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Abstract Let G be a connected semisimple algebraic group over an algebraically closed
field of characteristic zero, and let θ be an automorphism of G. We give a characteriza-
tion of spherical θ -twisted conjugacy classes in G by a formula for their dimensions in
terms of certain elements in the Weyl group of G, generalizing a result of N. Cantarini,
G. Carnovale, and M. Costantini when θ is the identity automorphism. For G simple and θ
an outer automorphism of G, we also classify the Weyl group elements that appear in the
dimension formula.

1 Introduction

1.1 The main results

If R is a group and θ is an automorphism of R, the θ -twisted conjugation of R on itself is
defined by r ·θ r ′ = rr ′θ(r)−1 for r, r ′ ∈ R, and its orbits are called the θ -twisted conjugacy
classes in R.

Let G be a connected semisimple algebraic group over an algebraically closed field k of
characteristic zero, and let Aut(G) be the automorphism group of G. For θ ∈ Aut(G), a
θ -twisted conjugacy class C in G is said to be spherical if a Borel subgroup of G has an open
orbit in C for the θ -twisted conjugation action.

Fix a Borel subgroup B of G and a maximal torus H ⊂ B, and let Aut′(G) = {θ ∈
Aut(G) : θ(B) = B, θ(H) = H}. Throughout the paper, we assume that θ ∈ Aut′(G) (see
Remark 1.2).

Let W = NG(H)/H be the Weyl group, where NG(H) is the normalizer of H in G, and
let l be the length function on W . For w ∈ W , denote by rk(1 − wθ) the rank of the linear
operator 1−wθ on the Lie algebra h of H . For a θ -twisted conjugacy class C in G, let mC be

J.-H. Lu (B)
Department of Mathematics, Hong Kong University, Pokfulam Rd., Hong Kong, Hong Kong
e-mail: jhlu@maths.hku.hk

123



1182 J.-H. Lu

the unique element in W such that C ∩ (BmC B) is dense in C . In the first part of the paper,
we prove the following characterization of spherical θ -twisted conjugacy classes in G.

Theorem 1.1 For θ ∈ Aut′(G), a θ -twisted conjugacy class C ⊂ G is spherical if and
only if

dim C = l(mC)+ rk(1 − mCθ). (1.1)

When θ = IdG , the identity automorphism of G, Theorem 1.1 is proved by Cantarin-
i et al. in [1] by a case-by-case checking that depends on the classification of all spheri-
cal conjugacy classes in G (for G simple). Formula (1.1) is then used in [1] to prove the
De Concini-Kac-Procesi conjecture on representations of the quantized enveloping algebra
of G at roots of unity over spherical conjugacy classes. A different proof of Theorem 1.1 for
θ = IdG , which is also valid when the characteristic of k is an odd good prime for G, is given
by Carnovale in [2], where the proof does not require a classification of spherical conjugacy
classes in G but it also depends on some case-by-case computations. When θ2 = IdG and
C is the θ -twisted conjugacy class through the identity element of G, (1.1) follows from
standard results on symmetric spaces (see §2.3).

In §2, we give a direct proof of Theorem 1.1.
For θ = IdG , the elements mC play an important role in the study of spherical conjugacy

classes. In particular, it is shown by Costantini [5] that the coordinate ring of a spherical con-
jugacy class C as a G-module is almost entirely determined by mC (see [5, Theorem 3.22]).
For G simple and of classical type and for θ = IdG , the element mC for every conjugacy
class in G is computed explicitly in [4]. The second part of the paper concerns the set

˜Mθ = {mC : C is a θ -twisted conjugacy class in G} ⊂ W (1.2)

for an arbitrary θ ∈ Aut′(G). The same arguments used in the proof of [3, Remark 2] show
that the set ˜Mθ depends only on the isogeny class of G. Denote also by θ the automorphism
of W naturally induced from θ ∈ Aut′(G) (see §3.1 for more detail), and let

Mθ = {m ∈ W : m is the unique maximal length element (1.3)

in its θ -twisted conjugacy class in W },
By[3, Corollary 2.15], ˜Mθ ⊂ Mθ .

