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Abstract

In the research area of dynamic traffic assignment, link travel times can be derived from link

cumulative inflow and outflow curves which are generated by dynamic network loading. In this

paper, the profiles of cumulative flows are piecewise linearized. Both the step function (SF) and

linear interpolation (LI) are used to approximate cumulative flows over time. New formulations of

the SF-type and LI-type link travel-time models are developed. We prove that these two types of link

travel time models ensure first-in-first-out (FIFO) and continuity of travel time with respect to flows,

and have other desirable properties. Since the LI-type link travel time model does not satisfy the

causality property, a modified LI-type (MLI-type) link travel time model is proposed in this paper.

We prove that the MLI-type link travel time model ensures causality, strong FIFO and travel time

continuity, and that the MLI-type link travel time function is strictly monotone under the condition

that the travel time of each vehicle on a link is greater than the free flow travel time on that link.

Numerical examples are set up to illustrate the properties and accuracy of the three models.

Keywords: Link travel time; cumulative flow; piecewise linearization; FIFO; causality

1 Introduction

The properties of dynamic traffic assignment (DTA) have important implications on its ability to portray

the actual travel behavior and computation speed. These properties depend strongly on two components
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of DTA (Szeto and Lo, 2006): the travel choice principle and the traffic flow component.

The travel choice principle in DTA models travelers’ propensity to travel, e.g., how they select their

routes, departure times, modes, or destinations. In making such choices, travel time is one important

element of their considerations. The dynamic user optimal (DUO) principle is in general adopted as the

travel choice principle in DTA , which assumes that travelers select their routes and/or departure times to

minimize their actual travel costs such as travel times. The travel choice principle can be mathematically

formulated as a variational inequality problem (e.g., Friesz et al., 1993; Ran and Boyce, 1996; Lo and

Szeto, 2002; Huang and Lam, 2002), where link travel times are functions of link flows. The existence

of solutions to this problem requires the mapping function of the problem to be continuous and the

solution set to be a nonempty compact convex set while the uniqueness of the solution further requires

the mapping function to be strictly monotonic (Nagurney, 1993). These requirements imply that link

travel times must be continuous with respect to link flows for solution existence; moreover, link travel

times must be strictly monotone with respect to link flows for solution uniqueness. If the continuity

cannot be guaranteed, the DTA problem can have no solution and the solution algorithms cannot give a

convergent solution. Furthermore, if the travel time function is monotone, DTA can be solved by some

existing solution methods efficiently. Therefore, continuity and monotonicity of travel times are two

important properties in DTA.

The traffic flow component depicts how traffic propagates inside a traffic network and hence governs the

network performance in terms of travel time. The procedure in implementation is often called dynamic

network loading (DNL). In developing such component, one approach is to develop link travel time models.

Link travel time models often express the travel time of a link as a function of the flow on that link. The

link travel time models presented in the literature generally focus on the following properties: first-in first-

out (FIFO) (e.g., Astarita, 1996; Huang and Lam, 2002; Carey et al., 2003; Carey and Ge, 2005; Carey

and Ge, 2007), causality (e.g., Friesz et al., 1993; Astarita, 1996; Carey et al., 2003; Carey and Ge, 2007),

and reduction to a static model (e.g., Carey et al., 2003; Carey and Ge, 2007). FIFO implies that vehicles

that enter the link earlier will leave it sooner. Causality means that the speed and travel time of a vehicle

on a link is only affected by the speed of vehicles ahead. Reduction to a static model means the link

travel time function should reduce to the well-known static version when traffic flows are constant over

time. Indeed, FIFO and causality are two actual traffic behaviors. A dynamic link travel time model is

necessary to satisfy FIFO and causality in order to obtain the solutions of DTA that are consistent with

actual traffic behavior.

The second approach to develop the travel flow component is based on either exit flow functions

(e.g., Merchant and Nemhauser, 1978; Carey and Srinivasan, 1993; Lam and Huang, 1995; Wie and

Tobin, 1998; Shin et al., 2000) or advanced exit flow functions (e.g., Kuwahara and Akamatsu, 2001; Lo

and Szeto, 2002; Lian et al., 2007; Yperman, 2007; Szeto, 2008; Nie and Zhang, 2010). The exit flow

function approach treats the outflow of a link or a segment of link as a non-decreasing function of the
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number of vehicles on the whole link or the link segment respectively. The advanced exit flow functions are

developed based on either Daganzo’s (1994, 1995a) solution scheme (referred to as the cell transmission

model (CTM)) or Newell’s (1993) solution scheme to the Lighthill and Whitham (1955) and Richards

(1956) (LWR) hydrodynamic model of traffic flow. The main difference between these functions and

the exit flow functions is that the advanced exit flow functions consider storage capacity to capture the

effects of physical queues like queue spillback. If link inflow rates are given, the cumulative outflows can

be generated by a DNL model. No matter whether the exit flow functions or the advanced exit flow

functions are used for the DNL model, after the outflow and inflow rates of each link are determined, the

cumulative flows and hence travel times can be obtained.

Travel times derived from cumulative flow curves is a fundamental step in the algorithms of many DTA

models, and hence it is important to develop accurate and efficient method to do this. For example, the

differences between policy scenarios studied using DTA models are often small. Hence it is important

that other approximation or discretization errors must be kept even smaller relative to those. Indeed,

discretization of time is needed to obtain travel time and even solve continuous time DTA models, since

there are no known methods for solving complex continuous time models analytically. The outcome is

that even if the cumulative curves have desirable properties (e.g, FIFO, causality, etc), the fineness of

time discretization affects whether the discretised model (and in particular the travel time functions)

retain these desirable properties. One may use a fine discretization to try to retain these properties so

that the DNL is consistent with trave time estimation and that the overall model is theoretically sound.

Nevertheless, our experience, and that of many authors worked with many DTA models and algorithms

are that it is not computationally tractable to use very fine discretisations, as it can take excessive

amounts of time even for medium or small networks. It is therefore important to investigate (i) whether

the discretised travel time functions derived from cumulative flow curves with desirable properties can

retain these properties, and (ii) how this is affected by the fineness of time discretisation. However, in the

literature, travel times based on cumulative flows are calculated according to their proposed methods,

and there are no travel time formulations derived from these flows for analysis of the properties of travel

time.

