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Terahertz (THz) time-domain imaging is an emerging modality and has attracted a lot of interest. However,
existing THz imaging systems often require a long scan time and sophisticated system design. Recently, a new
design incorporating compressed sensing (CS) leads to a lower detector cost and shorter scan time, in exchange
for computation in an image reconstruction step. In this paper, we develop two reconstruction algorithms that
can estimate the underlying scene as accurately as possible. First is a single-band CS reconstruction method,
where we show that by making use of prior information about the phase and the correlation between the spa-
tial distributions of the amplitude and phase, the reconstruction quality can be significantly improved over
previously published methods. Second, we develop a method that uses the multi-frequency nature of the THz
pulse. Through effective use of the spatial sparsity, spectroscopic phase information, and correlations across
the hyperspectral bands, our method can further enhance the recovered image quality. This is demonstrated by
computation on a set of experimental THz data captured in a single-pixel THz system. © 2010 Optical Society
of America
OCIS codes: 110.6795, 100.3010, 100.3020, 100.3190, 110.1758.
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1. INTRODUCTION

In recent years, advances in terahertz (THz) science have
attracted increasing attention in time-domain THz imag-
ing for a very diverse array of applications. These various
potential applications range from biology and medical sci-
ences [1] and non-destructive evaluation [2] to quality
control processes [3] and homeland security [4]. In con-
trast to the conventional optical modality that is based on
relative intensity measurements only, one important ad-
vantage of THz time-domain imaging systems is that the
transient electric field itself can be measured, from which
we can determine the amplitude and phase of each spec-
tral component that makes up the entire THz pulse.
Thus, THz imaging systems provide opportunities for
spectroscopic studies, which are not possible with many
competing modalities. Unfortunately, most existing THz
imaging systems suffer from slow acquisition because of
their raster-scanning nature [2,5,6]. For example, using
one of the fastest raster-scanning time-domain THz imag-
ing system to date [6], we still need 6 min to scan a
100 mm? area at 0.25 mm resolution (equivalently, a
400 %400 pixel image). Although recent efforts by using
more sophisticated imaging technologies, such as inter-
ferometric and tomographic approaches, have shown pre-
liminary successes, raster-scanning is still a latent factor
that limits the acquisition rate of such systems. The high
complexity and hardware requirements are also major
limitations to their practical applications.

To meet the requirements of practical, time-crucial ap-
plications, Chan et al. [7,8] propose two fast time-domain
THz imaging schemes by applying the compressed sens-
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ing (CS) theory [9,10]. In [7], the imaging process is accel-
erated by randomly sampling only a subset of the Fourier
amplitude measurements. However, signal acquisition in
this system still requires the THz receiver to raster scan
the focal plane. To replace this mechanical raster-
scanning, they then present a proof-of-concept single-
pixel THz imaging setup in [8]. The system schematic is
illustrated in Fig. 1. Instead of collecting the pixels/
voxels, a single detection element is used to sample the
concentrated THz beams, which are spatially modulated
with a set of random patterns. According to the CS theory,
much fewer samples than the total number of image pix-
els are needed to fully reconstruct an image, which thus
implement fast compressed imaging. In exchange for
high-speed signal acquisition, the challenge of imple-
menting such a system comes in developing efficient spar-
sifying representations and the corresponding algorithms
for signal recovery from the linear measurements. The CS
theory suggests the conditions that need to be fulfilled to
allow nearly perfect reconstruction with a much smaller
number of measurements. However, in reality, these con-
ditions are hard to satisfy fully. In addition, the signal ob-
tained from time-domain THz imaging systems is the
transient electric field. That is, the received signal is com-
plex [8,11]. Several CS reconstruction algorithms have
been proven effective in dealing with real-valued signals,
but for complex-valued signals, challenges still exist. The
authors in [12,13] extend the considerations to the com-
plex domain. However, aside from the €; norm regularizer
on the complex data, they did not exploit the other a pri-
ori information.

© 2010 Optical Society of America
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Fig. 1. (Color online) Schematic diagram of a single-pixel,
pulsed THz imaging system based on that in [8].