For G simple and θ an inner automorphism of G, it is shown in [3, §3] that ˜Mθ = Mθ

and elements in Mθ are classified in [3, §3] using results from [1,2]. For G simple and θ an
outer automorphism of G, we give in Proposition 3.7 the complete list of elements in Mθ ,
and we prove in Theorem 3.8 that, again, ˜Mθ = Mθ . It turns out that if θ induces an order
2 automorphism of the Dynkin diagram of G, the list of elements in Mθ coincides with that
of Springer in [10, Table 2], and if G = D4 and θ has order 3,Mθ has two elements. The
classification of elements in ˜Mθ gives restrictions on the possible dimensions of θ -twisted
conjugacy classes in G. See Example 3.9.

1.2 Notation

Let �+ and � ⊂ �+ be respectively the sets of positive and simple roots determined by
(B, H) and write α > 0 (resp. α < 0) for α ∈ �+ (resp. α ∈ −�+). Let N and N− be
respectively the unipotent radicals of B and the opposite Borel subgroup B−. The Lie alge-
bras of G, B, H, N , and N− are respectively denoted by g, b, h, n, and n−. For α > 0, sα
denotes the corresponding reflection in W . We also fix a representative ẇ in NG(H) for each
w ∈ W .
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On a dimension formula for spherical twisted conjugacy classes 1183

For θ ∈ Aut′(G), we use the same letter to denote the action of θ on �+, and when
necessary, we write θ ∈ Aut(�) to indicate that θ is regarded as an automorphism of the
Dynkin diagram. The induced action of θ on g is also denoted by θ .

For g ∈ G,Adg denotes both the conjugation on G by g and the induced map on g. For a
set V and a map σ : V → V , we let V σ = {x ∈ V : σ(x) = x}.
Remark 1.2 For an arbitrary θ1 ∈ Aut(G), there exists g0 ∈ G such that Adg0(B) = θ1(B)
and Adg0(H) = θ1(H). Then θ = Ad−1

g0
◦ θ1 ∈ Aut′(G), and the right translation by g0 in

G maps θ1-twisted conjugacy classes in G to θ -twisted conjugacy classes in G. We can thus
assume throughout the paper that θ ∈ Aut′(G). Moreover, if θ and θ ′ ∈ Aut′(G) are in the
same inner class, i.e., if they induce the same automorphism on the Dynkin diagram, then
θ = Adh ◦ θ ′ for some h ∈ H , and it follows that ˜Mθ = ˜Mθ ′ .

2 Proof of Theorem 1.1

2.1 Two lemmas on B-orbits in G

Recall that ·θ denotes the θ -twisted conjugation action of G on itself. For g ∈ G, let Bg be
the stabilizer subgroup of B at g. The following generalization of [1, Theorem 5] is proved
in [6, Theorem 4.1]. We include the (short) proof for the convenience of the reader and to
make the proof of Theorem 1.1 self-contained.

Lemma 2.1 [6] For any w ∈ W and g ∈ wB, one has Bg ⊂ Hwθ (N ∩ Adẇ(N )). Conse-
quently,

dim(B ·θ g) ≥ l(w)+ rk(1 − wθ).

Proof Let b = n1n2h ∈ Bg , where h ∈ H, n1 ∈ N ∩ Adẇ(N−) and n2 ∈ N ∩ Adẇ(N ). It
follows from bg = gθ(b) and the unique decomposition BwB = (N ∩ Adẇ(N−))ẇB that
n1 = 1 and wθ(h) = h. Thus Bg ⊂ Hwθ (N ∩ Adẇ(N )), and

dim(B ·θ g) = dim B − dim Bg ≥ dim B − dim(N ∩ Adẇ(N ))− dim Hwθ

= l(w)+ rk(1 − wθ).

