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Terahertz (THz) time-domain imaging is an emerging modality and has attracted a lot of interest. However,
existing THz imaging systems often require a long scan time and sophisticated system design. Recently, a new
design incorporating compressed sensing (CS) leads to a lower detector cost and shorter scan time, in exchange
for computation in an image reconstruction step. In this paper, we develop two reconstruction algorithms that
can estimate the underlying scene as accurately as possible. First is a single-band CS reconstruction method,
where we show that by making use of prior information about the phase and the correlation between the spa-
tial distributions of the amplitude and phase, the reconstruction quality can be significantly improved over
previously published methods. Second, we develop a method that uses the multi-frequency nature of the THz
pulse. Through effective use of the spatial sparsity, spectroscopic phase information, and correlations across
the hyperspectral bands, our method can further enhance the recovered image quality. This is demonstrated by
computation on a set of experimental THz data captured in a single-pixel THz system. © 2010 Optical Society
of America

OCIS codes: 110.6795, 100.3010, 100.3020, 100.3190, 110.1758.
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. INTRODUCTION
n recent years, advances in terahertz (THz) science have
ttracted increasing attention in time-domain THz imag-
ng for a very diverse array of applications. These various
otential applications range from biology and medical sci-
nces [1] and non-destructive evaluation [2] to quality
ontrol processes [3] and homeland security [4]. In con-
rast to the conventional optical modality that is based on
elative intensity measurements only, one important ad-
antage of THz time-domain imaging systems is that the
ransient electric field itself can be measured, from which
e can determine the amplitude and phase of each spec-

ral component that makes up the entire THz pulse.
hus, THz imaging systems provide opportunities for
pectroscopic studies, which are not possible with many
ompeting modalities. Unfortunately, most existing THz
maging systems suffer from slow acquisition because of
heir raster-scanning nature [2,5,6]. For example, using
ne of the fastest raster-scanning time-domain THz imag-
ng system to date [6], we still need 6 min to scan a
00 mm2 area at 0.25 mm resolution (equivalently, a
00�400 pixel image). Although recent efforts by using
ore sophisticated imaging technologies, such as inter-

erometric and tomographic approaches, have shown pre-
iminary successes, raster-scanning is still a latent factor
hat limits the acquisition rate of such systems. The high
omplexity and hardware requirements are also major
imitations to their practical applications.

To meet the requirements of practical, time-crucial ap-
lications, Chan et al. [7,8] propose two fast time-domain
Hz imaging schemes by applying the compressed sens-
1084-7529/10/071638-9/$15.00 © 2
ng (CS) theory [9,10]. In [7], the imaging process is accel-
rated by randomly sampling only a subset of the Fourier
mplitude measurements. However, signal acquisition in
his system still requires the THz receiver to raster scan
he focal plane. To replace this mechanical raster-
canning, they then present a proof-of-concept single-
ixel THz imaging setup in [8]. The system schematic is
llustrated in Fig. 1. Instead of collecting the pixels/
oxels, a single detection element is used to sample the
oncentrated THz beams, which are spatially modulated
ith a set of random patterns. According to the CS theory,
uch fewer samples than the total number of image pix-

ls are needed to fully reconstruct an image, which thus
mplement fast compressed imaging. In exchange for
igh-speed signal acquisition, the challenge of imple-
enting such a system comes in developing efficient spar-

ifying representations and the corresponding algorithms
or signal recovery from the linear measurements. The CS
heory suggests the conditions that need to be fulfilled to
llow nearly perfect reconstruction with a much smaller
umber of measurements. However, in reality, these con-
itions are hard to satisfy fully. In addition, the signal ob-
ained from time-domain THz imaging systems is the
ransient electric field. That is, the received signal is com-
lex [8,11]. Several CS reconstruction algorithms have
een proven effective in dealing with real-valued signals,
ut for complex-valued signals, challenges still exist. The
uthors in [12,13] extend the considerations to the com-
lex domain. However, aside from the �1 norm regularizer
n the complex data, they did not exploit the other a pri-
ri information.
010 Optical Society of America



