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Abstract—Numerous tasks in control systems involve optimiza-
tion problems over polynomials, and unfortunately these problems
are in general nonconvex. In order to cope with this difficulty,
linear matrix inequality (LMI) techniques have been introduced
because they allow one to obtain bounds to the sought solution
by solving convex optimization problems and because the conser-
vatism of these bounds can be decreased in general by suitably
increasing the size of the problems. This survey aims to provide
the reader with a significant overview of the LMI techniques that
are used in control systems for tackling optimization problems
over polynomials, describing approaches such as decomposition
in sum of squares, Positivstellensatz, theory of moments, Pélya’s
theorem, and matrix dilation. Moreover, it aims to provide a
collection of the essential problems in control systems where
these LMI techniques are used, such as stability and performance
investigations in nonlinear systems, uncertain systems, time-delay
systems, and genetic regulatory networks. It is expected that this
survey may be a concise useful reference for all readers.

Index Terms—Control system, linear matrix inequality (LMI),
optimization, polynomial, positivity.

I. INTRODUCTION

T is well-established that the analysis and synthesis of
I control systems often involve the solution of optimization
problems over polynomials, such as determining the minimum
of a polynomial under polynomial inequality constraints, or
searching for a polynomial satisfying such constraints. Indeed,
the basic problem of establishing stability of an equilibrium
point of a system via Lyapunov functions consists of deter-
mining a positive function such that its temporal derivative
along the trajectories of the system is negative outside the
equilibrium. Such a problem, and many similar ones inves-
tigating other key issues of control systems, are naturally
optimization problems over polynomials in the case that the
temporal derivative of the state of the system and the candidate
Lyapunov function are polynomials. Moreover, appropriate
transformations or approximations allow one to consider in this
framework also several other cases involving nonpolynomial
nonlinear functions. See for instance [1].
Unfortunately, optimization problems over polynomials are
in general nonconvex. In fact, in a nonconvex optimization
problem there can be local optima in addition to the global
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one, and hence it is difficult to determine the global optimum
via standard numerical methods which are able to establish
optimality of a solution only locally. In order to cope with this
difficulty, researchers have developed various techniques based
on linear matrix inequalities (LMIs) for solving optimization
problems over polynomials. The interest for these techniques
is mainly motivated by the fact that one can obtain bounds to
the global optimum by solving convex optimization problems,
and by the fact that the conservatism of these bounds can be
decreased in general by suitably increasing the size of the
problems.

The objective of this survey is twofold. First, it aims to pro-
vide the reader with a significant overview of the LMI tech-
niques that are used in control systems for tackling optimiza-
tion problems over polynomials. Specifically, the problem of
establishing positivity of a polynomial is initially considered,
hence describing decomposition in sum of squares and its con-
servatism aspects related to Hilbert’s 17th problem. Then, the
problem of establishing positivity of a polynomial under poly-
nomial constraints is addressed, hence illustrating Positivstel-
lensatz, theory of moments, Pdlya’s theorem, matrix dilation
approach, and other techniques for investigating positivity over
special sets such as ellipsoids and simplex. Second, this survey
aims to provide a collection of the essential problems in control
systems where these LMI techniques turn out to be helpful. In
particular, the problems of establishing stability and invariance
in nonlinear systems, robust stability and robust performance in
uncertain systems, stability in time-delay systems, convergence
properties in genetic regulatory networks, and optimal strategies
in game theory, are reviewed.

The paper is organized as follows. Section II introduces
the notation and some preliminaries about polynomials.
Sections III-V describe the LMI techniques for positivity, con-
strained positivity, and positivity over special sets, respectively.
Section VI illustrates the application of these LMI techniques
in various areas of control systems. Last, Section VII concludes
the paper with some final remarks.

II. PRELIMINARIES

Let us introduce the notation adopted throughout the paper:

— w.r.t,, s.t.: with respect to, subject to;

— X': transpose of matrix X;

— X > 0 (respectively, X > 0): symmetric positive definite
(respectively, semidefinite) matrix X;

— X ® Y': Kronecker product of matrices X and Y’;

—tr(X): trace of matrix X;

—co{z,y,...}: convex hull of vectors z, vy, .. .;
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— w; (respectively, X ;): i-th (respectively, (4, j)-th) entry
of vector z (respectively, matrix X) unless specified
otherwise;

—a¥ =" - z¥, with n x 1 vectors z, y;

— ||z||: euclidean norm of vector x;

— V f: column vector with first-order partial derivatives of

f:R*—=R;

—N, R;: natural numbers (including zero), real numbers;

—S" ={XeR" : X =X}

— 0, (respectively, 0,,xn): origin of R™ (respectively,

R™>m);

— I,,: n X n identity matrix;

—Rg = R"\ {0,}.

A functionm : R™ — R is amonomial if m(x) = c¢,x* where
x € R", ¢, € Rand a € N”. The quantity a; + --- + a, is
the degree of m. A function p : R™ — R is a polynomial if it is
a sum of monomials mi,ma, ... : R” — R with finite degree.
The largest degree of the monomials m, ma, ... is the degree
of p. The set of polynomials p : R™ — R is denoted by P.