	

Lemma 2.2 If w ∈ W and g ∈ wB are such that B ·θ g is open in G ·θ g, then Bg is an
open subgroup of Hwθ (N ∩ Adẇ(N )).

Proof Let gg = {x ∈ g : Adgθ(x) = x} be the stabilizer subalgebra of g at g for the
θ -twisted conjugation action, and let bg = b∩gg . By Lemma 2.1, bg ⊂ hwθ + (n∩Adẇ(n)).
It remains to prove that hwθ + (n ∩ Adẇ(n)) ⊂ bg .

Let x0 ∈ hwθ and x+ ∈ n ∩ Adẇ(n), and let z = (Adgθ)
−1(x+ + x0)− (x+ + x0) so that

Adgθ(z + x+ + x0) = x+ + x0. Using the fact that Adb(x0) − x0 ∈ n for any b ∈ B, one
sees that z ∈ n. We now show that z = 0. To this end, let 〈 , 〉 be the Killing form of g. Since
B ·θ g is open in G ·θ g, the inclusion b ↪→ g induces an isomorphism b/bg ∼= g/gg . Thus
for any y ∈ g, there exists y′ ∈ b such that y − y′ ∈ gg , and, using 〈z, y′〉 = 0, one has

〈z, y〉 = 〈z + x+ + x0, y − y′〉 − 〈x+ + x0, y − y′〉
= 〈z + x+ + x0, y − y′〉 − 〈Adgθ(z + x+ + x0), Adgθ(y − y′)〉 = 0.

It follows that z = 0 and hence x+ + x0 ∈ bg . Therefore bg = hwθ + (n ∩ Adẇ(n)). 	
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2.2 Proof of Theorem 1.1

Let C be a θ -twisted conjugacy class in G. Assume first that dim C = l(mC)+ rk(1 − mCθ).
By Lemma 2.1, every B-orbit in C ∩ (BmC B) is open in C , so C is spherical. Since C is
irreducible, it also follows that C ∩ (BmC B) is a single B-orbit.

Assume that C is spherical. Let g ∈ C be such that B ·θ g is open in C , and let g ∈ BwB
with w ∈ W . Then C ∩ (BwB) ⊃ B ·θ g is dense in C , so w = mC . By Lemma 2.2,
dim C = dim b − dim bg = l(mC)+ rk(1 − mCθ). This finishes the proof of Theorem 1.1.

Remark 2.3 For θ = IdG , Lemma 2.2 is also proved in [2] by some case-by-case arguments.
On the other hand, the arguments in [2] are valid when the characteristic of k is an odd
good prime for G, while our proof of Lemma 2.2 is valid when the Killing form of g is
non-degenerate and when one has the identifications of tangent spaces Tg(B ·θ g) ∼= b/bg

and Tg(G ·θ g) ∼= g/gg , which hold when k is of characteristic zero.

2.3 The case of symmetric spaces

Assume that θ ∈ Aut′(G) is an involution, and let K = Gθ be the fixed point subgroup of θ in
G. Then the θ -twisted conjugacy class C of the identity element of G is isomorphic to the sym-
metric space G/K , and it is well-known [9] that G/K is spherical. In this case, formula (1.1) for
the dimension of G/K follows from results in [9]. Indeed, using the notation in [9, §5], let vo

be the unique open B-orbit in G/K and letwo = φ(vo) ∈ W . Thenwo = mC , and it is easy to
see from [9, Corollary 4.9] that dim G/K = 1

2 Card(C ′′
vo)+Card(I n

vo )+ l(wo)+ rk(1−woθ),
where the notation is as on [9, Page 535]. By [9, Theorem 5.2(i)], C ′′

vo ∩ � = ∅. For every
β > 0, writing β = β1 + β2, where β1 is in the linear span of 
 ⊂ � in the notation of
[9, Theorem 5.2(ii)] and β2 is in the linear span of �\
, one has woθ(β) = β1 + woθ(β2),
so by [9, Theorem 5.2(ii)], woθ(β) > 0 implies that β2 = 0 and thus woθ(β) = β. This
shows that C ′′

vo = ∅ and that every β ∈ Ivo is in the linear span of 
, which, by [9,
Theorem 5.2(i)], consists of all simple compact imaginary roots. It follows that I n

vo = ∅.
Thus dim G/K = l(wo)+ rk(1 − woθ).