This paper develops three link travel time formulations for DTA based on cumulative flows, which are

different from traditional link travel time models that formulate travel time as a function of time-varying

link flows (e.g., Daganzo, 1995b; Carey et al., 2003; Carey and Ge, 2007). Two of the three formulations

are reformulated from existing travel time models for analysis purposes and the remaining formulation is

new. Each cumulative flow profile is approximated by either a step function (SF) or linear interpolation

(LI). In particular, the first formulation, namely the SF-type formulation, approximates the profiles of

link cumulative inflows and outflows by step functions whereas the other two formulations, namely, the

LI-type and the proposed modified LI-type (MLI-type) formulations, approximate the profiles by linear

interpolations. The proposed formulations allow us to analyze the properties of the corresponding travel
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time functions including continuity, monotonicity, FIFO, and causality. Moreover, the accuracy of travel

times derived from cumulative flow curves is unknown until this study using a numerical method.

This paper also discusses the properties of the three novel formulations. Note that the property of

reduction to a static model is not considered in this paper but will be left for future research. For clarity,

we restate the definitions of FIFO and causality discussed by Carey et al. (2003) here:

Property 1 (FIFO). This can be stated in various equivalent ways, for example, traffic that enters a

link up to any time t will exit from the link before traffic that enters after time t. This is not intended to

preclude individual vehicles, traveling in the same direction, overtaking and passing each other. Hence,

for traffic entering at say time t, the exit time can be interpreted as an ‘average’ exit time, or the exit

time for an ‘average’ vehicle.

Property 2 (Causality). The link travel times (and hence outflow rates) for traffic entering at time t

depend on the traffic entering at time t and earlier than t, but not on traffic entering later than t. This

is sometimes referred to as a causality property.

The paper is organized as follows: in the next section, the general concept of link travel time derived

by cumulative flows is presented in both continuous and discretized time settings. Section 3 presents the

three novel formulations, and their properties are further investigated. Numerical experiments are given

in Section 4 to illustrate the properties of the three travel time models and how the results are affected

by the fineness of the discretization. Finally, Section 5 concludes this paper.

2 Cumulative flows and link travel time

2.1 Continuous link travel time model

Through this paper, we assume that the cumulative inflows and outflows are given. Equivalently, we

assume that the cumulative inflows are given and the cumulative outflows are obtained from cumulative

inflows by any DNL models. The cumulative number of vehicles that enter (exit) link a at time t is

indicated as Ua(t) (Va(t)). The profiles of cumulative flows have the following two properties:

Property 3. The cumulative inflow Ua(t) and cumulative outflow Va(t) are monotonically non-decreasing

functions with respect to time t. That is, Ua(t2) ≥ Ua(t1) if t2 > t1.

Property 4. The cumulative inflow Ua(t) is not less than the cumulative outflow Va(t+ τ0
a ), where τ0

a

denotes the free flow travel time on link a. That is, Ua(t) ≥ Va(t+ τ0
a ).

Monotonicity is a basic characteristic of cumulative flow functions. Property 4 implies that vehicles’

travel times on a link cannot be less than the free flow travel time on the link.

As shown in Fig. 1, link travel time is related to the cumulative flows with the relationship Ua(t) =

Va(t+ τa(t)), where τa(t) is the travel time of link a with respect to time t. If Ua(t) and Va(t) are strictly

increasing with respect to t, then the dynamic link travel times can be formulated as follows:

τa(t) = V −1
a (Ua(t)) − t, (1)
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where V −1
a (·) is the inverse function of Va(·). Note that in deriving Eq. (1), FIFO is assumed to hold.

However, cumulative flow curves cannot always be strictly increasing due to two major factors (Nie,

2003):(1) a temporary inflow drop to zero (e.g., during light traffic), and (2) a temporary outflow capacity

drop to zero (e.g., during a red phase, an incident or an accident). In these cases, Eq. (1) cannot be

used. Nie (2003) developed a generic approach to retrieve link travel times from DNL results, in which

the curves are only required to be non-decreasing and the method of linear interpolation is used to deal

with the special case that the curves are non-decreasing for some time.

This paper provides another approach to compute the travel time τa(t) when the cumulative inflows

and outflows are non-decreasing. This approach relies on a pretreatment of the link inflow rate ua(t) and

the outflow capacity sa(t) before using Eq. (1) to compute τa(t). Let ε and ζ be two very small positive

numbers, where ζ should be far less than ε. Then, we set the inflow rate and the maximum outflow rate

as max{ua(t), ε} and max{sa(t), ζ} during the DNL implementation, respectively. This modification can

ensure ua(t) > 0 and sa(t) > 0. Assuming that a small change in the inflow pattern will incur a small

change in the outflow pattern. Then, if ε is small enough (i.e., ε → 0+), the link travel times will not

be changed much. Similarly, if ζ is small enough (i.e., ζ � ε and ζ → 0+), the link travel times will not

be changed much. Hence, with the proposed pretreatment, we have ua(t) > 0 and sa(t) > 0 for all time

instants, and Ua(t) and Va(t) are strictly increasing with respect to time t. Eq. (1) can then be used to

calculate τa(t) approximately.

Definition 1 (Link FIFO of road traffic flow). The condition that the road traffic flow satisfies link FIFO

is equivalent to the condition that the actual link travel time τa(t) satisfies link FIFO. This condition is

satisfied if and only if

t′ > t′′ ⇒ t′ + τa(t′) ≥ t′′ + τa(t′′).

In other words, the link FIFO condition of road traffic flow is satisfied if vehicles that enter the link

earlier will leave sooner.

Definition 2 (Causality of road traffic flow) The condition that the road traffic flow satisfies causality

is equivalent to the condition that the actual link travel time τa(t) satisfies causality. This condition is

satisfied if τa(t) depends on the traffic entering at time t and earlier than t, but not on traffic entering

later than t.

Whether road traffic flow satisfies link FIFO and causality is mainly determined by which type of DNL

model is used. In this paper, we assume that the road traffic flow both satisfies link FIFO and causality,

or the link travel time calculated by Eq. (1) satisfies link FIFO and causality.

2.2 Discretized link travel time model

Traditionally, analytical DTA models can be classified into discrete time formulations and continuous

time formulations. The discrete time models (see Merchant and Nemhauser, 1978; Huang and Lam,

2002; Lo and Szeto, 2002, for example) do not deal with continuous time variation, and discretize the
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time into a finite set of time intervals. The link travel time function in discrete DTA models are also

formulated in discrete time space. On the other hand, those DTA models that are originally formulated in

continuous time are either reformulated in discrete time later in order to solve them numerically or solved

by numerical methods that involve discretising time (see Ran and Boyce, 1996; Lam and Huang, 1995; Nie

and Zhang, 2010, for example). The reason for discretising time in the latter models is that there are

no known methods for solving such complex continuous time network models analytically. Therefore,

developing discretized link travel time models is a basic and important work for the solution of DTA

models.