A function P : R™ — R"*" is a (square) matrix polynomial
if P;; € Pforalli,57 = 1,...,r. The largest degree of the
entries of P is the degree of P. The set of matrix polynomials
P : R® — R"™" is denoted by P,..

The quantity 1% € R7(%4) with zz € R" is a power vector
for the polynomials in P of degree d if it is a vector containing
a basis for such polynomials, where o(n, d) is the number of
distinct monomials in z of degree not greater than d given by

(n-l—d)!.

oln.d) = =1

ey
A simple choice for 214} is a vector whose entries are the mono-
mials in 2 of degree not greater than d. By using power vectors,
p € P of degree d can be expressed as

p(x) = it )
where ¢ € R7(4_ Similarly, P € P, of degree d can be ex-
pressed as

P(z)=C' (x{’l} ® Ir) 3)
where C' € R d)xr,

A particular class of polynomials is represented by the ho-
mogeneous polynomials, i.e., polynomials obtained as sum of
monomials of the same degree, which are also called forms.
Homogeneous polynomials can be expressed as in (2) by using
power vectors containing only monomials of the same degree. It
is interesting to observe that any polynomial can be viewed as a
homogeneous polynomial with one more variable set to 1. More
specifically, by expressing p(z) = Z?:o pi(x) where p; € P is
homogeneous of degree ¢, one has that

p(J}) = ﬁ(y) Yny1=1

where y = (z’,1) and p(y) is the homogeneous polynomial
given by

d
ply) =D pi(z)yii
1=0
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Similarly, homogeneous matrix polynomials are matrices whose
entries are homogeneous polynomials.

III. POSITIVITY

A primary issue in control systems concerns positivity of
polynomials. This section introduces a fundamental technique
that allows one to investigate this issue via LMI techniques. For
conciseness, throughout the paper the adjective “positive” will
indicate nonnegativity in the scalar case and positive semidefi-
niteness in the matrix case (other kinds of positivity will be ex-
plicitly defined wherever required).

A. SOS Polynomials

p € P is positive if p(z) > 0 for all z € R™. An interesting
way of establishing whether p is positive consists of establishing
whether p can be written as a sum of squares of polynomials
(SOS), i.e.

k
mwziymwz )

for some p1,...,pr € P. Clearly, any SOS polynomial is
positive.

SOS polynomials have been exploited since long time, see for
instance the pioneering works [2], [3].

A reason that has motivated the interest for SOS polynomials
is that, establishing whether a polynomial is SOS, amounts to
solving a convex optimization problem!. Indeed, p € P of de-
gree 2d can be represented according to the Gram matrix method
[4] (also known as square matricial representation (SMR) [5])
via

p(z) = 21 (G + L(a)) o1 (5)

where G € $7("4) | () is a linear parametrization of the set

c={res ™ . ;W 0w er"}  (©
a € R¥(™24) ig a free vector, and w(n, 2d) is the dimension of
L given by

w(n,2d) = %o(n, d)(1+o(n,d)) —o(n,2d). ()
By exploiting this representation, one can establish whether p is

SOS as explained in the following result [5], [6].
Theorem 1: p is SOS if and only if there exists o such that

®)

The condition (8) is an LMI, and establishing whether an LMI
holds for some value of the variables (« in this case) is an LMI
feasibility test, which amounts to solving a convex optimization
problem [7]. The matrix G is called Gram matrix (or SMR ma-
trix) of p. It is worth observing that GG is not unique, and that
G+ L(«) is alinear matrix function that parametrizes the whole
set of Gram matrices of p.

G+ L(a) > 0.

1Tt is worth observing that the set of positive polynomials is convex analo-
gously to the set of SOS polynomials, however for the former set there is no a
tractable characterization contrary to the latter one.
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Depending on the monomials present in p, the size of the
power vector z{?} in (5) can be reduced while preserving the
validity of Theorem 1. In fact, the monomials required to write
p as SOS can be chosen without loss of generality in the Newton
polytope, see [8] for details. This may allow to reduce the com-
plexity of the LMI feasibility test (8).

In the case of matrix polynomials, we say that P € P, is
positive if P(x) > 0 for all z € R™. Positivity of matrix
polynomials can be investigated by extending the concept of
SOS. Specifically, P is a SOS matrix polynomial if there exist
Py,..., Py € P, such that

P(z) = Z Pi(z)' Py(x). 9)

Equivalently, P is SOS if and only if the polynomial y* P(x)y
is SOS in the extended variable (z’,y’)’, see e.g., [9]. Clearly,
any SOS matrix polynomial is positive.