3 The elements mC

3.1 Properties of m ∈ Mθ

Any δ ∈ Aut(�) induces an automorphism on the Weyl group W , also denoted by δ, by
δ(w) = δ ◦ w ◦ δ−1 : h → h. Let w0 be the longest element in W , and let δ0 ∈ Aut(�) be
given by δ0(α) = −w0α for α ∈ �. The automorphism on W induced by δ0 is then given by
δ0(w) = w0ww0 for w ∈ W .

Throughout this section, θ ∈ Aut(�), and Mθ ⊂ W is defined as in (1.3).

Lemma 3.1 If m ∈ Mθ , then θ(m) = δ0(m) = m. In particular, mθ(α) = θm(α) for every
α ∈ �.

Proof Let m ∈ Mθ . Then θ(m) = m−1mθ(m) is in the same θ -twisted conjugacy class as
m, and l(θ(m)) = l(m). Thus θ(m) = m. It follows that mθ(α) = θm(α) for every α ∈ �.
Similarly, since θ permutes the simple roots, θ(w0) = w0. It follows that w0mw0 and m are
in the same θ -twisted conjugacy class in W . Since l(w0mw0) = l(m), one hasw0mw0 = m.
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On a dimension formula for spherical twisted conjugacy classes 1185

For I ⊂ �, let w0,I be the longest element in the subgroup WI of W generated by I .
The following Lemma 3.2 is proved in [3, §3] when θ is the identity automorphism of �.

Lemma 3.2 If m ∈ Mθ , then w0m = mw0 = w0,I , where I = {α ∈ � : mθ(α) = α}. In
particular, I is both δ0 and θ invariant, and δ0θ(α) = −w0,I (α) for every α ∈ I .

Proof Let δ = δ0θ ∈ Aut(�). Then the map W → W : w �→ ww0 maps θ -twisted
conjugacy classes in W to δ-twisted conjugacy classes in W .

Let m ∈ Mθ , and let x = mw0. Then x is the unique minimal length element in its
δ-twisted conjugacy class in W . Let x = sα1 sα2 · · · sαk be a reduced word for x . Let I ′ =
{α1, α2, . . . , αk}. Then x ∈ WI ′ . We first show that x = w0,I ′ . To this end, it is enough to
show that x(α j ) < 0 for every 1 ≤ j ≤ k. Since xsαk < x , we already know that x(αk) < 0.
If k = 1, we are done. Suppose that k ≥ 2. Let βk = δ−1(αk) ∈ �, and let

x1 = sβk xδ(sβk ) = sβk xsαk = sβk sα1 · · · sαk−1 . (3.1)

Since k is the minimal length of elements in the δ-twisted conjugacy class of x in W , we
have l(x1) ≥ k. It follows from (3.1) that l(x1) ≤ k, so l(x1) = k. Since x is the unique
element in its δ-twisted conjugacy class in W with length k, we have x1 = x . In particular,
x = x1 = sβk sα1 · · · sαk−1 is a reduced word for x , so x(αk−1) < 0. Repeating this process,
we see that x(α j ) < 0 for every 1 ≤ j ≤ k. Thus x = w0m = mw0 = w0,I ′ . It follows from
Lemma 3.1 that δ0(I ′) = θ(I ′) = I ′.

We now show that I ′ = I . For any α ∈ I ′, since m(α) = w0w0,I ′(α) > 0, one has
l(θ−1(sα)msα) ≥ l(m). Since m ∈ Mθ , one has θ−1(sα)msα = m, so θ−1(α) = m(α)
and α ∈ I . Conversely, let α ∈ I . If α /∈ I ′, then w0m(α) = w0,I ′(α) > 0, so m(α) < 0,
contradicting the fact that m(α) = θ−1(α) > 0. Thus I ′ = I . It follows from the definition
of I that δ0θ(α) = −w0,I (α) for every α ∈ I . 	