In discrete time DTA models, time t is usually discretized into small time intervals, and we apply ∆t to

denote the length of each interval. The average travel time of vehicles that enter the link during interval

(t, t+ ∆t] can be calculated by

ta(t) =

∫ Ua(t+∆t)

Ua(t) [V −1
a (v) − U−1

a (v)]dv

Ua(t+ ∆t) − Ua(t)
, (2)

where U−1
a (·) is the inverse function of Ua(·). The numerator of right hand side of Eq. (2) is equal to

the shaded area in Fig. 1, and the denominator is the number of vehicles that enters link a during this

interval. If ∆t = 0, it follows immediately that ta(t) = τa(t).

Definition 3 (Causality of discretized link travel time): Discretized link travel time satisfies causality if

ta(t) depends on the traffic entering at time t + ∆t and earlier than t + ∆t, but not on traffic entering

later than t+ ∆t.

Proposition 1. If the road traffic flow satisfies causality, then the discretized link travel times calculated

by Eq. (2) satisfies causality.

Proof. The discretized link travel time function defined by Eq.(2) can be equivalently reformulated as

follows:

ta(t) =

∫ t+∆t

t
τa(w)ua(w)dw

∫ t+∆t

t
ua(w)dw

, (3)

If the road traffic flow satisfies causality, the time arguments of all variables (i.e., τa(w) and ua(w),

∀w ≤ t+∆t) in Eq. (3) depend on the flows entering the link at time t+ ∆t and earlier than t+ ∆t, but

do not depend on the flows entering after time t+ ∆t. This completes the proof.

However, the discretized link travel time calculated by Eq. (2) may not satisfy link FIFO, even if the

road traffic flow satisfies link FIFO. Below is an example that can illustrate this property.

Example 1. Violation of Link FIFO.

We assume the inflows last for two minutes, and the outflows occur during the period between 4 and

4.5 minutes. The time dependent cumulative inflows and outflows are given as follows:

Ua(t) = 60[(t− 1)3 + 1], 0 ≤ t ≤ 2, (4)
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and

Va(t) =











0, if t < 4,

240(t− 4), if 4 ≤ t ≤ 4.5.

(5)

Substituting Eqs. (4) and (5) into Eq. (1) and the numerator of the right hand side of Eq. (2), we

have

τa(t) = [(t− 1)3 + 17]/4− t, (6)

and

∫

[V −1
a (v) − U−1

a (v)]dv =
1

480
v2 + 3v − 45 3

√

(v/60− 1)4. (7)

Substituting Eq. (7) into Eq. (2), we can compute the link travel time ta(t) with an arbitrary interval

length. If ta(t) satisfies link FIFO, t + ta(t) must be monotone with respect to time t. The profiles of

t+ ta(t) with various interval length are shown in Fig. 2. We can observe that the link travel time ta(t)

will converge to τa(t) if ∆t→ 0, and t+ τa(t) is monotone when ∆t = 0. However, the results presented

in Fig. 2 also show that t+ ta(t) is not monotone when ∆t > 0 in this example. Therefore, the discretized

link travel time calculated by Eq. (2) may not satisfy link FIFO, even if the road traffic flow satisfies link

FIFO.

We state the following assumption and proposition to discuss the continuity property of the discretized

link travel times.

Assumption 1. The cumulative inflows and outflows are continuous with respect to link inflows.

Proposition 2. Under Assumption 1, the link travel time function determined by Eq. (2) is continuous

with respect to link inflows.

Proof. Since Ua(t) =
∫ t

0 ua(w)dw, Ua(t) and Ua(t+ ∆t) are continuous with respect to link inflows, and

hence the difference between two continuous functions is also continuous. Under Assumption 1, Va(t) is

continuous with respect to link inflows. As the inverse of a continuous function is also continuous, the

integrand is continuous. The definite integral in the numerator in Eq.(2) is also continuous. Therefore,

the link travel time function determined by Eq. (2) is continuous.

In general, it is not possible to obtain inverse functions U−1
a (·) and V −1

a (·) as Ua(·) and Va(·) are not

strictly increasing in general. To overcome this problem, piecewise linear functions, such as the step

function (SF) ( Lo and Szeto, 2002; Lian et al., 2007) and linear interpolation (LI) (Yperman, 2007) are

in general applied to approximate the profiles of cumulative flows. In the following section, we will discuss

three solution schemes to Eq. (2) based on SF and LI. These solution schemes can retain some desirable

properties, such as FIFO, even when the discretisation is not refined and is ”far” from the continuous

limit.
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3 Link travel time formulations based on cumulative flows

3.1 Notations

The time period T of interest is discretized into a finite set of time intervals, K = {k := 1, 2, · · · ,K},

where the length of each interval is δ. The link of interest is assumed to be empty initially and positive

inflows to this link occurs at a set of time intervals Kd = {k := 1, 2, · · · ,Kd}, where Kd < K. Note

that we do not deal with the continuous time setting in this paper, since the DTA models are usually

implemented on computers on the basis of time slices. The following notations will be adopted throughout

this paper:

Ua(k) the cumulative arrivals at link a by the end of interval k.

ua(k) the inflow rate into link a during interval k.

Va(k) the cumulative departures from link a by the end of interval k.

va(k) the outflow rate from link a during interval k.

ya(k) the number of vehicles entering link a during interval k.

ya the vector of (ya(k), ∀k ∈ Kd).

yak(l) the number of vehicles entering link a during interval k and exiting the link during interval l.

Yak(l) the cumulative number of vehicles entering link a during interval k and exiting the link by the

end of interval l.

ta(k) the average travel time for vehicles entering link a during interval k.

ta the vector of (ta(k), ∀k ∈ Kd).

Ta(k) the total travel time of all the vehicles entering link a during interval k.

Sa(k) the outflow capacity of link a during interval k.