In this paper, we present a reconstruction algorithm to
estimate the underlying complex signals based on the
single-pixel THz imaging system described in [8]. We
show that by using the prior knowledge of the phase and
properties contained in the system, our algorithm can sig-
nificantly improve the reconstruction quality. In addition,
we note that time-domain THz modalities, such as THz
time-domain spectroscopy (THz-TDS) and THz imaging
systems, also offer an important piece of information that
is not commonly found in other ones: the THz pulse con-
tains information at multiple frequencies, and therefore
has hyperspectral information [14,15]. We thus consider
further enhancing the reconstruction image quality by
making use of such hyperspectral information. Prelimi-
nary work along this direction has been reported in [16].

This paper is organized as follows. Following a brief re-
view in Subsection 2.A concerning the CS theory and the
reconstruction techniques commonly used, we propose a
sparse reconstruction method for signal recovery at a spe-
cific frequency in Subsection 2.B. The work presented
here is an extension of our previous work in [17], and
more technical details are provided. Then, in Subsection
2.C we introduce our partition-based multiscale hyper-
spectral image estimation approach for the complex-
valued data. In Subsection 2.D, we combine the single-
band sparse reconstruction method with multiscale
hyperspectral image estimation and devise a hyperspec-
tral image reconstruction algorithm for the compressive
THz imaging system. For illustration purposes, we dem-
onstrate in Section 3 the output of our algorithm on the
practical THz data. Last, based on the experimental re-
sults, we draw our conclusions in Section 4.

2. METHODS

A. Compressed Sensing Background

Compressed sensing is concerned with encoding a sparse
signal using a relatively small number of linear measure-
ments and ensures accurate reconstruction with a very
high probability when a sufficient condition called the re-
stricted isometry property (RIP) is satisfied [9,10]. Math-
ematically, given an M X N measurement matrix W with
M<N and a vector b that denotes the linear measure-
ments of an N-dimensional sparse signal x, say b=V¥x,
the optimal estimate of the underlying sparse signal can
be solved by
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minimize |[x||,  subject to ¥x=b, (1)
with |x/|, the number of nonzero entries in x, also called
the ¢y norm. That is, we can estimate the underlying
sparse/compressible signals (e.g., THz signals) by search-
ing the sparsest solution satisfying ¥Yx=Db. But this is
computationally intractable and highly sensitive to noise
[18]. Consequently, an easier-to-solve linear program is
used for searching the sparsest solution of ¥x=Db; that is,

minimize [x||;  subject to ¥x=b, 2)
where [|x[|; ==Y |x;| denotes the ¢; norm of a vector x. In
other words, one minimizes the €¢; norm of the signal in-
stead of the sparsity itself.

To solve such an inverse problem, several methods and
code packages have been developed, such as the SPGL1
algorithm [19,20], gradient projection for sparse recon-
struction [21], €;-magic [22], etc. Since the signal x con-
sidered in the conventional CS theory is real, most of the
algorithms focus only on processing real-valued signals.
Although some researchers have tried to extend their
methods to the complex domain [19], the reconstruction
quality in practical applications is often not satisfactory.
For instance, one such attempt can be observed from Fig.
4 in [8]. If we consider the optimization problem in Eq. (2)
carefully, we may note that for the complex case (i.e., x
eCN), the term ||x|; actually imposes constraints only on
the amplitude of x. So aside from sparsity of the ampli-
tude intensity, any other a priori information (e.g., the
phase) has not been exploited. The pulsed THz imaging
systems are well-known for providing spectroscopic phase
information, and this leads us to further considerations
on the use of the phase. On the other hand, in the time-
domain setups, such as the THz imaging systems in [7,8],
some underlying relations have not been used for further
improvement in the image reconstruction. This includes
the similarities between spatial intensity distributions of
the amplitude and phase and the correlation across the
hyperspectral bands. In the following sections, we demon-
strate the capabilities of this prior knowledge in the re-
covered image quality improvement.

B. Single-Band Compressed Sensing Reconstruction

The single-pixel pulsed THz imaging system in Fig. 1
implements a CS process. The basic principle behind such
a CS imaging system can be described as, at a particular
frequency 3,

b(f) =¥x(f,), (3)

where b(f;,) € CM is a column vector of measurements and
x(f,) represents the underlying N X N complex-valued sig-
nal ordered in an N2 X 1 vector, spatially modulated by a
set of random patterns that form the measurement ma-
trix ¥ e RM*N As mentioned above, the CS theory
provides us with the mathematical basis for the accurate
recovery of the original signals with only a few measure-
ments (i.e., M<N?). For simplicity, one could directly
adapt the optimization program in the form of Eq. (2) to
our case, just recognizing that the true and observed data
are both complex. Since seeking the sparsest exact solu-
tion may be useless because of the additive noise, an ap-
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proximate reconstruction is often preferred. It then
makes sense to replace Eq. (2) by

subject to [¥x(f;) = bz < ¢,
(4)

with e the tolerance to be defined. Unfortunately, such a
simple extension to the complex domain can hardly pro-
duce a satisfactory estimation of the original scene. An ex-
ample of this can be found in Fig. 4 in [8], and also in our
experimental results in Section 3.