A symmetric matrix polynomial P € P,. of degree 2d can be
represented through a suitable extension of (5) as

P(r) = (1 & L»)I (G+ L) (+WeL) (0

where G € S [,(a) is a linear parametrization of the set
/
c={res D (o) L(san) =0,

Vi € R"} (11)
o € R¥(m247) s a free vector, and w(n, 2d, ) is the dimension
of L given by

w(n,2d,r) :%r (o(n,m) (ro(n,m)+ 1)

—(r+1)o(n,2m)). (12)
Similarly to the scalar case, P is SOS if and only if there ex-
ists v such that the LMI G + L(«) > 0 holds [10], [11]. In the
sequel, the set of SOS polynomials in P (respectively, SOS ma-
trix polynomials in PP,.) will be denoted by P°©? (respectively,
PSOS),

SOS polynomials can be used also to establish strict positivity
of polynomials. A simple strategy is the following: P € P,
satisfies P(x) > 0 for all z € R™ if there exists € > 0 such that

P(zx) —el, € P95, (13)

For homogeneous polynomials, strict positivity does not involve
the origin since the polynomial vanishes at this point. A strategy
is hence the following: a homogeneous P € P, satisfies P(x) >
0 for all x € Ry if there exists € > 0 such that
P(x) — e||z||*'I, € P95, (14)

Alternatively, one can simply define a power vector with only
monomials of degree d in x, hence requiring that G+ L(a) > 0.
Before proceeding it is worth mentioning that the linear matrix
function L(«), which allows to equivalently express via an LMI
feasibility test the SOS condition for either a polynomial or a
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matrix polynomial, can be systematically constructed. Indeed,
L(«) is a linear parametrization of a linear subspace with finite
dimension, and hence can be built by using standard algorithms
of linear algebra. The reader is referred to [12] for algorithms
about the construction of G and L(«).

B. Hilbert’s 17th Problem

The interest for SOS polynomials has been motivated not only
by the convexity of the optimization problem that one needs to
solve for establishing whether a polynomial is SOS, but also by
some available results that characterize the gap between positive
polynomials and SOS polynomials.

The story goes back to Hilbert’s 17th problem (see e.g., [13]
and references therein), which asks whether all positive polyno-
mials are sums of squares of rational functions. Specifically, in
1888 Hilbert found an answer to a closely related question: not
all positive polynomials are SOS.

Let us refer to polynomials that are positive but not SOS as
PNS polynomials. One of the first examples of PNS polynomials
was given by Motzkin in 1967. Motzkin’s polynomial is a poly-
nomial in 2 variables of degree 6 given by

pyot(z) = 2175 + 237y — 3xial + 1. (15)
See [13], [14] and references therein for other examples of PNS
polynomials. As explained in the following result, PNS polyno-
mials do not exist depending on the number of variables and on
the degree [15].

Theorem 2: Consider p € P of degree 2d, and suppose that
(n,2d) € € where

€={(n,2), n e N}JU{(1,2d), d e N}U{(2,4)}. (16)
Then, p is positive if and only if it is SOS.

Further results are available on the gap between positive poly-
nomials and SOS polynomials. In particular, a result analogous
to Theorem 2 establishes that a homogeneous p € P of de-
gree 2d with (n,2d) € & satisfies p(z) > 0 for all z € Ry if
and only if it admits a positive definite Gram matrix (see [12]
and references therein). Moreover, SOS polynomials are dense
among positive polynomials, but they become sparse by fixing
the degree and increasing the number of variables [16], [17].
Also, in [14] it is proved that any PNS polynomial is the vertex
of a cone of PNS polynomials, and a parametrization of the set
of PNS polynomials is proposed. The following example is built
according to this parametrization:

pla) = 4(2§ + 25 + 1) — 19(z173 + 75 + 27) — 30z{3
+29(x} 4+ x3x? +23) — 6(x + 25 +1)> (17)

which is a PNS polynomial for all § € (0,0.436) [12].
In 1927, Artin proved the following fundamental result,
which provides a positive answer to Hilbert’s 17th problem.
Theorem 3: Any p € P is positive if and only if there exist
s1, 52 € PSO% such that

(18)
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Observe that, for a fixed degree of s», the condition (18) can
be expressed via an LMI feasibility test by requiring that s and
p1s2 are SOS with so # 0. Specifically, let G2 and G3(G2) +
L(«) be a Gram matrix of s2 and a linear parametrization of the
Gram matrices of py o respectively, and observe that G3(G>2)
depends linearly on G5. Then, so and pqso are SOS (with sy #
0) if and only if there exist G5 and « such that

G2 Z 0 and G3(G2) + L(Ol) Z 0 and tI‘(Gz) =1 (19)
which is an LMI feasibility test (the constraint ¢7(G2) = 11is
introduced without loss of generality in order to guarantee that

Hilbert’s 17th problem has been formulated also in the case
of matrix polynomials. In particular, a generalization of Artin’s
result has been given in [18], which says that P € P,. is positive
if and only if it can be expressed as a sum of squares of sym-
metric matrices with entries in R™.

The following theorem provides a result analogous to The-
orem 2 in the case of matrix polynomials [4].

Theorem 4: Suppose n = 1. Then, P € P,. is positive if and
only if it is SOS.

IV. CONSTRAINED POSITIVITY

The previous section has considered the problem of estab-
lishing whether a polynomial is positive. This section introduces
some key techniques that allow one to investigate positivity in
the presence of constraints.