An element w ∈ W is said to be a θ -twisted involution if θ(w) = w−1.

Corollary 3.3 Every m ∈ Mθ is both an involution and a θ -twisted involution.

Proof Let m ∈ Mθ and let the notation be as in Lemma 3.2. Then m2 = w0w0,Iw0,Iw0 = 1.
Since θ(m) = m, one also has θ(m) = m−1. 	

Definition 3.4 A subset I of � is said to have Property (1) if I is both δ0 and θ invariant and
if δ0θ(α) = −w0,I (α) for all α ∈ I .

By Lemma 3.2, every m ∈ Mθ is of the form m = w0w0,I for some I ⊂ � with Prop-
erty (1). Let 〈 , 〉 be the pairing on � induced from the Killing form of g. The following
Definition 3.5 is inspired by [2, Lemma 4.1].

Definition 3.5 For a subset I of �, an α ∈ I is said to be isolated if 〈α, α′〉 = 0 for every
α′ ∈ I\{α}. A subset I of � is said to have Property (2) if for every isolated α ∈ I , there is
no β ∈ �\{α} with the following properties

(a) 〈α, α〉 = 〈β, β〉 and 〈β, α〉 �= 0;
(b) 〈β, α′〉 = 0 for all α′ ∈ I\{α};
(c) δ0θ(β) = β.

Lemma 3.6 For every m ∈ Mθ , Im = {α ∈ � : mθ(α) = α} ⊂ � has Property (2).
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1186 J.-H. Lu

Proof Let m ∈ Mθ . Suppose that α ∈ Im is isolated and that there exists β ∈ �\{α} with
properties (a), (b), and (c) in Definition 3.5. Let I ′

m = Im\{α}. Since α ∈ Im is isolated,
w0,Im = sαw0,I ′

m
, so by (b) and (c), mθ(β) = w0,Imw0θ(β) = −sαw0,I ′

m
(β) = −sα(β), and

sαsβmsθ(β)sθ(α) = sαsβsmθ(β)msθ(α) = sαsβsαsβsαmsθ(α).

By (a), sαsβsαsβsα = sβ , so sαsβmsθ(β)sθ(α) = sβmsθ(α) = sβsαm. Since m−1(α) =
θ(α) > 0, l(sβsαm) ≥ l(m). Since sβsαm is in the same θ -twisted conjugacy class as m, we
have sβsαm = m, or sαsβ = 1, which is a contradiction. 	

3.2 The classification of m ∈ Mθ

For θ ∈ Aut(�), let Iθ be the collection of all subsets I of � that have Properties (1) and (2).
Note that the empty set ∅ is always in Iθ . Also note that if θ ∈ Aut(�) is not the identity
automorphism, then � does not have Property (1), so � /∈ Iθ .

Proposition 3.7 (1) For G = D4 and θ ∈ Aut(�) of order 3, I ∈ Iθ if and only if I = ∅
or I = {α2}, where α2 is the simple root that is not orthogonal to any of the other three.

(2) For G simple and θ ∈ Aut(�) of order 2, the list for I ∈ Iθ is the same as that given
in [10, Table 2], namely, either I = ∅ or I is one the following:

A2n, n ≥ 1, θ = δ0: no non-empty I in Iθ .
A2n+1, n ≥ 1, θ = δ0 : I = {α2l+1 : 0 ≤ l ≤ n}.
D4 : I = {α2} ∪ �(2, θ), where �(2, θ) is the θ -orbit in � with 2 elements.
D2n, n > 2, θ(α2n−1) = α2n : Il = �\{α1, α2, . . . , α2l−1} for 1 ≤ l ≤ n − 1.
D2n+1, n ≥ 2, θ = δ0 : Il = �\{α1, α2, . . . , α2l−1} for 1 ≤ l ≤ n.
E6, θ = δ0 : I = {α2, α3, α4, α5} with the simple roots labeled as

Proof (1) is easy to deduce and (2) is proved case-by-case. We omit the details. 	