e
s
s
p
n
w
t
s
i
t
h
f
m
n

v
r
s
c
h
m
2
s
v
b
h
t
T
o
p
s

2
A
C
s
m
h
s
e
M
m
t
b

w
t
s
i
c
[
u

w
o
s

c
a
s
s
a
A
m
q
F
4
c
�
t
t
p
s
i
o
d
s
i
t
t
h
s
c

B
T
i
a
f

w
x
n
s
t
p
r
m
a
o
a
t

F
p

Z. Xu and E. Y. Lam Vol. 27, No. 7 /July 2010 /J. Opt. Soc. Am. A 1639
In this paper, we present a reconstruction algorithm to
stimate the underlying complex signals based on the
ingle-pixel THz imaging system described in [8]. We
how that by using the prior knowledge of the phase and
roperties contained in the system, our algorithm can sig-
ificantly improve the reconstruction quality. In addition,
e note that time-domain THz modalities, such as THz

ime-domain spectroscopy (THz-TDS) and THz imaging
ystems, also offer an important piece of information that
s not commonly found in other ones: the THz pulse con-
ains information at multiple frequencies, and therefore
as hyperspectral information [14,15]. We thus consider

urther enhancing the reconstruction image quality by
aking use of such hyperspectral information. Prelimi-

ary work along this direction has been reported in [16].
This paper is organized as follows. Following a brief re-

iew in Subsection 2.A concerning the CS theory and the
econstruction techniques commonly used, we propose a
parse reconstruction method for signal recovery at a spe-
ific frequency in Subsection 2.B. The work presented
ere is an extension of our previous work in [17], and
ore technical details are provided. Then, in Subsection

.C we introduce our partition-based multiscale hyper-
pectral image estimation approach for the complex-
alued data. In Subsection 2.D, we combine the single-
and sparse reconstruction method with multiscale
yperspectral image estimation and devise a hyperspec-
ral image reconstruction algorithm for the compressive
Hz imaging system. For illustration purposes, we dem-
nstrate in Section 3 the output of our algorithm on the
ractical THz data. Last, based on the experimental re-
ults, we draw our conclusions in Section 4.

. METHODS
. Compressed Sensing Background
ompressed sensing is concerned with encoding a sparse
ignal using a relatively small number of linear measure-
ents and ensures accurate reconstruction with a very
igh probability when a sufficient condition called the re-
tricted isometry property (RIP) is satisfied [9,10]. Math-
matically, given an M�N measurement matrix � with

�N and a vector b that denotes the linear measure-
ents of an N-dimensional sparse signal x, say b=�x,

he optimal estimate of the underlying sparse signal can
e solved by

ig. 1. (Color online) Schematic diagram of a single-pixel,
ulsed THz imaging system based on that in [8].
minimize �x�0 subject to �x = b, �1�

ith �x�0 the number of nonzero entries in x, also called
he �0 norm. That is, we can estimate the underlying
parse/compressible signals (e.g., THz signals) by search-
ng the sparsest solution satisfying �x=b. But this is
omputationally intractable and highly sensitive to noise
18]. Consequently, an easier-to-solve linear program is
sed for searching the sparsest solution of �x=b; that is,

minimize �x�1 subject to �x = b, �2�

here �x�1=�i=1
N �xi� denotes the �1 norm of a vector x. In

ther words, one minimizes the �1 norm of the signal in-
tead of the sparsity itself.

To solve such an inverse problem, several methods and
ode packages have been developed, such as the SPGL1
lgorithm [19,20], gradient projection for sparse recon-
truction [21], �1-magic [22], etc. Since the signal x con-
idered in the conventional CS theory is real, most of the
lgorithms focus only on processing real-valued signals.
lthough some researchers have tried to extend their
ethods to the complex domain [19], the reconstruction

uality in practical applications is often not satisfactory.
or instance, one such attempt can be observed from Fig.
in [8]. If we consider the optimization problem in Eq. (2)

arefully, we may note that for the complex case (i.e., x
CN), the term �x�1 actually imposes constraints only on