In our recent work [17], we propose an effective method
that can significantly improve the reconstruction quality
in combination with the phase information carried in the
received THz pulses. The basic consideration relies on the
fact that the phase should be smooth and not vary rapidly
[23,24]. Hence, to interpret the smoothness constraint on
the phase, we apply the similarities between the ith pixel
and the spatial neighborhood (); of a certain size centered
at pixel i. The size of (); controls the degree of spatial
smoothness. Meanwhile, this kind of smoothness con-
straint of the phase can also alleviate phase wrapping er-
rors and noise to some degree. The size of the neighbor-
hood area should be chosen according to the specific
situation.

Let ¢(x;) and ¢(Q);) be the phase value of the ith pixel
and the mean phase value in ();, respectively. The smooth-
ness constraint on the phase intensities is then defined as

minimize [x(f)|;

N2

12
[ () —MH2 = (E [d(x;) - ¢(Qi)]2) <o, (5)
i-1

with

Xi oo,
_.j log T lf |xl| =T
Jcy| €[~ mm). (6)

0, otherwise

olx;) =

Here the parameter o is used to control the similarities
between the ith pixel and its nearest neighbors, and T re-
fers to a given threshold for separating the regions con-
taining signal and noise only. Note that the reconstructed
phase is arbitrary and carries no physical information at
the location where the signal is very weak (i.e., the am-
plitude intensity is less than a given value 7). Such arti-
facts will seriously affect the appearance of the restored
results. We will show its effectiveness in detail in the ex-
perimental section.

In addition, many existing time-domain THz imaging
systems, especially the one in Fig. 1, are based on a
transmission-type spectroscopy. With no loss of generality,
we assume that the object is piecewise homogeneous and
has uniform thickness. Thus, we get one additional piece
of prior knowledge about the original signals, which is
that the smooth regions in the spatial distribution of am-
plitude should be the same as those in the spatial distri-
bution of phase. Mathematically, let x;=A; exp{j¢$;} and
x9=Ay exp{j s} be the complex intensities of two different
pixels. If these two pixels are in the same homogeneous
region, then A;=A, and ¢;=¢s. Accordingly, we can con-
clude that the first-order difference of the complex inten-
sities in a homogeneous region is zero.
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According to this assumption, if we define the total
variation (TV) of a two-dimensional complex datum based
on the {3 norm as

2 atxlo + [Atxll,
13

with A? and A as linear operators corresponding to, re-
spectively, horizontal and vertical first-order differences
at pixel i, then minimizing the TV will be a more appro-
priate choice for sparse complex image reconstruction in
THz systems. Such a definition is not only good for signal
sparsifying, but also emphasizes the correlation between
the spatial distributions of the amplitude and phase. That
is, for the solution that produces the minimum value of
that €, norm TV, any two different pixels in the same ho-
mogenous region will not only have the same amplitude
intensities, but also the same phase. The other optimiza-
tion processes, such as minimizing the €; norm of the sig-
nal itself or the coefficients in a certain transform do-
main, however, cannot efficiently utilize such spatial
correlation. Meanwhile, although some transform opera-
tion (e.g., wavelet transform) may sparsify the signal, the
spatial correlation between the amplitude and phase will
be destroyed in that transform domain.

For tractable programming, we replace €, norm with ¢,
norm, i.e.,

Iy £ 2 |A7x] + |A7x]. )

13

Such a form, which is defined as the complex-valued TV,
also appears in [25], as holography is another common op-
tical system that involves capturing complex signals
[26,27]. Then minimizing Eq. (7) will give us the same so-
lution as the one by minimizing the €3 norm TV. At this
point, we would like to mention that in some sources [28],
another form of the €1 norm TV on complex data has been
used as follows:

v = E (|Alx|? + |AVx|2)12, (8)

However, the distinction between these two regularizers
should be kept in mind, since, at least in our optimization
problems, the definition in Eq. (7) leads to better results
with much sharper edges, as illustrated in Section 3. Here
and below, the term ||x||tv refers to our first definition in
Eq. (7).