With the assumption of a constant flow rate during each time interval, we have:

ya(k) = δua(k) = Ua(k) − Ua(k − 1), and (8)

δva(k) = Va(k) − Va(k − 1). (9)

By definition, we also have:

ya(k) =
∑

l

yak(l), and (10)

yak(l) = Yak(l) − Yak(l − 1). (11)

By the definition of Sa(k), we have Sa(k) =
∫ kδ

(k−1)δ sa(t)dt, and Va(k) − Va(k − 1) ≤ Sa(k). With the

proposed treatment for DNL in Section 2.1, the cumulative inflow Ua(k) will be strictly increasing, and
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Sa(k) > 0 for all k ∈ K. According to Eq. (8), we have ya(k) > 0 for all k ∈ Kd or ya > 0. In this paper,

ya > 0 will be considered as a precondition in all link travel time models. In addition, τ 0
a/δ denotes the

number of intervals for vehicles traveling though link a with free flow speed. Following the approximation

in the CTM (see Daganzo, 1994, 1995a), we assume τ 0
a/δ is an integer.

Definition 4 (Last departure interval). A last departure interval with respect to interval k is defined as

follows:

mk = min{l|Ua(k) ≤ Va(l), l ≥ k + τ0
a/δ}. (12)

Definition 5 (Critical outflow interval). A critical outflow interval with respect to interval k is defined

as follows:

nk = min{l|Ua(k) ≤ Va(l), l > k + τ0
a/δ}. (13)

Remark 1. In Definition 4, mk denotes the last interval by the end of which all the vehicles that enter

link a during interval k have left the link. If Ua(k) = Va(k+ τ0
a/δ), then mk = k+ τ0

a/δ and nk = mk +1;

Otherwise, nk = mk. The critical interval nk is used to determine the cumulative number of vehicles

entering link a during interval k and exiting the link by each interval and to determine the last departure

interval of all the vehicles entering link a during interval k. By comparing nk and mk, we can know

whether the link is congested for vehicles entering link a during interval k.

We state two propositions to describe some properties of mk and nk, respectively. The two propositions

will be used to analysis the properties of the link travel time functions concerned in this paper, and are

given as follows:

Proposition 3. The last departure interval calculated by Eq. (12) implies that Ua(k) > Va(mk − 1) and

Ua(k) − Va(mk − 1) ≤ Sa(mk).

Proof. Consider two cases: mk−1 ≤ k−1+τ0
a/δ and mk−1 ≥ k+τ0

a/δ. If mk−1 ≤ k−1+τ0
a/δ, we have:

Ua(k) = Ua(k−1)+ya(k) > Ua(k−1) ≥ Va(k−1+ τ0
a/δ) ≥ Va(mk −1); If mk −1 ≥ k+ τ0

a/δ, we assume

Ua(k) ≤ Va(mk−1). As Ua(k) can be equal to Va(mk) by Eq. (12), we have Ua(k) = Va(mk) ≤ Va(mk−1)

and mk − 1 ≥ mk. This is a contradiction, and therefore Ua(k) > Va(mk − 1) if mk − 1 ≥ k + τ0
a/δ.

Combining two cases, we have Ua(k) > Va(mk − 1). Since the definition of mk implies that Ua(k) ≤

Va(mk), we have Va(mk − 1) < Ua(k) ≤ Va(mk), and Ua(k) − Va(mk − 1) ≤ Va(mk) − Va(mk − 1). The

right hand side of the last inequality is not greater than the saturation flow Sa(mk) by definition. This

completes the proof.

Proposition 4. The critical outflow interval calculated by Eq. (13) implies that nk−1 ≤ nk.

Proof. The definition of nk implies that Ua(k) ≤ Va(nk) and nk > k + τ0
a/δ, and Property 3 implies

Ua(k − 1) ≤ Ua(k) ≤ Va(nk). Consequently, we have Ua(k − 1) ≤ Va(nk), and nk > k − 1 + τ0
a/δ

Therefore, we have nk ≥ min{l|Ua(k − 1) ≤ Va(l), l > k − 1 + τ0
a/δ} where the right hand side equals

nk−1 by definition. This completes the proof.
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3.2 The SF-type link travel time

3.2.1 Model formulation

The actual link travel time of arrivals at time t (i.e., ua(t)) is the horizontal distance between the two

cumulative curves as shown in Fig. 1. However, if time is discretized, taking a particular interval k for

example, there is no guarantee that the entire packet ya(k) will exit link a during the same discretized

time tick. Fig. 3 shows the profiles of the cumulative flows Ua(k) and Va(k) of link a approximated

by step functions. From this figure, we can observe that some portion of the packet has an estimated

time of (nk−1 − k)δ whereas the other portions have longer estimated travel times. Their travel time

differences and the estimated link travel time of the entire packet depend on the length of the discretized

time interval. A smaller time interval length improves the accuracy of link travel time, but accompanying

with a higher computational burden. As shown in Fig. 3, the traffic flow entering link a during interval

k cannot exit the link until some time during interval nk−1. Thus, the vehicles entering link a during

interval k and exiting the link by interval l is equal to zero if l < nk−1 . In addition, the entire packet

ya(k) will completely exit the link before the end of interval nk, and the cumulative flow Yak(l) will have

a constant value of ya(k) = Ua(k)−Ua(k− 1) if l ≥ nk. For all l ∈ [nk−1, nk), the cumulative flow Yak(l)

is equal to the difference between the cumulative outflow Va(l) and the cumulative inflow Ua(k − 1). In

summary, the cumulative flow Yak(l) can be formulated as follows:

Yak(l) =



























0, if l < nk−1,

Va(l) − Ua(k − 1), if nk−1 ≤ l < nk,

Ua(k) − Ua(k − 1), otherwise.

(14)

The number of vehicles entering link a during interval k and exiting the link during interval l can be

calculated by Eq. (11). The actual travel time for the sub-packet yak(l) traveling on the link is (l − k)δ

, and the total travel times of all vehicles in this sub-packet is yak(l)(l− k)δ . Therefore, the total travel

time Ta(k) of the entire packet ya(k), which is the sum of the total travel time of each sub-packet, is

equal to the shaded area in Fig. 3, and can be formulated as follows:

Ta(k) =

K
∑

l=1

yak(l)(l − k)δ. (15)

Substituting Eqs. (11) and (14) into Eq. (15), we have:

Ta(k) = (nk − k)δya(k) −

nk−1
∑

l=nk−1

δ[Va(l) − Ua(k − 1)]. (16)

The detailed derivation of Ta(k) is given in Appendix A. Substituting Eq. (16) into Eq. (2), we have:

ta(k) =
Ta(k)

ya(k)
= (nk − k)δ −

nk−1
∑

l=nk−1

δ[Va(l) − Ua(k − 1)]/ya(k). (17)
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3.2.2 Properties of the SF-type link travel time model

Definition 6 (Link FIFO). The link FIFO condition is satisfied if and only if

k′ > k′′ ⇒ k′δ + ta(k′) ≥ k′′δ + ta(k′′), ∀k′, k′′ ∈ Kd.