he amplitude of x. So aside from sparsity of the ampli-
ude intensity, any other a priori information (e.g., the
hase) has not been exploited. The pulsed THz imaging
ystems are well-known for providing spectroscopic phase
nformation, and this leads us to further considerations
n the use of the phase. On the other hand, in the time-
omain setups, such as the THz imaging systems in [7,8],
ome underlying relations have not been used for further
mprovement in the image reconstruction. This includes
he similarities between spatial intensity distributions of
he amplitude and phase and the correlation across the
yperspectral bands. In the following sections, we demon-
trate the capabilities of this prior knowledge in the re-
overed image quality improvement.

. Single-Band Compressed Sensing Reconstruction
he single-pixel pulsed THz imaging system in Fig. 1

mplements a CS process. The basic principle behind such
CS imaging system can be described as, at a particular

requency fk,

b�fk� = �x�fk�, �3�

here b�fk��CM is a column vector of measurements and
�fk� represents the underlying N�N complex-valued sig-
al ordered in an N2�1 vector, spatially modulated by a
et of random patterns that form the measurement ma-
rix ��RM�N2

. As mentioned above, the CS theory
rovides us with the mathematical basis for the accurate
ecovery of the original signals with only a few measure-
ents (i.e., M�N2). For simplicity, one could directly

dapt the optimization program in the form of Eq. (2) to
ur case, just recognizing that the true and observed data
re both complex. Since seeking the sparsest exact solu-
ion may be useless because of the additive noise, an ap-
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roximate reconstruction is often preferred. It then
akes sense to replace Eq. (2) by

minimize �x�fk��1 subject to ��x�fk� − b�fk��2 � �,

�4�

ith � the tolerance to be defined. Unfortunately, such a
imple extension to the complex domain can hardly pro-
uce a satisfactory estimation of the original scene. An ex-
mple of this can be found in Fig. 4 in [8], and also in our
xperimental results in Section 3.

In our recent work [17], we propose an effective method
hat can significantly improve the reconstruction quality
n combination with the phase information carried in the
eceived THz pulses. The basic consideration relies on the
act that the phase should be smooth and not vary rapidly
23,24]. Hence, to interpret the smoothness constraint on
he phase, we apply the similarities between the ith pixel
nd the spatial neighborhood �i of a certain size centered
t pixel i. The size of �i controls the degree of spatial
moothness. Meanwhile, this kind of smoothness con-
traint of the phase can also alleviate phase wrapping er-
ors and noise to some degree. The size of the neighbor-
ood area should be chosen according to the specific
ituation.

Let ��xi� and ���i� be the phase value of the ith pixel
nd the mean phase value in �i, respectively. The smooth-
ess constraint on the phase intensities is then defined as

���x� − ��x��2 = ��
i=1

N2

���xi� − ���i��2	1/2

� 	, �5�

ith

��xi� = 
− j log
xi

�xi�
, if �xi� 
 T

0, otherwise
� � �− �,��. �6�

ere the parameter 	 is used to control the similarities
etween the ith pixel and its nearest neighbors, and T re-
ers to a given threshold for separating the regions con-
aining signal and noise only. Note that the reconstructed
hase is arbitrary and carries no physical information at
he location where the signal is very weak (i.e., the am-
litude intensity is less than a given value T). Such arti-
acts will seriously affect the appearance of the restored
esults. We will show its effectiveness in detail in the ex-
erimental section.
In addition, many existing time-domain THz imaging

ystems, especially the one in Fig. 1, are based on a
ransmission-type spectroscopy. With no loss of generality,
e assume that the object is piecewise homogeneous and
as uniform thickness. Thus, we get one additional piece
f prior knowledge about the original signals, which is
hat the smooth regions in the spatial distribution of am-
litude should be the same as those in the spatial distri-
ution of phase. Mathematically, let x1=A1 exp�j�1
 and
2=A2 exp�j�2
 be the complex intensities of two different
ixels. If these two pixels are in the same homogeneous
egion, then A1=A2 and �1=�2. Accordingly, we can con-
lude that the first-order difference of the complex inten-
ities in a homogeneous region is zero.
According to this assumption, if we define the total
ariation (TV) of a two-dimensional complex datum based
n the �0 norm as