A. Scalar Case

Constrained positivity of polynomials can be investigated
via techniques “after” of polynomials known as Positivstel-
lensatz. In order to describe these techniques, let us introduce
the following basic definitions (see, e.g., [6], [19], [20] for
details). The multiplicative monoid generated by polynomials
P1s---,Pk € P, denoted by M(p1,...,pk), is the set of
finite products of these polynomials. The cone generated by
polynomials py,...,p, € P is the set

C(p1y---sPk) {304—28#}1-807 . 7s]-e’PSOs7
(20)

Last, the ideal generated by polynomials p1q, ...
set

,Pr. € P is the

k

I(p1,---,pk) = {Z

i=1

ripi:rl,...ﬂ“kep}. 21

The following Positivstellensatz is proposed in [21].
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Theorem 5: Let f1,..., fx, 91,---,91, and hq,..., h,, be-
long to P. Define the set
X={zeR": fi(z)>0,..., fe(z) >0
and g1(z) = -+ = gi(z) =
and hy(z) #0,..., hy(z) # 0}. (22)
Then
_w — Elf € C(fh e fk)7 g GI(gh "79!)7
h e M(hl, . hm)
f(z)+g(x )+h($) (23)

A stronger version of the Positivstellensatz is as follows [22].
Theorem 6: Let f1, ..., fr € P be such that the set

K={reR": fi(z) >0, fulx) >0}  (24)
is compact. Let p € P. Then
p(z) >0V e K <= pelC(fr,....[fr) (25)

A further stronger condition, proposed in [23], is stated in the
following result.

Theorem 7: Let f1,..., fr € P be polynomials of even de-
gree such that their highest degree forms do not have common
zeros in R{, and such that the set K in (24) is compact. Let
p € P. Then

p(z )>0vxelc < Jsg,...,5k €
p=so+zs1¢f1‘,-
i=1

The conditions described in Theorems 5-7 can be expressed
via LMI feasibility tests for fixed degree of the multipliers. As
an example, let ay,...,ay, by,...,b; and p belong to P, and
consider the problem of establishing whether the following con-
dition holds:

(26)

p(r) >0 Ve e R" :a;(x) =0Vi=1,...,k

and bj(z) > 0Vj=1,...,1. (27)

It is easy to see that this condition holds if the following condi-
tion holds, which is obtained from Theorem 5:

37"17...77"]‘367’7 807"-75l€PSOS:

k 1
p= Zﬁtai + Zsibi + s9.
i=1 i=1

For fixed degree of r1,...,7%, so, ..., Si, the condition above
can be rewritten as an LMI feasibility test by exploiting the tech-
nique in Section III-A, see also the works [6], [24].

(28)



2504

It is worth mentioning that the Positivstellensatz can be re-
garded as a generalization of the S-procedure, where the poly-
nomials defining the problem are quadratic and the multipliers
are constants [7].

B. Matrix Case

Positivstellensatz can be formulated not only for polynomials
but also for matrix polynomials. Let us define the function tr,. :
Rquqr_)RrXr as

tI‘(Cll) tI‘(Clr)

tr, (C) = (29)

tr(Chr) tr(Chrr)
where C;; € R?*? is the (7,7)-th block of the matrix C €
R?7>4", The following result investigates positivity of matrix
polynomials on compact semi-algebraic sets [25].

Theorem 8: Let F' € P, and define

F={xeR": F(z) <0}. (30)

Suppose that there exists ¢ € R and S1 € P75 such that

& — ||z|)? + tr(Sy(z)F(z)) € PSOS. (31)
Let P € P,.. Then
P(z) >0Vz e F (32)
if and only if there exists So € P{f,,o S such that
P(z) + tr, (S2(2)(I, ® F(z))) € PIOS. (33)

The conditions (31) and (33) can be expressed via LMI fea-
sibility tests for fixed degrees of S; and S, by exploiting the
technique in Section III-A. The result provided in Theorem 8 is
obtained in [26], [27] for the case = 1 (i.e., P is a polynomial
rather than a matrix polynomial). Also, this result is obtained in
[23] for the case of diagonal F'.

Another technique for positivity of polynomials on compact
semi-algebraic sets described by matrix polynomial inequalities
is based on the theory of moments, which is dual to the SOS
technique. For clarity of description, we present here the use
of this technique for determining the minimum of a polynomial
under matrix polynomial inequalities, as it is given in [28]. Let
us introduce the following definitions. Let 4 € R! be a variable
with entries denoted by y,, where ¢ € N™ is a multi-index and
I € N will be specified in the sequel. An example for the case
n = 21is

¥ = (Y00, Y10, Y01, Y20, Y11, Yo2) - (34)

For P € P, expressed as

P(z) = Z C,z*

a€N"

(35)
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with matrices C, € R"*" indexed by a, define the function
L(y,P)= Y Cala- (36)

aeN"

For F' € P, of degree 2d or 2d — 1, and for an integer k > d,
define the matrix

Mk—d(va) :L(yﬁ')

F(z) = (x{k_d}:v{k_d}’) ® F(z) 37

where the power vector t¥=%} is chosen so that all its entries
are monomials.
Theorem 9: Consider the optimization problem

m = min f(z)s.t. F(z) >0

rER™ (38)

where f € P has degree 2c or 2¢ — 1, and F' € P, has degree
2d or 2d — 1. For any integer k > max{c, d} define

m®) = min L(y, f)  s.t.