In other words, the link FIFO condition is satisfied if vehicles that enter the link earlier will leave sooner.

Proposition 5. The dynamic link travel time calculated by Eq. (17) satisfies link FIFO.

Proof. By considering discrete time intervals k and k + 1, we have this link FIFO condition: Link FIFO

is satisfied if and only if

k + 1 > k ⇒ (k + 1)δ + ta(k + 1) ≥ kδ + ta(k).

The first inequality can be omitted because it is always true, and the second inequality can be re-expressed

as

ta(k + 1) − ta(k) + δ ≥ 0. (18)

The second inequality must hold because:

ta(k + 1) − ta(k) + δ

δ
= {(nk+1 − k − 1) −

nk+1−1
∑

l=nk

[Va(l) − Ua(k)]/ya(k + 1)}

−{(nk − k) −

nk−1
∑

l=nk−1

[Va(l) − Ua(k − 1)]/ya(k)} + 1

= nk+1 − nk +

nk−1
∑

l=nk−1

[Va(l) − Ua(k − 1)]/ya(k)} −

nk+1−1
∑

l=nk

[Va(l) − Ua(k)]/ya(k + 1)

≥ nk+1 − nk −

nk+1−1
∑

l=nk

[Va(l) − Ua(k)]/ya(k + 1)

=

nk+1−1
∑

l=nk

{ya(k + 1) − [Va(l) − Ua(k)]}/ya(k + 1)

=

nk+1−1
∑

l=nk

[Ua(k + 1) − Va(l)]}/ya(k + 1)

≥ 0.

This completes the proof.

Proposition 6. The dynamic link travel time calculated by Eq. (17) satisfies causality.

Proof. Eq. (8) and the definition of nk in Eq. (13) imply that both Ua(k) and nk depend on the variables

ya(k′), k′ = 1, 2, .., k, respectively. Moreover, the variable Va(l) (for all l < nk ) satisfies Va(l) ≤ Ua(k),

and then Va(l) also depends on the variables ya(k
′), k′ = 1, 2, .., k. In summary, the time argument of

all variables in Eq. (17) depend on the flows entering the link before the end of interval k, but do not

depend on the flows entering after the end of interval k.
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Propositions 5 and 6 show that the SF-type link travel model satisfies link FIFO and causality. This

implies that the solutions of DTA models using the SF-type travel time approximation (see Lo and

Szeto, 2002; Lian et al., 2007, for example) satisfy the link FIFO and causality properties.

It is also important to investigate continuity and monotonicity of the SF-type link travel time function,

because the existence and uniqueness of the solutions of DTA models depend on these properties.

Proposition 7. Under Assumption 1, the traffic flow yak(l) is continuous with respect to link inflow ya.

Proof. In Eq. (14), we can consider two cases: (i) Ua(k − 1) < Va(nk−1) and Ua(k) < Va(nk). The

definition of nk implies that a very small change of inflows will not change nk−1 and nk. In this case,

Yak(l) is continuous with respect to Ua(k) and Va(k). (ii) Boundary conditions. If Ua(k− 1) = Va(nk−1),

we have Yak(nk−1) = Yak(nk−1 − 1) = 0. Similarly, if Ua(k) = Va(nk), we have Yak(nk) = Ua(k) −

Ua(k − 1) = Va(nk) − Ua(k − 1). Those imply two adjacent pieces in Eq. (14) give the same value at

the boundary. Therefore, the two cases imply that Yak(l) is continuous with respect to Ua(k) and Va(k).

Under Assumption 1, Ua(k) and Va(k) are continuous with respect to ya. Hence, Yak(l) is continuous

with respect to ya. Since Eq. (11) implies yak(l) is continuous with respect to Yak(l), yak(l) is also

continuous with respect to ya. This completes the proof.

Proposition 8. Under Assumption 1, the actual link travel time ta calculated by Eq. (17) is a continuous

function of ya.

Proof. Substituting Eq. (15) into Eq. (17), we have ta(k) =
∑K

l=1 yak(l)(l− k)δ/
∑K

l=1 yak(l). According

to Proposition 7, yak(l) is continuous with respect to ya, and ta is also continuous with respect to ya.

Lemma 1 ( Chen, 1999, Theorem 2.9). Suppose that c(u) is continuously differentiable on Ω and the

Jacobian matrix ∇c(u) is positive semidefinite (or positive definite). Then c(u) is monotone (or strictly

monotone).

Assumption 2. The link travel time function is separable (i.e., the travel time on a link is unaffected

by the flows on all the other links in the network).

Proposition 9. Under Assumption 2, if Ua(k)− Va(mk − 1) < Sa(mk), ∀k ∈ Kd, then the dynamic link

travel time ta(ya) calculated by Eq. (17) is a differentiable function of ya.

The proof is presented in Appendix B.

Proposition 10. Under Assumption 2, the dynamic link travel time ta(ya) calculated by Eq. (17) is a

monotone function of ya.

The proof is presented in Appendix C.

As shown in Examples 2 and 3 in the numerical study section, ta(ya) may not be strictly monotonic.
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3.3 LI-type link travel time

3.3.1 Model formulation

Following Yperman (2007), linear interpolation can be applied to calculate the cumulative flows during

a particular time interval as shown in Fig. 4.

The cumulative flows at time (k + µ)δ can be calculated as follows:











Ua(k + µ) = (1 − µ)Ua(k) + µUa(k + 1),

Va(k + µ) = (1 − µ)Va(k) + µVa(k + 1).

(19)

where µ ∈ [0, 1].

If the cumulative outflow at time (k + µ)δ is predetermined, then we can calculate µ as follows:

µ =
Va(k + µ) − Va(k)

Va(k + 1) − Va(k)
. (20)

As shown in Fig. 5, the flow packet yak(nk) exits link a accompanying with some flows entering the

link after interval k. In particular, at time (nk − 1 + µk)δ, where µk is a cumulative outflow parameter

associated with interval k, the flows entering link a before interval k+ 1 have completely exited the link,

and inflow belonging to interval k + 1 starts leaving away the link. The exact time for this occurrence

can be expressed as follows:

µk =
Ua(k) − Va(nk − 1)

Va(nk) − Va(nk − 1)
. (21)

This can be deduced by Eq. (20) and Ua(k) = Va(nk − 1 + µk).