�
i

��i
hx�0 + ��i

vx�0,

ith �i
h and �i

v as linear operators corresponding to, re-
pectively, horizontal and vertical first-order differences
t pixel i, then minimizing the TV will be a more appro-
riate choice for sparse complex image reconstruction in
Hz systems. Such a definition is not only good for signal
parsifying, but also emphasizes the correlation between
he spatial distributions of the amplitude and phase. That
s, for the solution that produces the minimum value of
hat �0 norm TV, any two different pixels in the same ho-
ogenous region will not only have the same amplitude

ntensities, but also the same phase. The other optimiza-
ion processes, such as minimizing the �1 norm of the sig-
al itself or the coefficients in a certain transform do-
ain, however, cannot efficiently utilize such spatial

orrelation. Meanwhile, although some transform opera-
ion (e.g., wavelet transform) may sparsify the signal, the
patial correlation between the amplitude and phase will
e destroyed in that transform domain.
For tractable programming, we replace �0 norm with �1

orm, i.e.,

�x�TV � �
i

��i
hx� + ��i

vx�. �7�

uch a form, which is defined as the complex-valued TV,
lso appears in [25], as holography is another common op-
ical system that involves capturing complex signals
26,27]. Then minimizing Eq. (7) will give us the same so-
ution as the one by minimizing the �0 norm TV. At this
oint, we would like to mention that in some sources [28],
nother form of the �1 norm TV on complex data has been
sed as follows:

�x�TV � �
i

���i
hx�2 + ��i

vx�2�1/2. �8�

owever, the distinction between these two regularizers
hould be kept in mind, since, at least in our optimization
roblems, the definition in Eq. (7) leads to better results
ith much sharper edges, as illustrated in Section 3. Here
nd below, the term �x�TV refers to our first definition in
q. (7).
Considering the case at a particular frequency fk, the

parse reconstruction algorithm for the CS THz imaging
ystem can be interpreted as an optimization given by

minimize �x�fk��TV

subject to ��x�fk� − b�fk��2 � �,

���x�fk�� − ��x�fk���2 � 	,

�9�

r, equivalently, by the following criterion

x̂�fk� = arg min
x�fk�

1
2 ��x�fk� − b�fk��2

2 + 
�x�fk��TV + ����x�fk��

− ��x�fk���2. �10�
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uch a solution of Eq. (10) can be found by convex pro-
ramming methods, e.g., the nonlinear conjugate gradi-
nt method combined with backtracking line search.

. Complex Multiscale Hyperspectral Image
stimation
ime-domain THz systems provide the capability to cap-
ure multiple spectral information in the far-infrared
ange. Recently, researchers have begun to pay more and
ore attention to THz hyperspectral imaging, such as se-

urity screening [14,15]. However, degradation (i.e., noise,
lurring, etc.) of the observations acquired from hyper-
pectral imaging systems is always inevitable, and thus
ecovery of hyperspectral imagery from degraded obser-
ations becomes a vital task. A direct and naïve thought is
o treat each spectral channel as an independent signal
nd then process them separately. The main shortcoming
f such an approach is that it fails to account for the in-
ercorrelated relationships present in the original hyper-
pectral signal. Researchers thus consider more sophisti-
ated techniques to alleviate the degradation by taking
ot only the individual channels, but also the correlation
cross them, into account. One major approach is
avelet-based hyperspectral image estimation, because
avelet-based techniques can provide good spatial adap-

ivity by virtue of the well-localized property of wavelets
n both time and frequency.

