

and the same holds with sn replaced by cd.

Proposition 7.4. If T is a purely imaginary point in the upper half plane H, then
sn_l[—l, 1] ={w:i3w =mw,, m € 7}
and the same holds with sn replaced by cd.

Proof. First of all we recall that as remarked in Section 6 the assumption —it > 0
implies that g, Vk and w, are all positive real numbers. If w is a real number, then
the quotient v = w/w; and

9/4 25/4

1 2¢Y*sinmv —2¢%%sin3mv + 2¢%%/* sin 57v — - - -

Vk 1—=2qcos2mv + 2g*cosdmv —2¢g° cosbmrv + -+

Snw =

are also real. The elliptic function sn takes 2w, w, as a pair of primitive periods
and the vertices 0, 2wy, 2w + w2, w> define a fundamental domain. Furthermore,

we have seen in Section 6 that sn2L = 1 and sn32L = —1 and that the critical
: 2 23 Yoy 301+
points of sn within the fundamental domain are {3, =51, #1322, =21t22} These

facts imply that the image of [0, 2w;] under sn covers [—1, 1] twice and we con-
clude that the preimage of [—1, 1] in the fundamental domain by the twofold cov-
ering sn is [0, 2w1], which leads to the desired statement. m]

Corollary 7.3 and 7.4 applied to the function f(z) = Vk(nt)T (z// k(7))
gives

Proposition 7.5. If T € H is purely imaginary, then [ is a finite Blaschke product
with f(Vk(z)) = Vk(nt) and f([—+/k(nt), Vk(no)]) = [-Vk(), Vk()].

This together with Proposition 5.3 and (6.8) leads us to

Corollary 7.6. The Blaschke products fy ;(z) are elliptic with respect to the point
T = 4ti/7; in other words, we have

Ini(2) = Vk@nti[m) Ty arij 2/ V k(411 /7).
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8 Factorizations of finite Blaschke products

In this section we give a detailed study of the factorization properties of finite
endomorphisms of the unit disk. If f & Autc (E) is a finite endomorphism of the
unit disk, then the following two Propositions follow directly from Theorem 1.1
and Theorem 1.2.

Proposition 8.1. The finite map [ is composite if and only if its monodromy group
is imprimitive.

In the introduction we introduced the length of f with respect to a prime fac-
torization as the number of its factors. As a corollary of Theorem 1.2 we have

Proposition 8.2. The length of [ is independent of prime factorizations.

Proof. We choose a path « sufficiently close to T and apply Theorem 1.2 to get
the assertion. O

Lemma 8.3. If f and g are finite Blaschke products and if z" o g = [ o z", then
f takes the form f(z) = z™h(z)", where m = ordg [ and h is a finite Blaschke
product.

Proof. It suffices to prove that for any nonzero p in E we have ord, f = 0 mod n.
We denote by p'/™ any nth root of p, and using the functional equation we obtain

ord, [ = ord,i/a(f 02") = ord,1/m(z" 0g) =0 mod n
as desired. ]

Proof of Main Theorem 1.3. By Proposition 8.2, the length of f is independent of
a given prime factorization. Moreover, if

EXA B2y 50— 5E

is a decomposition of f into a product of finite maps, then in particular for any
1 <i<r—1themap ¢; op;_10---0¢; from E to T; is finite. This together
with Lemma 2.3 implies that T; is biholomorphically equivalent to the unit disk.
After taking finitely many operations of the first kind as described in the theorem,
our problem amounts to describe how one passes from one prime factorization

EXLERE ... SEXSE

to another decomposition

EWIEWZE EWYIE
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with all Riemann surfaces being unit disks. Furthermore, by Example 2.2 (Fatou)
all ¢; and all ¥; are finite Blaschke products.