Theorem 1. µk has the following properties

1. 0 ≤ µk ≤ 1.

2. µk−1 < µk if nk−1 = nk.

3. µk > 0 and µk−1 < 1 if nk−1 = nk.

Proof. The definition of nk implies nk ≥ k + τ0
a/δ + 1 and Ua(k) ≤ Va(nk). If nk > k + τ0

a/δ + 1, the

definition of nk implies Va(nk − 1) < Ua(k). If nk = k + τ0
a/δ + 1, Property 4 implies that Ua(k) ≥

Va(k + τ0
a/δ), and we have: Va(nk − 1) = Va(k + τ0

a/δ) ≤ Ua(k). If Va(nk − 1) = Ua(k), ya > 0 implies

Ua(k) < Va(nk); otherwise, Va(nk − 1) < Ua(k). In summary, we have: Va(nk − 1) ≤ Ua(k) ≤ Va(nk),

Va(nk − 1) < Va(nk), and 0 ≤ µk = Ua(k)−Va(nk−1)
Va(nk)−Va(nk−1) ≤ 1.

If nk−1 = nk, we have:
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µk − µk−1 =
Ua(k) − Va(nk − 1)

Va(nk) − Va(nk − 1)
−
Ua(k − 1) − Va(nk−1 − 1)

Va(nk−1) − Va(nk−1 − 1)

=
Ua(k) − Va(nk − 1)

Va(nk) − Va(nk − 1)
−
Ua(k − 1) − Va(nk − 1)

Va(nk) − Va(nk − 1)

=
Ua(k) − Ua(k − 1)

Va(nk) − Va(nk − 1)

=
ya(k)

Va(nk) − Va(nk − 1)

> 0.

Therefore, µk−1 < µk if nk−1 = nk. Moreover, by property 1 in this proposition, µk−1 ≥ 0 and µk ≤ 1.

These two conditions combine with µk > µk−1 giving µk > µk−1 ≥ 0, and µk−1 < µk ≤ 1, which imply

µk > 0 and µk−1 < 1 respectively. This completes the proof.

Figure 5 also shows that all the vehicles or flows ya(k) entering link a during interval k can leave the

link in different time intervals, and hence all the vehicles have different link travel times. Their total

travel time is represented by the shaded area in Fig. 5. This shaded area can be decomposed to two

areas: the area representing the total travel time of these vehicles traveling during interval k, 1
2δya(k),

and the area representing the total travel time of these vehicles traveling after interval k. The latter can

further be decomposed into many trapezoids. To express the area of each trapezoid mathematically, we

define the following notations:

αl =











µk−1, if l ≤ nk−1,

0, otherwise,

(22)

and

βl =











1, if l < nk,

µk, otherwise.

(23)

Then, the area of the trapezoid for subflow packet l is formulated as 1
2yak(l)[(l− k+αl − 1)δ+(l− k+

βl−1)δ], where (l−k+αl−1)δ and (l−k+βl−1)δ are the length of the bottom and top bases respectively.

The total travel time of all the vehicles entering link a during interval k can be mathematically expressed

as follows:

T̂a(k) =
1

2
δya(k) +

1

2

K
∑

l=1

yak(l)[(l − k + αl − 1)δ + (l − k + βl − 1)δ]. (24)

Equation (24) can be simplified as:

T̂a(k) =

K
∑

l=1

yak(l)(l − k)δ +
1

2

K
∑

l=1

yak(l)(αl + βl − 2)δ +
1

2
δya(k)

= Ta(k) +
1

2

K
∑

l=1

yak(l)(αl + βl − 1)δ.

(25)
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Let 4Ta(k) be the difference of the LI-type total travel time from the SF-type total travel time. Then,

we have:

4Ta(k) = T̂a(k) − Ta(k) =
1

2

K
∑

l=1

yak(l)(αl + βl − 1)δ. (26)

Substituting Eqs. (11), (22), and (23) into Eq. (26), we have:

4Ta(k) =











1
2δ(µk−1 + µk − 1)ya(k), if nk−1 = nk,

1
2δ[µk−1yak(nk−1) + (µk − 1)yak(nk)], otherwise.

(27)

Since yak(nk−1) = yak(nk) = ya(k) if nk−1 = nk, Eq. (27) can be rewritten as:

4Ta(k) =
1

2
δ[µk−1yak(nk−1) + (µk − 1)yak(nk)]. (28)

Therefore, the LI-type link travel time t̂a(k) can be stated as follows:

t̂a(k) =
T̂a(k)

ya(k)
= ta(k) +

1

2
δ[µk−1yak(nk−1) + (µk − 1)yak(nk)]/ya(k) (29)

where ta(k) is the SF-type link travel time defined by Eq. (17).

3.3.2 Properties of LI-type link travel time

Definition 7 (Link strong FIFO (SFIFO)). The link SFIFO condition is satisfied if and only if

k′ > k′′ ⇒ k′δ + ta(k′) > k′′δ + ta(k′′), ∀k′, k′′ ∈ Kd.

Proposition 11. The dynamic link travel time calculated by Eq. (29) satisfies the link SFIFO condition.

The proof is presented in Appendix D.

Proposition 12. Under Assumption 1, the link travel time t̂a calculated by Eq. (29) is a continuous

function of ya.

Proof. Equation (14) implies Yak(nk − 1) = Va(nk − 1) − Ua(k − 1) and Yak(nk) = Ua(k) − Ua(k − 1).

Using Eq. (11), we have: yak(nk) = Yak(nk)−Yak(nk −1) = Ua(k)−Va(nk −1). Therefore, Eq. (21) can

be re-written as: µk = Ua(k)−Va(nk−1)
(Va(nk)−Ua(k))+(Ua(k)−Va(nk−1)) = yak(nk)/[yak+1(nk) + yak(nk)]. According to

Proposition 7, 1
2δ[µk−1yak(nk−1) + (µk − 1)yak(nk)]/ya(k) is continuous with respect to ya. Proposition

8 shows that ta is a continuous function of ya. Therefore, t̂a is a continuous function of ya.

Proposition 13. The dynamic link travel time calculated by Eq. (29) does not satisfy causality.

Proof. Before the calculation of the LI-type link travel time, the parameter µk should be predetermined.

We can observe from Eq. (21) that the value of Va(nk) directly determines the value of µk. Since

Va(nk) ≥ Ua(k), the cumulative outflow by interval nk consists of the flows entering link a during interval

k or earlier than interval k, and also may consist of the flows entering link a after the end of interval k.