In [29,30], Atkinson et al. present a near-optimal hy-
erspectral image estimation scheme by addressing the
ifferent nature of spatial and spectral dimensions, which
hus avoids the requirement of second-order signal statis-
ics. In particular, based on some assumptions of the in-
erchannel correlation, the hyperspectral signal can be
pproximately decorrelated in the spatial domain by us-
ng a 2-D discrete wavelet transform and the discrete
ourier transform (DFT) in the spectral domain. How-
ver, their work is essentially derived from the analysis of
he hyperspectral Wiener filter, which is based on the as-
umption that the system is corrupted by additive white
aussian noise. Besides, to choose a suitable wavelet ba-

is to guarantee an optimal converge rate, some a priori
nformation about the underlying signals has to be pro-
ided, e.g., the degrees of smoothness.

Another class of hyperspectral image estimation ap-
roaches, which can be categorized as partition-based
ethods, automatically adapts to the signal function
ithout any user input or a priori notion. This enjoys the
dvantages of wavelet-based techniques, such as fast con-
ergence rates. The work by Willett and Nowak [31]
hows a way for Poisson intensity estimation of a single-
hannel signal by using a penalized likelihood method on
ecursive dyadic partitions. Then Krishnamurthy and
illett [32] use such a partition-based multiscale Poisson

ntensity estimator in hyperspectral imaging reconstruc-
ion. While these methods are concerned with real-valued
ignal estimation from photon-limited observations cor-
upted by Poisson noise, in this paper we develop a
artition-based multiscale estimation scheme for
omplex-valued hyperspectral signals gathered from
ime-domain THz imaging systems.

It is reasonable to think of a hyperspectral signal ac-
uired from a time-domain THz imaging system as a
hree-dimensional dataset, where the first two dimen-
ions correspond to the spatial locations and the third di-
ension indicates the index of each spectral band. Let x

nd y respectively denote the true complex hyperspectral
ignal and the distorted complex hyperspectral observa-
ion on a grid of size N�N�K, where K represents the
umber of spectral bands. Our goal is to estimate x from
as accurately as possible. Note that in this subsection,

he hyperspectral data x and y are of size N�N�K.
In accordance with [32], a key feature of the hyperspec-

ral images is that the boundaries and singularities are
ocated at the same spatial positions across all the spec-
ral bands, no matter how bad the contrast or perceptibil-
ty is at some band. This is also true in our THz imaging
cenario. In each spectral band, the underlying amplitude
nd phase intensities contain the same spatial bound-
ries in their respective domains. Therefore, in what fol-
ows we process the amplitude and phase separately. Spe-
ifically, we decompose the underlying signal x into the
mplitude part xA and phase part x�, and equally define
A and y� for the observation y. Since the signals con-
erned here are basically spatially piecewise constant, to
etter adapt to the spatial distributions and preserve the
iscontinuities, we choose the multiscale approach by re-
pectively performing recursive dyadic partitioning (RDP)
n the amplitude and phase domains. The RDP process on
n image produces a tree representation by recursively
ecomposing any part of an existing partition into dyadic
quares, replacing a square by four similar squares of half
he size [33]. Thus, the spatial RDPs can be represented
n terms of quad-trees. Figure 2(a) gives a sample of an
ncomplete RDP and its tree. Since the partition defined
y the RDP is not unique, we use penalized likelihood es-
imation to select the optimal partition P̂ that provides
he best fit to the observations from the space of possible
artitions �P. Each of the terminal squares of this data-
daptive RDP P̂ corresponds to a spatially homogeneous
egion. An example of such partitioning on a two-
imensional image is shown in Fig. 2(b).
In particular, at the beginning, complete spatial RDPs

n amplitude and phase domains are obtained by recur-
ively partitioning their respective spaces into cells with
yadic side length until reaching the pixel-level reso-
ution. Then starting from this finest level, we search
ackward to find the fittest partition over every level of
he quad-tree representation by merging adjoining

ig. 2. (Color online) (a) A Example of an incomplete RDP and
ts quad-tree. (b) Sample partition of a two-dimensional image.
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quares based on the similarities of the intensities in the
eighboring cells. We let PA and P� denote the respective
patial RDP representations of amplitude and phase do-
ains. Thus in each partition cell ca�PA and c��P�,

ased on the respective likelihood of observing yA
�ca� and

�
�c�� given the amplitude estimate xA

�ca� and phase esti-
ate x�

�c��, p�yA
�ca� �xA

�ca�� and p�y�
�c�� �x�

�c���, we separately
ompute the following penalized likelihood (in a log-
ikelihood sense):

x̂A
�ca� = arg min

xA
�ca�

LA
�ca� = arg min

xA
�ca�

�− log p�yA
�ca��xA

�ca��
,

�11a�

x̂�

�c�� = arg min
x�

�c��
L�

�c�� = arg min
x�

�c��
�− log p�y�

�c���x�

�c���
.