Yo,, = 17 Mk(y 1) > 07
yeR! "

Mkfd(:%F) Z 0. (39)

Then

m* < m. (40)
Moreover, if there exist s € P95 and S € ”P,,SOS such that
{z € R" : s(x) + tr(S(x)F(z)) > 0} is compact, then

lim m®) =m.
k — oo

(4D

Theorem 9 provides a sequence of lower bounds 1) to the
solution m of (38). Since L(y, f), My(y,1) and My_4(y, F)
are linear in y, computing m*) amounts to minimizing a linear
function subject to LMI constraints, which is a convex optimiza-
tion problem known as semidefinite program (SDP). The ma-
trices My (y, 1) and My_.4(y, F) are known as truncated mo-
ment matrix and localizing moment matrix, respectively. The
length [ of the vector y is given by the number of monomials
in 2 of degree not greater than 2k, and it is hence | = o(n, 2k).

As discussed in [28], optimality can be detected a posteriori
through a simple rank condition, and the global minimizers of
(38) can be computed via linear algebra operations whenever
this rank condition holds. Also, [28] describes an interesting
application of Theorem 9 to static output feedback control syn-
thesis. Last, Theorem 9 is obtained in [29] for the case of diag-
onal F.

V. POSITIVITY OVER SPECIAL SETS

Often control problems require to investigate positivity of
polynomials on special sets, for which dedicated results have
been derived as described in the sequel.
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A. Positivity Over the Simplex

Let us start by considering the case where the variable of a
polynomial is constrained in the simplex, i.e., the set defined by

un:{xeR":in:inzo}. (42)

i=1

The following result characterizes positivity of homogeneous
matrix polynomials over the simplex [30].
Theorem 10: Any homogeneous P € P, satisfies

P(z) >0 Vzel, (43)

if and only if there exists k¥ € N such that all the matrix coeffi-
cients of P(z) (31, xi)k are positive definite.

For any fixed k, Theorem 10 provides a sufficient condition
for (43) by simply testing the positive definiteness of some ma-
trices. Moreover, this condition is also necessary by using a suf-
ficiently large k. For r = 1, Theorem 10 coincides with Pdlya’s
theorem, which characterizes positivity of homogeneous poly-
nomials over the simplex. It is worth mentioning that several
bounds on the value of k required for achieving necessity in
Pdlya’s theorem have been found, which however require the
knowledge of the minimum of p over the simplex, see for in-
stance [31].

Another result for positivity of matrix polynomials over the
simplex is given in [10]. Specifically, let P € P,., and consider
the problem of establishing whether (43) holds. Let d be the
degree of P, and rewrite P as

(44)

for homogeneous H; € P, of degree . Let us define the homo-
geneous matrix polynomial

d n d—i
H(x):ZHi(z)( g;) .

1=0

(45)

Theorem 11: Any P € P, satisfies (43) if and only if

H(z)>0Vz eR}, H(z)=H(y) (46)

y=(at,...x3)’

Theorem 11 provides a condition equivalent to (43) where the
variable z is not constrained in the simplex. As a consequence,
a sufficient condition for (43) can be given immediately via an
LMI feasibility test by as explained at the end of Section III-A
“after” feasibility test.

B. Positivity Over Ellipsoids
Here we consider the problem of establishing whether a poly-

nomial is positive over an ellipsoid, i.e.,

p(x) >0V e R" : 2'Qr = ¢ 47)

where p € P, Q € S"andc € R, with @ > 0O and ¢ > 0.
An interesting strategy reformulates the above problem into the
problem of establishing whether a homogeneous polynomial is
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positive [5]. Specifically, let d be the degree of p, and rewrite
p(z)p(—x) as
d
p(@)p(—x) = Pai(x) (48)
i=0

where po; () € P is a homogeneous polynomial of degree 2i.
Let us define the homogeneous polynomial of degree 2d

d LL’/Q./L' d—1
h(z) = Zﬁzi(x) < - ) . (49)
i=0
Theorem 12: Let us assume that
c
P(Tany(c)) > 0 Tany(c) =, /m(l, 0,...,0). (50)

Then, (47) holds if and only if A(z) > 0 for all z € Ry.

Theorem 12 is interesting because it provides a necessary and
sufficient condition for (47) without introducing unknown mul-
tipliers. Let us observe that the assumption (50) is not restrictive
because, if it does not hold, then one immediately concludes
that (47) cannot hold. A sufficient condition for the positivity
condition on h obtained in Theorem 12 can be obtained via
an LMI feasibility test as explained at the end of Section III-A
“after” feasibility test. This LMI condition is also necessary if
(n,2d) € € [12], [32].

C. Positivity Over Convex Polytopes

Another interesting case concerns positivity of matrix poly-
nomials over convex polytopes, for which a technique known
as matrix dilation approach and slack variable approach can be
used. This technique has been introduced by various authors,
see, e.g., [33], [34] and references therein. Specifically, let us
express a symmetric P € P,. as

P(z) = M(z)'GM(x) (51)
where G is a symmetric matrix, and M is a matrix polynomial.
Moreover, let H be a matrix polynomial such that

M(z)H(z)=0
(M(z)H (z)) is square and nonsingular
H(x) is affine linear.