Considering the case at a particular frequency f;,, the
sparse reconstruction algorithm for the CS THz imaging
system can be interpreted as an optimization given by

minimize |[x(3)|rv
subject to [¥x(f;) - bz < ¢, 9)
p(x(f1) — px(f)le < o,

or, equivalently, by the following criterion

(f) = arg min 3| Wx(f,) - b3 + Nx(F)lry + l px(£))

X(fk)

= ¢(x(f)l2- (10)
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Such a solution of Eq. (10) can be found by convex pro-
gramming methods, e.g., the nonlinear conjugate gradi-
ent method combined with backtracking line search.

C. Complex Multiscale Hyperspectral Image

Estimation

Time-domain THz systems provide the capability to cap-
ture multiple spectral information in the far-infrared
range. Recently, researchers have begun to pay more and
more attention to THz hyperspectral imaging, such as se-
curity screening [14,15]. However, degradation (i.e., noise,
blurring, etc.) of the observations acquired from hyper-
spectral imaging systems is always inevitable, and thus
recovery of hyperspectral imagery from degraded obser-
vations becomes a vital task. A direct and naive thought is
to treat each spectral channel as an independent signal
and then process them separately. The main shortcoming
of such an approach is that it fails to account for the in-
tercorrelated relationships present in the original hyper-
spectral signal. Researchers thus consider more sophisti-
cated techniques to alleviate the degradation by taking
not only the individual channels, but also the correlation
across them, into account. One major approach is
wavelet-based hyperspectral image estimation, because
wavelet-based techniques can provide good spatial adap-
tivity by virtue of the well-localized property of wavelets
in both time and frequency.

In [29,30], Atkinson et al. present a near-optimal hy-
perspectral image estimation scheme by addressing the
different nature of spatial and spectral dimensions, which
thus avoids the requirement of second-order signal statis-
tics. In particular, based on some assumptions of the in-
terchannel correlation, the hyperspectral signal can be
approximately decorrelated in the spatial domain by us-
ing a 2-D discrete wavelet transform and the discrete
Fourier transform (DFT) in the spectral domain. How-
ever, their work is essentially derived from the analysis of
the hyperspectral Wiener filter, which is based on the as-
sumption that the system is corrupted by additive white
Gaussian noise. Besides, to choose a suitable wavelet ba-
sis to guarantee an optimal converge rate, some a priori
information about the underlying signals has to be pro-
vided, e.g., the degrees of smoothness.

Another class of hyperspectral image estimation ap-
proaches, which can be categorized as partition-based
methods, automatically adapts to the signal function
without any user input or a priori notion. This enjoys the
advantages of wavelet-based techniques, such as fast con-
vergence rates. The work by Willett and Nowak [31]
shows a way for Poisson intensity estimation of a single-
channel signal by using a penalized likelihood method on
recursive dyadic partitions. Then Krishnamurthy and
Willett [32] use such a partition-based multiscale Poisson
intensity estimator in hyperspectral imaging reconstruc-
tion. While these methods are concerned with real-valued
signal estimation from photon-limited observations cor-
rupted by Poisson noise, in this paper we develop a
partition-based multiscale estimation scheme for
complex-valued hyperspectral signals gathered from
time-domain THz imaging systems.

It is reasonable to think of a hyperspectral signal ac-
quired from a time-domain THz imaging system as a
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three-dimensional dataset, where the first two dimen-
sions correspond to the spatial locations and the third di-
mension indicates the index of each spectral band. Let x
and y respectively denote the true complex hyperspectral
signal and the distorted complex hyperspectral observa-
tion on a grid of size N XN XK, where K represents the
number of spectral bands. Our goal is to estimate x from
y as accurately as possible. Note that in this subsection,
the hyperspectral data x and y are of size N XN XK.