This implies that the value of µk not only depends on the flows entering link a during interval k or earlier

than interval k, but also may depend on the flows entering link a after the end of interval k. Therefore,

the LI-type link travel time does not satisfy causality.
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3.4 Modified LI-type link travel time

Since the LI-type link travel time does not satisfy causality due to the calculation of µk (see Proposition

13), we propose a new method to calculate the cumulative outflow parameter denoted by

µ̄k =
Ua(k) − Va(nk − 1)

Sa(nk)
, (30)

where Sa(nk) is the outflow capacity of link a at interval nk. Note that the outflow capacity of link

a at each interval is predetermined before network loading, and hence independent of link inflows. By

definition, we have Sa(nk) ≥ Va(nk) − Va(nk − 1), and therefore µ̄k ≤ µk. Since Ua(k) − Va(nk − 1) =

yak(nk) (see the proof of Proposition 12 for the details), we have µ̄k = yak(nk)/Sa(nk).

Theorem 2. µ̄k has the following properties:

1. 0 ≤ µ̄k ≤ 1.

2. µ̄k−1 < µ̄k if nk−1 = nk.

3. µ̄k > 0 and µ̄k−1 < 1 if nk−1 = nk.

Proof. Since Va(nk)−Va(nk −1) ≤ Sa(nk), and the proof of Theorem 1 shows that Va(nk −1) ≤ Ua(k) ≤

Va(nk), we can obtain 0 ≤ Ua(k)− Va(nk − 1) ≤ Va(nk)− Va(nk − 1) ≤ Sa(nk). Therefore, 0 ≤ µ̄k ≤ 1 is

satisfied. The proofs of the properties 2 and 3 in this proposition are similar to those in Theorem 1.

With the redefined cumulative outflow parameter in Eq. (30), it is easy for us to obtain a modified

LI-type (MLI-type) link travel time function

t̄a(k) = ta(k) +
1

2
δ[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]/ya(k). (31)

Proposition 14. The dynamic link travel time calculated by Eq. (31) satisfies the link SFIFO condition.

Proof. The redefined cumulative outflow parameter µ̄k has the same properties with µk, and therefore the

proof of Proposition 11 implies that the MLI-type link travel time satisfies the link SFIFO condition.

Proposition 15. The dynamic link travel time calculated by Eq. (31) satisfies causality.

Proof. The predetermined parameter µ̄k in Eq. (30) depends on the flow-dependent variables Ua(k) and

Va(nk −1) and the flow independent variable Sa(nk). Proposition 5 shows that nk and ta(k) only depend

on the parameter ya(k′) from 1 to k. Hence, µ̄k, yak(nk−1) and yak(nk) does not depend on the flows

entering link a after the end of interval k. Therefore, the time arguments of all variables in Eq. (31)

only depend on the flows entering the link before the end of interval k, but do not depend on the flows

entering after the end of interval k. This completes the proof.
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Propositions 14 and 15 show that the MLI-type travel time model satisfies Link SFIFO and causality.

It is also interesting and important to investigate continuity and monotonicity of this proposed link travel

time function.

Proposition 16. Under Assumption 1, the link travel time t̄a calculated by Eq. (31) is a continuous

function of ya.

Proof. Equation (30) can be reformulated as: µ̄k = yak(nk)/Sa(nk), where Sa(nk) is predetermined

and independent with ya. According to Proposition 7, 1
2δ[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]/ya(k) is

continuous with respect to ya. Proposition 8 shows that ta is a continuous function of ya. Therefore, t̄a

is a continuous function of ya.

Proposition 17. Under Assumption 2, if Ua(k) − Va(mk − 1) < Sa(mk), ∀k ∈ Kd, the dynamic link

travel time t̄a(ya) calculated by Eq. (31) is a differentiable function of ya.

The proof is presented in Appendix E.

Proposition 18. Under Assumption 2, the link travel time t̄a(ya) calculated by Eq. (31) is a monotone

function of ya.

The proof is similar to that of Proposition 10.

Definition 8 (Link Congestion). The link congestion condition can be mathematically expressed as

follows:

Ua(k) > Va(k + τ0
a/δ), ∀k ∈ Kd.

The link congestion condition implies that the travel time for all vehicles will be greater than the free

flow travel time on this link. Since the time period of interest is discretized into a finite set of time

intervals, this condition requires the inflows belonging to interval k cannot completely leave the link

before the time kδ + τ0
a . Therefore, this condition also implies that ml = nl for all l ∈ Kd.

Proposition 19. If link a is under the congestion condition, then µ̄ > 0, where µ̄ = (µ̄k, k ∈ Kd) is the

vector of cumulative outflow parameters.

Proof. For a particular interval k, assume µ̄k = 0. The definition of µ̄k implies Ua(k) = Va(nk − 1).

Since link a is under the congestion condition, we have Va(nk − 1) = Ua(k) > Va(k + τ0
a/δ). Therefore,

nk − 1 > k+ τ0
a/δ and Va(nk − 1) ≥ Ua(k) are consequently satisfied, and hence nk − 1 ≥ min{l|Ua(k) ≤

Va(l), l > k+ τ0
a/δ} = nk. This is a contradiction. Therefore, µ̄k > 0 should be satisfied. This completes

the proof.

Proposition 20. Under Assumption 2, if link a is under the congestion condition, the link travel time

t̄a(ya) calculated by Eq. (31) is a strictly monotone function of ya.

The proof is presented in Appendix F.
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3.5 Comparison of various types of travel times

This section aims at comparing the SF-type, the LI-type, and the MLI-type travel times and their

properties. We first estimate their travel time differences. From Eq. (29), the difference or the gap

between the SF-type and LI-type travel times ∆t̂a(k) can be obtained as follows:

∆t̂a(k) = t̂a(k) − ta(k)

= 1
2δ[µk−1yak(nk−1) + (µk − 1)yak(nk)]/ya(k)

= 1
2δµk−1yak(nk−1)/ya(k) − 1

2δ(1 − µk)yak(nk)/ya(k).