(52)

Theorem 13: Let P € P, and vV ... v e R™ be given.
Let G, H be defined as in (51)—(52). Then

P(z) > 0Vz € co{v®, ... "} (53)
if there exists a matrix W such that

G+ H(x)W +WH(z) >0 Vee {v®,... v} (54)

See also [35] for a comparison of this technique with the SOS
approach presented in Section III-A.

VI. APPLICATIONS

This section briefly reviews some relevant applications in
control systems of the techniques introduced in Sections III-V.
It is worth mentioning that some of these techniques are
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implemented in the MATLAB toolboxes GloptiPoly [36],
SOSTOOLS [37] and YALMIP [38].

A. Nonlinear System Stability

A fundamental application of LMI techniques for optimiza-
tion problems over polynomials is in nonlinear systems, and
consists of establishing whether an equilibrium point is glob-
ally asymptotically stable. Let us start by considering

{ﬂb(t) = f(«(1))

where t € R is the time, z € R"” is the state, f : R” —R"
is nonlinear, and the origin is the equilibrium point of interest.
Global asymptotic stability of the origin can be investigated by
looking for a Lyapunov function v : R™ — R such that (see, e.g.,
[39] and references therein)

{’U(On) =0, v(z) > 0Vz € R}, v(z) — oo as ||z]| — oo

(55)

—Vu(z) f(z) > 0Vz € R.
(56)
This condition can be investigated through the technique in
Section ITI-A in the case that f and v are polynomial [6]. Specif-
ically, let us assume that the system (55) linearized in the origin
is asymptotically stable. Then, one can ensure the fulfillment of
the condition (56) by requiring that the polynomials

v(z) —ellz]|?, = (Vo) f(2) +ell=]?)

are SOS for some € > 0, which amounts to solving an LMI
feasibility test where the variables are e, the coefficients of v,
and vectors such as « in (8). A similar strategy can be adopted
in the case that the system (55) linearized in the origin is only
marginally stable, see [40] for details.

B. Set Invariance for Nonlinear Systems

Another fundamental problem in nonlinear systems consists
of determining invariant sets, i.e., sets from which no trajectory
can escape. Indeed, let us consider again (55). Aset Z C R" is
positively invariant for (55) if

x(t) € IVt > 0Vz(0) € 7. (57)

In addition, if « converges to the equilibrium point of interest as
t — oo for all 2(0) € Z, then 7 is a strictly positively invariant
set.

Positively invariant sets can be characterized by using Lya-
punov functions, see e.g., [39] and references therein. For in-
stance, if there exists v : R™ — R such that

v(0,) =0, v(z) > 0Vz € RY, v(z) — 00 as [|z|| — oo
—Vou(z) f(z) > 0Vz € V(1) \ {0,}
(58)
where V(1) is the unitary sublevel set of v defined by

V(c) ={z :v(z) < c} (59)

then V(1) is a strictly positively invariant set for (55).
Condition (58) can be investigated through the techniques
in Section IV-A and Section IV-B in the case that f and v
are polynomial analogously to the stability investigation in
Section VI-A. Let us observe that these conditions amount
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to solving an LMI feasibility test if v is fixed, whereas they
amount to solving a bilinear matrix inequality (BMI) feasibility
test if v is variable2. Also, if v is quadratic, one can use the
technique in Section V-B.

This strategy for determining invariant sets has been proposed
starting from [5], [6], [41] which consider the estimation of the
domain of attraction of equilibrium points, see also [42]—-[44]
and references therein for recent contributions. It is useful men-
tioning that if f is polynomial, then it is not restrictive to assume
that also v is polynomial for exponential stability on bounded
domains [45].

C. Robust Stability

Linear systems affected by structured uncertainty are an im-
portant area of automatic control. A model often used in the
literature for these systems is given by

{rr(t) = A(B(1))= ()

0(t) € U, (60)

where # : R — R? is the uncertainty, U, is the simplex in
(42), and A R? — R™*"™ is linear. The robust stability
problem consists of establishing whether the equilibrium point
z = 0, is asymptotically stable for all admissible values of the
uncertainty.

In the case of time-invariant uncertainty, i.e., # is constant
w.r.t. ¢, this problem can be addressed by using homogeneous
parameter-dependent quadratic Lyapunov functions. Such a
function can be written as

v(z,0) =2’ P()x (61)
where P : R — S™ is a homogeneous matrix polynomial. It has
been proved in [10] that (60) is asymptotically stable for time-
invariant uncertainty if and only if there exists a homogeneous
matrix polynomial P of degree not greater than a known value
and satisfying

P#) >0

—P(0)A(6) — A(6) P(0) > o} Vo el,  (62)

One can get rid of the constraint § € U, as explained in
Section V-A, and the problem boils down to check the positive
definiteness of homogeneous matrix polynomials. This can be
tackled by using the technique in Section III-A, which amounts
to solving an LMI feasibility test where the variables are the
coefficients of P and the parameters « required to test the
SOS condition. Although the use of LMIs provides a sufficient
condition for any fixed degree of P, it is interesting to observe
that nonconservatism is achieved for sufficiently large degree
of P, see [12] and references therein.