In accordance with [32], a key feature of the hyperspec-
tral images is that the boundaries and singularities are
located at the same spatial positions across all the spec-
tral bands, no matter how bad the contrast or perceptibil-
ity is at some band. This is also true in our THz imaging
scenario. In each spectral band, the underlying amplitude
and phase intensities contain the same spatial bound-
aries in their respective domains. Therefore, in what fol-
lows we process the amplitude and phase separately. Spe-
cifically, we decompose the underlying signal x into the
amplitude part x5 and phase part x4, and equally define
ya and y, for the observation y. Since the signals con-
cerned here are basically spatially piecewise constant, to
better adapt to the spatial distributions and preserve the
discontinuities, we choose the multiscale approach by re-
spectively performing recursive dyadic partitioning (RDP)
in the amplitude and phase domains. The RDP process on
an image produces a tree representation by recursively
decomposing any part of an existing partition into dyadic
squares, replacing a square by four similar squares of half
the size [33]. Thus, the spatial RDPs can be represented
in terms of quad-trees. Figure 2(a) gives a sample of an
incomplete RDP and its tree. Since the partition defined
by the RDP is not unique, we use penalized likelihood es-

timation to select the optimal partition P that provides
the best fit to the observations from the space of possible
partitions 2p. Each of the terminal squares of this data-

adaptive RDP P corresponds to a spatially homogeneous
region. An example of such partitioning on a two-
dimensional image is shown in Fig. 2(b).

In particular, at the beginning, complete spatial RDPs
in amplitude and phase domains are obtained by recur-
sively partitioning their respective spaces into cells with
dyadic side length until reaching the pixel-level reso-
lution. Then starting from this finest level, we search
backward to find the fittest partition over every level of
the quad-tree representation by merging adjoining
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Fig. 2. (Color online) (a) A Example of an incomplete RDP and
its quad-tree. (b) Sample partition of a two-dimensional image.
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squares based on the similarities of the intensities in the
neighboring cells. We let P and P, denote the respective
spatial RDP representations of amplitude and phase do-
mains. Thus in each partition cell ¢, P4 and c,e Py,
based on the respective likelihood of observing y(““) and

(C“‘) given the amplitude estimate x(c“) and phase esti-
mate ngd) (y5?|xe)) and p(y df‘b |xdf‘/’)) we separately
compute the following penalized likelihood (in a log-
likelihood sense):

,}E:a) = arg min L(” = arg min{- log p(y \ ))},
XX“) (L )
(11a)
f((cd) —ar L(C(/,) _ 1 <C¢) (CdJ)
o g min arg min{- log P(y |X )}-

(c,,,) (c $
(11b)

Apparently, the conditional probability functions
p(y<c" |XE§“)) and p(y$¢)|x$¢)) are directly related to the
noise distributions in the particular THz system. While
some work has been performed on modeling the distor-
tions in the amplitude and phase domains [34], it is still
an open problem in deciding an accurate noise estimation;
in this paper, we choose the Gaussian distributions with
mean zero and variance o4 and o‘?b) for the likelihood es-
timation, i.e.,

Py = 1 H

(i) ecy k=0 VZWTA

1

[yA(lx]’k) - XA(l’.]’k)]2

Xex - 5
p 2UA2
(12a)
(e (cyp) :
p(ys?Ixg?) =11 H
(ij)ecy k=0 \’27"‘T¢>
NZNRIES HNN I
Xexpy — 3
20’¢
(12b)

Certainly, p(y(c“)|x£§a)) and p(y5§¢) |x$¢)) can be modified
for other kinds of distribution in the cases where the noise
can be accurately estimated. Anyhow, such an algorithm
gives the users high design freedom. Finally, the optimal
RDP representations in the amplitude and phase domains
are respectively calculated by selecting the ones with the
minimal total penalized likelihood, and then the respec-
tive optimal estimators for the amplitude and phase in-
tensities are the ones fit best to the observations over ev-
ery cell in that optimal RDP, i.e.,

Pa=arg min{ > LE:") + nA(PA)}, (13a)

Pa c,ePp

c,€Pa

ﬁA={ S xjg} (13b)

and
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734, argmln{ E L¢ "’)+77¢(73¢)} (14a)
Py cyePy

ﬁ¢={ > ﬁfgd’)}. (14b)

c4€Py

Note that in the above equations, the superscripts ¢, and
c, restrict the areas of interest, and the variables with
these superscripts are zero outside the corresponding ar-
eas. The terms 74(P,) and 74(P,) are penalties for con-
trolling the spatial smoothness in the amplitude and
phase domains, respectively. The values of these two pen-
alties are respectively proportional to the number of cells
in the partitions P, and P, More technical details about
the penalties can be found in [31]. Except for other hyper-
spectral image estimation methods, such as the ones men-
tioned in [29,30], the key distinction is the use of the cor-
related relationships in the hyperspectral images. In our
method, such relationships are exploited by separately
forcing the spatial RDPs of the amplitude and phase di-
mensions at each spectral band to be the same.