By Lemma 3.2 and Lemma 3.6, we have, for θ ∈ Aut(�), the well-defined map

ψ : Mθ −→ Iθ : m �−→ Im = {α ∈ � : mθ(α) = α}.
Since m = w0w0,Im for every m ∈ Mθ , the map ψ is injective.

Assume now θ ∈ Aut′(G), and let ˜Mθ ⊂ W be defined as in (1.2). By Remark 1.2, ˜Mθ

depends only on the corresponding θ ∈ Aut(�). Let ˜ψ : ˜Mθ → Iθ be the restriction of ψ
to ˜Mθ ⊂ Mθ .

Theorem 3.8 For G simple and θ ∈ Aut′(G) an outer automorphism of G, the map ˜ψ :
˜Mθ → Iθ is bijective. Consequently,

˜Mθ = Mθ = {w0w0,I : I ∈ Iθ }.
Proof It is enough to prove that ψ̃ is surjective, and we may assume that G is adjoint.

First assume that θ ∈ Aut(�) has order 2, and let I ∈ Iθ . By Proposition 3.7, I is in
[10, Table 2], so (I, δ0θ) is admissible in the sense of [10, No. 2.2]. By [10, No. 4 and No.
5], there exists h ∈ H such that Adhθ ∈ Aut(G) is an involution and that w0w0,I = mC ,
where C is the θ -twisted conjugacy class through h. In particular, w0w0,I ∈ ˜Mθ .
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On a dimension formula for spherical twisted conjugacy classes 1187

It remains to consider the case of G = D4 with θ ∈ Aut(�) having order 3. It is clear
that w0 = mC if C is the θ -twisted conjugacy class of ẇ0, so w0 ∈ ˜Mθ . We only need to
show that w0s2 ∈ ˜Mθ . To this end, we may, by Remark 1.2, assume that θ ∈ Aut′(G) is
a diagram automorphism of G in the sense that θ ◦ xα = xθα for α ∈ �, where for each
α ∈ �, xα : ka → G is a fixed choice of one-parameter root subgroup corresponding to α. In
particular, θ3 = IdG . Let Ce be the θ -twisted conjugacy class through the identity element e
of G. It is well-known that gθ is of type G2 [8, Chapter 24] so it is 14-dimensional. Thus

dim Ce = dim G − 14 = 14 = l(w0s2)+ rk(1 − w0s2θ).

Since l(w0)+ rk(1 − w0θ) = 16, we know by Lemma 2.1 that mCe �= w0 so mCe = w0s2.
In particular, w0s2 ∈ ˜Mθ and Ce is spherical. See [6, §4.5] for another proof of the fact that
w0s2 ∈ ˜Mθ and that Ce is spherical. 	

Example 3.9 Let G = D4 be of adjoint type, and let θ ∈ Aut′(G) be a triality automor-
phism of G as in the proof of Theorem 3.8. Since l(w0s2) + rk(1 − w0s2θ) = 14 and
l(w0) + rk(1 − w0θ) = 16, dim C ≥ 14 for every θ -twisted conjugacy class C in G, and,
by Theorem 1.1, dim C = 14 or 16 if C is spherical.

Recall from [11] that a θ -twisted conjugacy class is semisimple if it contains an element
in H . For h ∈ H , let Ch ⊂ G be the θ -twisted conjugacy class of h. Label the simple roots
as � = {α j : 1 ≤ j ≤ 4} such that θ(α2) = α2, θ(α1) = α3, θ(α3) = α4, and θ(α4) = α1.
We now show that if hα2 = hα1 hα3 hα4 = 1, then mCh = w0s2 and Ch is spherical, and
otherwise, mCh = w0 and dim Ch ≥ 20, so Ch is not spherical. Here, for a characterμ on H,
hμ denotes the value of μ on h.