Another technique for investigating (62) via Lyapunov func-
tions with homogeneous dependence on the parameters has been
proposed in [46] based on the direct use of Pélya’s theorem in
Section V-A. In [47] the use of Lyapunov functions with polyno-
mial dependence has been proposed for the case of uncertainty
constrained in a hypercube, which can be converted to the sim-
plex model. Other strategies consist of adopting the technique

2Solving a BMI feasibility test amounts in general to solving a nonconvex
optimization problem.
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presented in Section V-C, see e.g., [48], and D/G scaling, see
e.g., [49]. Last, asymptotically stability for time-invariant un-
certainty of systems like (60) can be investigated through tech-
niques based on positive polynomials also by adopting non-Lya-
punov approaches, for example through Hermite’s matrices [50]
and Hurwitz’s determinants [12].

In the case the uncertainty in (60) is time-varying, i.e., f de-
pends on £, the robust stability problem can be addressed by
using homogeneous polynomial Lyapunov functions that have
been proposed in [51], [52]. Denoting the degree of such func-
tions by 2d, they can be written as

v(z) = 2t pyldh (63)
where 214} is a power vector containing only monomials of de-
gree d, and P is a symmetric matrix of suitable dimension. The
origin of (60) is asymptotically stable for time-varying uncer-
tainty if there exist d and P such that

ol ppldd 5 0}

Vo € RY
—l (PAL(0) + A (8)P) 2zl >0

vl € ver(U, )( 4

where A, () is the extended matrix of A(f) defined by the
relation

dx{m}

o = Ax Qraiis

(65)

The condition (64) amounts to checking the positive definiteness
of a finite number of homogeneous polynomials, in particular v
and its derivative calculated at each vertex of U, and hence can
be tackled with the technique in Section III-A [53]. It is worth
mentioning that homogeneous polynomial Lyapunov functions
are nonconservative for this robust stability problem [54], and
at present it is conjectured that the LMI condition derived from
(64) may be nonconservative as well for some sufficiently large
d. See also [12] and references therein for the application of this
technique to uncertain systems in linear fractional representa-
tion (LFR) form.

In the case of time-varying uncertainty with bounds on the
variation rate, the robust stability problem for system (60) can
be addressed via a suitable combination of the methods just de-
scribed for time-invariant and time-varying uncertainty, in par-
ticular by using homogeneous parameter-dependent homoge-
neous polynomial Lyapunov functions. See e.g., [12] and ref-
erences therein.

D. Robust Performance

Another important issue in uncertain systems consists of es-
tablishing a robust performance, i.e., the worst-case value of a
performance index such as the H., norm or the Hs norm. In
order to describe this problem, let us introduce the system

&(t) = A0)z(t) + B(9)u(t)
y(t) = C(0)z(t) + D(0)u(t)
G(6) <0

(66)

where z € R™ is the state, u € R” is the input, y € RP is the
output, and the functions A, B, C, D are affine linear of suitable
dimension. The vector § € R? is the uncertainty (for simplicity
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supposed constant w.r.t. ), whose set of admissible values is
defined by the inequality G(#) < 0, with G : R? — S* matrix
polynomial.

Let us start by considering the estimation of the robust H.,
performance of (66), which is defined as
[1H (s,0)llo (67)

V= sup

6:G(6)<0
where H (s, 6) is the transfer matrix from u to y parameterized
by 0, and || H (s, 6)]|co 18 its Hoo norm. This problem can be ad-

dressed by using polynomially parameter-dependent quadratic
Lyapunov functions. Indeed, an upper bound of > is given by

P(o)
v s.t. {Q(@) >0

A~

Yoo = inf

V8 € RY: G(6) <0
vER,P:R1 — S
(68)

where P is a matrix polynomial, and

) = (PO +AOTPO) P00

_L(a0re® corpey,

e « D)D) 63)

By requiring that P and () are SOS, an upper bound to .. (and
hence to %) is readily obtained by solving an SDP. This tech-
nique has been presented in [25], [30], [55], which also pro-
pose tests for establishing exactness of the upper bound. See
also [56] which provides a specialization of this technique to
discrete-time uncertain systems.

The case of robust Hs performance can be similarly ad-
dressed. Indeed, with D(#) = 0, an upper bound to this robust
performance is given by

= inf y
~ER,P:R1 — §" W:Ra — S7
v —tr(W(4)) >0
W(0) — B(6) P(0)B(6) > 0
—P(0)A(8) — A(6)'P(6) — C(6)'C(6) > 0
V8 eR?:G(A) <0

(70)

where P and W are matrix polynomials.

Possible extensions include time-varying uncertainties,
which can be handled analogously to the case of robust stability
analysis in Section VI-D. Also, if the uncertainty set is the sim-
plex, then upper bounds can be found by using the techniques
in Section V-A.

E. Time-Delay Systems

Time-delay systems is “before” another important Another
important area of automatic control where optimization prob-
lems over polynomials finds application. For simplicity, let us
consider the time-delay system

#(t) = Aga(t) + Ava(t — h) ¥t > 0
{x(t) = () Vt € [-h, 0]

where © € R”™ is the state, h > 0 is the delay, and
¢ : [~h,0] =R is the initial condition. The problem con-
sists of establishing whether the system is exponentially stable,
i.e., z exponentially converges to the origin as ¢t — oo for all
continuous functions ¢.