�11b�

Apparently, the conditional probability functions
�yA

�ca� �xA
�ca�� and p�y�

�c�� �x�
�c��� are directly related to the

oise distributions in the particular THz system. While
ome work has been performed on modeling the distor-
ions in the amplitude and phase domains [34], it is still
n open problem in deciding an accurate noise estimation;
n this paper, we choose the Gaussian distributions with

ean zero and variance 	A
2 and 	�

2) for the likelihood es-
imation, i.e.,

p�yA
�ca��xA

�ca�� = �
�i,j��ca

�
k=0

M−1 1

�2�	A
2

�exp�−
�yA�i,j,k� − xA�i,j,k��2

2	A
2 � ,

�12a�

p�y�

�c���x�

�c��� = �
�i,j��c�

�
k=0

M−1 1

�2�	�
2

�exp�−
�y��i,j,k� − x��i,j,k��2

2	�
2 � .

�12b�

Certainly, p�yA
�ca� �xA

�ca�� and p�y�
�c�� �x�

�c��� can be modified
or other kinds of distribution in the cases where the noise
an be accurately estimated. Anyhow, such an algorithm
ives the users high design freedom. Finally, the optimal
DP representations in the amplitude and phase domains
re respectively calculated by selecting the ones with the
inimal total penalized likelihood, and then the respec-

ive optimal estimators for the amplitude and phase in-
ensities are the ones fit best to the observations over ev-
ry cell in that optimal RDP, i.e.,

P̂A = arg min
PA

� �
ca�PA

LA
�ca� + �A�PA�� , �13a�

x̂A = � �
ca�P̂A

x̂A
�ca�� , �13b�

nd
P̂� = arg min
P�

� �
c��P�

L�

�c�� + ���P��� , �14a�

x̂� = � �
c��P̂�

x̂�

�c��� . �14b�

ote that in the above equations, the superscripts ca and
� restrict the areas of interest, and the variables with
hese superscripts are zero outside the corresponding ar-
as. The terms �A�PA� and ���P�� are penalties for con-
rolling the spatial smoothness in the amplitude and
hase domains, respectively. The values of these two pen-
lties are respectively proportional to the number of cells
n the partitions PA and P�. More technical details about
he penalties can be found in [31]. Except for other hyper-
pectral image estimation methods, such as the ones men-
ioned in [29,30], the key distinction is the use of the cor-
elated relationships in the hyperspectral images. In our
ethod, such relationships are exploited by separately

orcing the spatial RDPs of the amplitude and phase di-
ensions at each spectral band to be the same.

. Compressed Sensing Hyperspectral Image
econstruction

ncorporating the single-band sparse reconstruction ap-
roach presented in Subsection 2.B with the complex
ultiscale hyperspectral image estimation technique in

ubsection 2.C, we devise a hyperspectral image recon-
truction algorithm for the CS THz imaging system. The
lgorithm flow chart is shown in Fig. 3. It consists of two
lternating steps:

Step 1: Let x̂�t� be the input of the tth iteration. Obtain
he solution ŷ�t� by computing Eq. (10) over each observed
pectral band.

Step 2: Considering ŷ�t� as the observations in this es-
imation process, perform our complex multiscale hyper-
pectral estimation method, then obtain x̂�t+1�. Specifi-
ally, deal with the amplitude and phase parts separately
nd get the respective optimal estimators x̂A

�t+1� and x̂�
�t+1�

ccording to Eqs. (11)–(14). Combine the amplitude and
hase and then obtain x̂�t+1�.