Let by C IE be the set of critical values of f, n = deg f and £ be the lattice of
groups lying between 71 (E \ dy) and 7 (E \ f1 (by)). If we write

Gi =m(E\ (pro---0¢) 1 (by))

and
Ki =1 (E\ (Yr 00 y;) L (dy)),
then we have
Gi =K1 =m(E\ f(d))

as well as
Gry1 = Kry1 = mi(E\ dy),

and by Corollary 2.5 applied to X = dr, ¢ ¢ X some point in E and p a point in
E with f(p) = g, we deduce that our prime decompositions of f induce maximal
chains

G =Gy = 2Gp 2 Gryg

and
Kl SKZS"‘SKrSKr—l—l

with G;, K; in £. We apply Theorem 1.2 to It = 9t = E and f and therefore we
know from the proof of Theorem 1.2 that & is a sublattice of £, which is in partic-
ular modular. By Proposition 3.2, we may pass inductively from the first chain to
the second with only one change at each step. This gives a topological description
of our algorithm using fundamental groups. Corollary 2.5 allows us to write down
the algorithm in terms of explicit analytic maps as listed in the theorem. As ex-
plained at the end of Section 3 this boils down to solving the functional equation

axoay =h=fr0p (8.1)

with o;, B; prime Blaschke products, dega; = deg By = [, degar =degf1 =k
and gcd(k,l) = 1. Our strategy is to get first a polynomial solution to this equa-
tion and then, using the monodromy representations given by such a solution, to
transform the polynomial solution into a solution expressed in terms of Blaschke
products.

Proposition 4.3 applied to (8.1) for some homeomorphism ig = jo : E — C,
which induces other homeomorphisms iy, ji, iz = j» from E to C, leads us to the
following easily verified identities,

(i2,i0)«h = (i1,i0)x02 © (i2,i1)x01 = (J1,10)«P2 © (i2, j1)«P1,
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and hence we have a solution to the two polynomial equation
aroa1 =h = prop

with o, B; prime polynomials, dega; = deg 2 = [,degar = deg 1 = k and
gcd(k,l) = 1. The polynomial solutions to this equation can be written out by
Ritt’s work [35]. Accordingly, there exist linear polynomials ¢; such that one of
the identities

(1) t10(i2,i1)«@1 012 =130 (j1,i0)«Pf20otg4 =2";
(2) t10(i1,i0)x02 012 =130 (i2, j1)xPr1ota =2";
(3) t1 0 (iz,i1)«h o2 = Tyg.

is satisfied. In case (1) of the list above, o and B are totally ramified maps from
E to E. After finitely many operations of the first kind we may assume that oy =
B = z!. Then the functional equation (8.1) reduces to oy © 2l =2zlo pB1 and
Lemma 8.3 gives the solution as desired. Similar considerations apply to case (2).

If we are in case (3), the monodromy of 4 is a Chebyshev representation and
therefore /1 is a Chebyshev—Blaschke product as explained in Lemma 5.1. After
another finitely many operations of the first kind we may assume that 4, o1, oz,
B1, B are all normalized Chebyshev—Blaschke products and we are done. i

9 Polydisks

In this section we sketch how to extend our results to the case of polydisks. Firstly,
we recall from Example 2.2 and Rischel’s version [34] of Remmert—Stein’s theo-
rem [33] the following famous classification result.

Theorem 9.1 (Fatou—Remmert-Stein—Rischel). If f is an analytic map from E¢
to B9, then it is finite if and only if

S, zq) = (1)) -+ Jn(Eo@)))
witho € Sz and f; finite Blaschke products.

This theorem together with the results proved in Section 8 shows that if f is a
nonlinear finite map from E? to B9, then it is composite if and only if its mon-
odromy group is imprimitive. In addition, the length of a nonlinear finite map
f: E? — E4 is independent of prime factorizations and one sees that this leads
without any difficulty to a higher dimensional generalization of our main theorem

Theorem 9.2. Let | : E? — E? be a nonlinear finite map. Given two prime fac-
torizations of f, one can pass from one to the other by repeatedly uses of explicit
operations.
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