(71)
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As explained in [57], this problem can be addressed by
defining the Lyapunov function

L) el
. [

where M : [—h,0] — S?" and N : [=h,0] x [—h,0] — R"*"
are matrix polynomials. Indeed, by expressing the Lie derivative
of v as

Hp(t)dsdt  (72)

/

o 40)
o) = [ | o0 ) Do) | é(=h) | ds
S\ ots) i)

Yp(t)dsdt  (73)

/ h / o(s)'E

one has that (71) is exponentially stable if there exist M, IV such
that the matrix polynomials

Oan> _D(s) + <Uis)

0n><n

T(s)

M(s) + < 0”*") (74)

Oan

are SOS, the symmetric matrix polynomials 7" and U satisfy

—h
and N(s,t) and —E(s,t) can be expressed as s{%' Bt{d} for
some d € Nand B > 0. Hence, these conditions can be checked
via LMI feasibility tests as described in Section III-A. See also
[58] where this strategy is extended to the case of multiple de-
lays and nonlinear systems.

U(s)ds = 02n><2n (75)

F. Genetic Regulatory Networks

Optimization of polynomials finds application also in the
novel area of systems biology. Indeed, let us consider the
genetic network with SUM regulatory functions

m(t) = A(0)m(t) + b(6) + B(0)g(p(t))
p(t) = C(0)p(t) + D(0)m(t) (76)
g €0,1]?

where m, p € R™ are the concentrations of mRNA and protein,
0 is the uncertainty, A, b, B, C, D are linear functions of
suitable dimension, and g : R™ — R™ is defined by

P!
s+

gi(p) = (77)

with 8 € R and h € N. The problem consists of establishing
whether the network is robustly stable, i.e., there exists a glob-
ally asymptotically stable equilibrium point for all admissible
values of the uncertainty.

This problem can be addressed as proposed in [59]. Specif-
ically, let (m*,p*)" be the (unknown) equilibrium point
depending on 6, and let us shift (m*,p*)’ in the origin by
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defining x = m — m* and y = p — p*. The network (76) can
be rewritten as

(78)

for a suitable function h. Let Z(y, §) C R™ be any set satisfying

h(y,p*(0)) € Z(y,0) Vy € Y(0) V0 € [0,1]"  (79)

where

YVO)={yeR":y; > —-pi(O)Vi=1,...,n}. (80)
The network (76) is robustly stable if there exists a poly-
nomially parameter-dependent quadratic Lyapunov function
v(x,y,6) such that

v(@,y,0) > 0} V(') € R2"Vz € Z(y,0) Vo € [0,1]?

1_}(3:7’!/7'279) <0 (81)
where
B _ Ov(z,y,0) ((Af)z + B(9)=z >
o(w,y,2,0) = (' y'Y <D(9)$+C(9)y . (32)

By describing the set Z(y, ) via polynomial inequalities and
adopting the techniques in Sections IV-A and I'V-B, this strategy
provides a sufficient condition for robust stability of (76) via an
LMI feasibility test. See [59] for details and examples.

G. Game Theory

Another interesting application is in game theory and has
been proposed in [60]. Indeed, a typical problem in polynomial
games with two players consists of solving

{EH[P(‘Tvy)] <y Ve e [-1,1]
I duly) =

min -~y s.t.
Vol

(83)

where z,y € [—1, 1] are the actions of the players, P : R x

R — R is the payoff that assigns payments from Player 2 to

Player 1, E,, denotes the expectation under the probability mea-

sure p, and v € R represents the gain of Player 1 if Player 2

plays the strategy p obtained from the solution of this problem.
If P is a polynomial expressed as

=Y > pigr'y’

(84)
i=0 j=0
for some p; ; € R, this problem can be converted into
=X X piatp; 2 0¥z € [-1,1]
i=035=0
m
. I>0Vz eR
min v s.t. Jz::() Hi v (85)
Vot —2 '
> (5 — pjg2)r? >0V €R
7=0
Lo =1
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where fig, . . . , [tm are the moments of the measure p, i.e.
1 .
i = / y'dp. (86)
J-1

The optimization problem (85) can be solved via an SDP by
using the techniques in Sections III-A and I'V-A based on SOS
polynomials and Positivstellensatz. Indeed, since the polyno-
mials in (85) are univariate, there is no gap between positive
polynomials and SOS polynomials according to Theorem 2,
moreover a necessary and sufficient condition via SOS polyno-
mials for positivity over a closed interval is given by Theorem 7.
See [60] for details.

VII. CONCLUSION

Solving optimization problems over polynomials is often re-
quired in various tasks of control systems. A useful way of ad-
dressing this issue consists of adopting LMI techniques, as they
allow one to obtain bounds to the sought solution by solving
convex optimization problems, and as the conservatism of these
bounds can be decreased in general by suitably increasing the
size of the problems. This survey has presented an overview
of these LMI techniques and their main applications in control
systems, in order to provide all readers with a concise useful
reference.
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