D. Compressed Sensing Hyperspectral Image
Reconstruction

Incorporating the single-band sparse reconstruction ap-
proach presented in Subsection 2.B with the complex
multiscale hyperspectral image estimation technique in
subsection 2.C, we devise a hyperspectral image recon-
struction algorithm for the CS THz imaging system. The
algorithm flow chart is shown in Fig. 3. It consists of two
alternating steps:

Step 1: Let x® be the input of the ¢th iteration. Obtain
the solution §® by computing Eq. (10) over each observed
spectral band.

Step 2: Considering §* as the observations in this es-
timation process, perform our complex multiscale hyper-
spectral estimation method, then obtain %**V. Specifi-
cally, deal with the amplitude and phase parts separately
and get the respective optimal estimators fixﬂ) and %Y
according to Egs. (11)-(14). Combine the amplitude and
phase and then obtain £¢+1.

These two steps are executed repeatedly, and the algo-
rithm terminates when

e -2,
I,

is small enough.

3. RESULTS AND DISCUSSION

A. Single-Band CS Reconstruction Results

We expand on the preliminary results first presented in
[17] with further experiments and analyses. The experi-
mental data are acquired with the help of Wai Lam (Wil-
liam) Chan and Daniel M. Mittleman of Rice University,
who are the designers of the single-pixel THz imaging
system [8]. The test object is a rectangular hole in an
opaque screen filled with two transparent plastic plates of
different thickness, as shown in Fig. 4. Figure 5 shows the
CS reconstruction results by using different approaches
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Hyperspectral image reconstruction algorithm flow

only from the linear measurements acquired at a specific
frequency (0.1 THz). In these experiments, 600 measure-
ments are used to estimate the original complex signal of
size 32X 32.

We first perform the reconstruction by directly mini-
mizing the €; norm of the underlying signal itself. The re-

Fig. 4. (Color online) Rectangular object mask [17].
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Fig. 5. (Color online) CS reconstruction results on the single-
band THz data at the frequency of 0.1 THz. Each image is of size
32 X% 32. The left column shows the amplitude images, and the
phase images are in the right column. (a), (b) Results obtained by
directly minimizing the ¢; norm of the underlying signal itself.
(c), (d) Results reconstructed by minimizing the ¢; norm of the
Daubechies-4 wavelet coefficients. (e), (f) Results obtained by us-
ing Daubechies-8 wavelet transform for sparsification. (g), (h) Re-
sults obtained by applying our single-band CS reconstruction
method with Eq. (7) as the complex TV norm. (i), (j) Results ob-
tained by using our single-band approach with the TV norm in
the form of Eq. (8).

sults are shown in Figs. 5(a) and 5(b). Figures 5(c) and
5(d) and Figs. 5(e) and 5(f) are the respective results by
using two different wavelet functions (i.e., Daubechies-4
wavelet and Daubechies-8 wavelet) for sparsification.
These results are obtained by using the Matlab code pack-
age of SPGL1 algorithm [20]. The SPGL1 algorithm in
[19] is an often used method which is designed to solve
the conventional sparse reconstruction problem expressed
in Eq. (4). Moreover, the SPGL1 algorithm is one of a few
approaches which can deal with the problems in the com-
plex domain. Although the improvement is recognizable
in comparison with the direct ¢; norm minimization
method, the visual quality of these recoveries is still un-
satisfactory. For example, one still cannot identify the
edges of each plastic plate, and the artifacts distributed in
the background of both amplitude and phase images are
quite obvious.
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Fig. 6. (Color online) Hyperspectral reconstruction results with
the practical THz data of size 600X 16. (a), (b) Amplitude and
phase obtained by minimizing the €¢; norm of the Daubechies-8
wavelet coefficients only with the measurements at 0.1 THz. (c),
(d) Amplitude and phase reconstructed by using our single-band
reconstruction method only with the measurements at 0.1 THz.
(e), (f) Amplitude and phase obtained by performing our proposed
hyperspectral algorithm with data across all 16 spectral bands,
displayed at 0.1 THz.