These two steps are executed repeatedly, and the algo-
ithm terminates when

�x̂�t+1� − x̂�t��1

�x̂�t��1

s small enough.

. RESULTS AND DISCUSSION
. Single-Band CS Reconstruction Results
e expand on the preliminary results first presented in

17] with further experiments and analyses. The experi-
ental data are acquired with the help of Wai Lam (Wil-

iam) Chan and Daniel M. Mittleman of Rice University,
ho are the designers of the single-pixel THz imaging

ystem [8]. The test object is a rectangular hole in an
paque screen filled with two transparent plastic plates of
ifferent thickness, as shown in Fig. 4. Figure 5 shows the
S reconstruction results by using different approaches
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nly from the linear measurements acquired at a specific
requency �0.1 THz�. In these experiments, 600 measure-
ents are used to estimate the original complex signal of

ize 32�32.
We first perform the reconstruction by directly mini-
izing the �1 norm of the underlying signal itself. The re-

ig. 3. Hyperspectral image reconstruction algorithm flow
hart.

Fig. 4. (Color online) Rectangular object mask [17].
ults are shown in Figs. 5(a) and 5(b). Figures 5(c) and
(d) and Figs. 5(e) and 5(f) are the respective results by
sing two different wavelet functions (i.e., Daubechies-4
avelet and Daubechies-8 wavelet) for sparsification.
hese results are obtained by using the Matlab code pack-
ge of SPGL1 algorithm [20]. The SPGL1 algorithm in
19] is an often used method which is designed to solve
he conventional sparse reconstruction problem expressed
n Eq. (4). Moreover, the SPGL1 algorithm is one of a few
pproaches which can deal with the problems in the com-
lex domain. Although the improvement is recognizable
n comparison with the direct �1 norm minimization

ethod, the visual quality of these recoveries is still un-
atisfactory. For example, one still cannot identify the
dges of each plastic plate, and the artifacts distributed in
he background of both amplitude and phase images are
uite obvious.

ig. 5. (Color online) CS reconstruction results on the single-
and THz data at the frequency of 0.1 THz. Each image is of size
2�32. The left column shows the amplitude images, and the
hase images are in the right column. (a), (b) Results obtained by
irectly minimizing the �1 norm of the underlying signal itself.
c), (d) Results reconstructed by minimizing the �1 norm of the
aubechies-4 wavelet coefficients. (e), (f) Results obtained by us-

ng Daubechies-8 wavelet transform for sparsification. (g), (h) Re-
ults obtained by applying our single-band CS reconstruction
ethod with Eq. (7) as the complex TV norm. (i), (j) Results ob-

ained by using our single-band approach with the TV norm in
he form of Eq. (8).
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Next, we show the recovered amplitude and phase im-
ges by performing our single-band CS reconstruction
ethods. Note that in Subsection 2.B, we introduce two

ifferent forms of the complex TV norm, i.e., Eqs. (7) and
8). Figures 5(g) and 5(h) correspond to using Eq. (7), and
he results with the TV norm of Eq. (8) are shown in Figs.
(i) and 5(j). From the results, we can easily see that our
ingle-band algorithm with either of these two forms of
V norm outperforms the conventional method. Yet the
istinction between these two different forms also needs
o be dealt with. The recovery with the form of Eq. (7)
ields images consisting of smoother regions with much
harper edges. Hence, in the following experiments, we
hoose it as our complex TV regularizer. In addition, in
he phase smoothing regularizer, the smoothness degree
s controlled by the size of the neighborhood area around
ach pixel. Since too large a window will cause over-
moothing in the estimation, accordingly we use a win-
ow of 3�3 pixels.