Label the positive roots in �+\� as

α5 = α1 + α2, α6 = α2 + α3, α7 = α2 + α4,

α8 = α1 + α2 + α3, α9 = α2 + α3 + α4, α10 = α1 + α2 + α4,

α11 = α1 + α2 + α3 + α4, α12 = α1 + 2α2 + α3 + α4.

Then {α1, α3, α4}, {α5, α6, α7} and {α8, α9, α10} are the three θ -orbits in �+ of size 3 and
θ(α11) = α11 and θ(α12) = α12. Note that the sets {α1, α3, α4, α12}, {α5, α6, α7, α11}, and
{α8, α9, α10, α2} consist of orthogonal roots, and, with s j denoting the reflection in W defined
by α j for 1 ≤ j ≤ 12, w0 = s1s3s4s12 = s5s6s7s11 = s8s9s10s2.

Recall that the stabilizer subalgebra of g at h is gh = gAdhθ . Since dim hAdhθ = dim
hθ = 2, one has dim gh = 2 + 2n, where n = #{i ∈ {1, 2, 5, 8, 11, 12} : λi (h) = 1},
with λi (h) = hαi +θ(αi )+θ2(αi ) for i ∈ {1, 5, 8} and λi (h) = hαi for i ∈ {2, 11, 12}. Let
�(h) = {λi (h) : i ∈ {1, 2, 5, 8, 11, 12}}. Then λ1(h) = hα1 hα3 hα4 , λ2(h) = hα2 , and

�(h) = {λ1(h), λ2(h), λ1(h)(λ2(h))
3, (λ1(h))

2(λ2(h))
3, λ1(h)λ2(h), λ1(h)(λ2(h))

2}.
Case 1 hα2 = hα1 hα3 hα4 = 1. In this case, n = 6, dim gh = 14, and dim Ch = 28 − 14 =
14. It follows from Lemma 2.1 that Ch is spherical and mCh = w0s2. Note that in this case,
(Adhθ)

3 = IdG , so gh is again of type G2.

Case 2 hα2 �= 1 or hα1 hα3 hα4 �= 1. In this case, n ≤ 5. In fact, it is easy to see that one
can not have n = 5 nor n = 4, so n ≤ 3, and dim Ch = 28 − dim gh ≥ 20. Thus Ch is
not spherical. We use the approach in [6, §4.5] to prove that mCh = w0. First assume that
hα2 �= 1. Fix a one-parameter root subgroup xα : ka → G for α ∈ −{α8, α9, α10} such that
θ ◦ xα = xθ(α) for every α ∈ −{α8, α9, α10} (recall that θ3 = IdG ). For a, b, c, d ∈ k\{0},
let g = x−α2(a)x−α8(b)x−α9(c)x−α10(d) ∈ G. Then

ghθ(g)−1 = x−α2(a − h−α2 a)x−α8(b − h−α8 d)x−α9(c − h−α9 b)x−α10(d − h−α10 c)h.
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Choosing a, b, c, d such that a �= 0, b − h−α8 d �= 0, c − h−α9 b �= 0 and d − h−α10 c �= 0,
one has ghθ(g)−1 ∈ Ch ∩ (Bw0 B) ∩ B−, so mCh = w0. If hα2 = 1, then hα1 hα3 hα4 �= 1.
In this case, hα11 = hα12 �= 1. Using the fact w0 = s5s6s7s11 or the fact w0 = s1s3s4s12 and
arguments similar to the above, one sees that mCh = w0. 	

Remark 3.10 Our interest in the dimension formula (1.1) comes from Poisson geometry: by
a general construction in [7], an automorphism θ of G naturally induces a Poisson structure
πθ on G such that each θ -twisted conjugacy class is a Poisson submanifold with respect to
πθ . For a θ -twisted conjugacy class C in G, the element mC is closely related to the smallest
dimension of the symplectic leaves of πθ in C , and formula (1.1) is closely related to the
vanishing of πθ in C . These results and a detailed study of the Poisson structure πθ will
appear elsewhere.
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