Next, we show the recovered amplitude and phase im-
ages by performing our single-band CS reconstruction
methods. Note that in Subsection 2.B, we introduce two
different forms of the complex TV norm, i.e., Egs. (7) and
(8). Figures 5(g) and 5(h) correspond to using Eq. (7), and
the results with the TV norm of Eq. (8) are shown in Figs.
5(i) and 5@j). From the results, we can easily see that our
single-band algorithm with either of these two forms of
TV norm outperforms the conventional method. Yet the
distinction between these two different forms also needs
to be dealt with. The recovery with the form of Eq. (7)
yields images consisting of smoother regions with much
sharper edges. Hence, in the following experiments, we
choose it as our complex TV regularizer. In addition, in
the phase smoothing regularizer, the smoothness degree
is controlled by the size of the neighborhood area around
each pixel. Since too large a window will cause over-
smoothing in the estimation, accordingly we use a win-
dow of 3 X 3 pixels.
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B. CS Hyperspectral Multiscale Reconstruction Results
In the experiments discussed below, we demonstrate the
effectiveness of our proposed CS hyperspectral image re-
construction method on a set of practical hyperspectral
THz measurements. The experimental platform is the
same as in the previous experiment. Since each measure-
ment obtained from the time-domain THz system is actu-
ally a whole pulse signal containing frequency informa-
tion across the THz frequency range, we sample the
measurements at 16 spectral bands uniformly distributed
over the frequency range between 0.1 THz and 0.2 THz.
We first conduct the experiments with 600 measurements
at each spectral band. Therefore, our goal is to find the
optimal estimation of the underlying hyperspectral data
of size 32X32X 16 with only 600X 16 linear measure-
ments.

Figures 6(a) and 6(b) show the amplitude and phase
images obtained by applying the conventional CS recon-
struction method with the information only at 0.1 THz.

Fig. 7. (Color online) Hyperspectral reconstruction results with
the practical THz data of size 400X 16. (a),(b) Amplitude and
phase obtained by minimizing the €; norm of the Daubechies-8
wavelet coefficients only with the measurements at 0.1 THz. (c),
(d) Amplitude and phase reconstructed by using our single-band
reconstruction method only with the measurements at 0.1 THz.
(e), (f) Amplitude and phase obtained by performing our proposed
hyperspectral algorithm with data across all 16 spectral bands,
displayed at 0.1 THz.
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The amplitude and phase reconstructed by using our
single-band reconstruction algorithm in Subsection 2.B at
the same frequency are shown in Figs. 6(c) and 6(d). In
agreement with our previous discussion, the latter per-
forms much better than the conventional method. How-
ever, these methods fail to preserve some fine edges, and
we still cannot easily estimate the object edges accurately.

Now let us compare our proposed hyperspectral algo-
rithm, shown in Figs. 6(e) and 6(f), with two reconstruc-
tion approaches that are based only on the consideration
of single-band information. Visually, the reconstruction
quality is significantly improved in both the amplitude
and phase dimensions, i.e., clearer contours with less no-
ticeable artifacts and smoother in the homogeneous re-
gions. More importantly, the amplitude and phase recov-
eries corresponding to our proposed hyperspectral method
are more coincident with the correlation between the am-
plitude and phase (see Subsection 2.B) and also closer to
the reality that the two plastic plates are homogeneous.
In addition, since each pixel corresponds to a 1 mm area,
we get the size of the outer rectangular by counting pixels
(15 mm X 14 mm), which is equal to the actual measure-
ment.

Furthermore, we also experiment with decreasing the
number of the measurements to 400 X 16 (see Fig. 7). We
can see that the results reconstructed from only the infor-
mation at a single spectral band are still worse in quality,
compared with our hyperspectral recovery. Our hyper-
spectral algorithm produces almost the same results,
even though fewer measurements are used for reconstruc-
tion.

4. CONCLUSION

This paper studies methods for accurate image recovery
in compressive THz imaging. First, we present a single-
band CS reconstruction method. Unlike the conventional
approach, which emphasizes the sparsity of only the am-
plitude, our single-band algorithm results in significant
improvement by adding control on the phase and involv-
ing the correlation between the spatial distributions of
amplitude and phase into the reconstruction process. Sec-
ond, the hyperspectral nature of the THz pulse inspires
us to devise a CS hyperspectral image reconstruction al-
gorithm. In addition to the features of the single-band
one, our hyperspectral method effectively employs corre-
lations across the hyperspectral bands and shows good
performance in preserving edges and alleviating artifacts
in both amplitude and phase domains. Experimental re-
sults support these claims. Although the discussion in
this paper is mainly based on the single-pixel THz imag-
ing system in [8], many of contributions and discoveries
can be readily utilized in other THz systems, such as
time-domain THz spectroscopies.
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