ig. 6. (Color online) Hyperspectral reconstruction results with
he practical THz data of size 600�16. (a), (b) Amplitude and
hase obtained by minimizing the �1 norm of the Daubechies-8
avelet coefficients only with the measurements at 0.1 THz. (c),

d) Amplitude and phase reconstructed by using our single-band
econstruction method only with the measurements at 0.1 THz.
e), (f) Amplitude and phase obtained by performing our proposed
yperspectral algorithm with data across all 16 spectral bands,
isplayed at 0.1 THz.
. CS Hyperspectral Multiscale Reconstruction Results
n the experiments discussed below, we demonstrate the
ffectiveness of our proposed CS hyperspectral image re-
onstruction method on a set of practical hyperspectral
Hz measurements. The experimental platform is the
ame as in the previous experiment. Since each measure-
ent obtained from the time-domain THz system is actu-

lly a whole pulse signal containing frequency informa-
ion across the THz frequency range, we sample the
easurements at 16 spectral bands uniformly distributed

ver the frequency range between 0.1 THz and 0.2 THz.
e first conduct the experiments with 600 measurements

t each spectral band. Therefore, our goal is to find the
ptimal estimation of the underlying hyperspectral data
f size 32�32�16 with only 600�16 linear measure-
ents.
Figures 6(a) and 6(b) show the amplitude and phase

mages obtained by applying the conventional CS recon-
truction method with the information only at 0.1 THz.

ig. 7. (Color online) Hyperspectral reconstruction results with
he practical THz data of size 400�16. (a),(b) Amplitude and
hase obtained by minimizing the �1 norm of the Daubechies-8
avelet coefficients only with the measurements at 0.1 THz. (c),

d) Amplitude and phase reconstructed by using our single-band
econstruction method only with the measurements at 0.1 THz.
e), (f) Amplitude and phase obtained by performing our proposed
yperspectral algorithm with data across all 16 spectral bands,
isplayed at 0.1 THz.
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he amplitude and phase reconstructed by using our
ingle-band reconstruction algorithm in Subsection 2.B at
he same frequency are shown in Figs. 6(c) and 6(d). In
greement with our previous discussion, the latter per-
orms much better than the conventional method. How-
ver, these methods fail to preserve some fine edges, and
e still cannot easily estimate the object edges accurately.
Now let us compare our proposed hyperspectral algo-

ithm, shown in Figs. 6(e) and 6(f), with two reconstruc-
ion approaches that are based only on the consideration
f single-band information. Visually, the reconstruction
uality is significantly improved in both the amplitude
nd phase dimensions, i.e., clearer contours with less no-
iceable artifacts and smoother in the homogeneous re-
ions. More importantly, the amplitude and phase recov-
ries corresponding to our proposed hyperspectral method
re more coincident with the correlation between the am-
litude and phase (see Subsection 2.B) and also closer to
he reality that the two plastic plates are homogeneous.
n addition, since each pixel corresponds to a 1 mm area,
e get the size of the outer rectangular by counting pixels

15 mm�14 mm�, which is equal to the actual measure-
ent.
Furthermore, we also experiment with decreasing the

umber of the measurements to 400�16 (see Fig. 7). We
an see that the results reconstructed from only the infor-
ation at a single spectral band are still worse in quality,

ompared with our hyperspectral recovery. Our hyper-
pectral algorithm produces almost the same results,
ven though fewer measurements are used for reconstruc-
ion.

. CONCLUSION
his paper studies methods for accurate image recovery

n compressive THz imaging. First, we present a single-
and CS reconstruction method. Unlike the conventional
pproach, which emphasizes the sparsity of only the am-
litude, our single-band algorithm results in significant
mprovement by adding control on the phase and involv-
ng the correlation between the spatial distributions of
mplitude and phase into the reconstruction process. Sec-
nd, the hyperspectral nature of the THz pulse inspires
s to devise a CS hyperspectral image reconstruction al-
orithm. In addition to the features of the single-band
ne, our hyperspectral method effectively employs corre-
ations across the hyperspectral bands and shows good
erformance in preserving edges and alleviating artifacts
n both amplitude and phase domains. Experimental re-
ults support these claims. Although the discussion in
his paper is mainly based on the single-pixel THz imag-
ng system in [8], many of contributions and discoveries
an be readily utilized in other THz systems, such as
ime-domain THz spectroscopies.
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