(32)

Since µk ∈ [0, 1] and yak(l)/ya(k) ∈ [0, 1], ∀k ∈ Kd, l ∈ K, we have:

∆t̂a(k) ≤
1

2
δµk−1yak(nk−1)/ya(k) ≤

1

2
δ, (33)

and

∆t̂a(k) ≥ −
1

2
δ(1 − µk)yak(nk)/ya(k) ≥ −

1

2
δ. (34)

Eqs. (33) and (34) define the range of the gap between the SF-type and LI-type link travel times

which is [− 1
2δ,

1
2δ]. Similar with the above derivation, we can also obtain the range of the gap between

the SF-type and MLI-type link travel times denoted by ∆t̄a(k) , which is [− 1
2δ,

1
2δ]. This result indicates

that the difference of the LI-type (MLI-type) link travel time from the SF-type link travel time is within

half interval length 1
2δ. If δ → 0, the three types of link travel time functions will converge to the same

function. This implies that the subtle difference between the three algorithms in the paper will diminish

as the discrete time interval converges to zero. However, it is computationally too costly to work with

discrete time intervals approaching zero in practice for large scale DTA network modeling. Larger discrete

time intervals will be needed in practice and in that case the differences between the methods in the paper

are significant and important.

Next, we compare the properties of the three types of link travel times and their properties are sum-

marized in Table 1 . In the table, we can see that all the three types of travel times satisfy link FIFO

and continuity. Comparing the three types of travel times, only the LI-type travel time does not satisfy

causality. Disobeying causality implies that the speed and travel time of a vehicle on a link may be

affected by the speed of vehicles behind. This is unrealistic for the observed traffic. The SF-type model

has a simpler calculation, and can be extended to calculate route travel time by using cumulative route

flows, whereas, the MLI-type model has better properties than the SF-type model such as satisfying Link

SFIFO and strictly monotone under some assumptions.

3.6 Model accuracy estimation

To estimate the theoretical value of link travel time, we set a very short interval length (e.g., 0.1 second in

this paper), and run the DNL model to obtain the SF-type link travel time (denoted by ťa(ι)) and inflow
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(denoted by y̌a(ι)), where ι is the index of a particular short interval. For a given interval length (e.g.,

δ), the theoretical value of link travel time during a particular interval k can be numerically calculated

as follows:

tta(k) =

∑

ι∈Kδ(k)

y̌a(ι)ťa(ι)

ya(k)
, (35)

where tta(k) is the estimated theoretical link travel time at interval k, Kδ(k) is the set of short intervals

that belong to the time period of ((k − 1)δ, kδ].

The estimated theoretical link travel time is used to evaluate the accuracy of the presented link travel

time models and the accuracy is measured by calculation errors. The calculation error of a model for

a particular interval is defined as the difference between the estimated travel time by a model and the

theoretical link travel time at that interval. Using the SF-type link travel time as an example, the

calculation error of the link travel time at a given interval k ∈ Kd can be mathematically represented as

follows:

ea(k) = ta(k) − tta(k). (36)

For measuring the average error of the whole study period for a particular model, there are two

categories: mean absolute error (MAE) and mean percentage error (MPE). The MAE and MPE can be

mathematically expressed as follows:

MAE =

∑

k∈Kd

|ea(k)|

Kd

=

∑

k∈Kd

|ta(k) − tta(k)|

Kd

, and (37)

MPE =

∑

k∈Kd

|ea(k)|/tta(k)

Kd

× 100 =

∑

k∈Kd

|ta(k) − tta(k)|/tta(k)

Kd

× 100. (38)

∑

k∈Kd

|ta(k)− tta(k)| is the total absolute calculation error (in seconds) and Kd is the number of periods

considered. Therefore, Eq. (37) gives MAE (in seconds). In Eq. (38), MPE is defined as the average of

the relative absolute calculation error of each discretized interval and expressed in terms of per 100.

The calculation error of link travel time is highly related to interval length. We also propose a new

method to evaluate the average calculation error, defined as interval relative error (IRE). IRE can be

mathematically expressed as follows:

IRE =
MAE

δ
× 100 =

∑

k∈Kd

|ta(k) − tta(k)|

Kdδ
× 100. (39)

In Eq. (39), IRE is defined as the ratio of MAE (in seconds) to the length of a discretized interval (in

seconds) and expressed in terms of per 100. This IRE can be viewed as the total absolute calculation

error divided by the total length of the study period and is expressed in percent.

19



4 Numerical Examples

Several DNL models, in which traffic is propagated through the network along the assigned routes, can

be applied to generate both link and route cumulative flows. The presented link travel time models

use the cumulative link flows to calculate time-dependent link travel times. In the past decade, the

CTM originally proposed by Daganzo (1994, 1995a) was popularly applied to calculate travel times for

DTA models (e.g., Ziliaskopoulos, 2000; Lo and Szeto, 2002; Szeto and Lo, 2004; Lian et al., 2007). Only

recently, a combination of Daganzo’s CTM with a triangular fundamental diagram and cumulative curves

(Newell, 1993) was constructed by Yperman (2007), resulting in the link transmission model (LTM).

Because each whole link can be treated as one cell, the LTM’s computational efficiency is much higher

than that of classic numerical solution schemes for the LWR model, whilst retaining the same accuracy.

Yperman (2007) employed a simple example to demonstrate that the LTM has a higher accuracy in

modeling traffic dynamics than CTM. To illustrate the properties of the presented travel time models,

the DNL model employed in this paper was the LTM (see Yperman, 2007, for the details). We only

consider that vehicles travel on a single link with a bottleneck at the link’s exit. The bottleneck will

cause congestion.

Example 2. With given inflows and outflows.

In this example, interval length δ is 10 seconds; inflow capacity is 12 vehicles per interval; the outflow

capacity is 7 vehicles per interval, and the free flow travel time is 3 intervals (i.e., 30 seconds). The study

period consists of 10 intervals, and only the first 6 intervals have inflows. The inflows, cumulative inflows,

outflows, and cumulative outflows in each interval are given in Table 2. The profiles of the SF-type and

LI-type cumulative flows are displayed in Fig. 6. The cumulative flows by each interval are applied to

calculate link travel times by the proposed approaches with the results listed in Table 3.

The link travel times given in Table 3 demonstrate that the three types of link travel time models may

obtain different link travel times with the same cumulative flows. In this example, the maximum gap and

average gap between the SF-type and LI-type link travel times are 2.50 seconds (less than 1
2δ = 5 seconds)

and 1.34 seconds, respectively. The maximum and average gaps between the SF-type and MLI-type link

travel times are 2.14 seconds (less than 1
2δ) and 1.29 seconds, respectively. The maximum and average

gaps between the LI-type and MLI-type link travel times are 0.57 seconds and 0.25 seconds, respectively.

This result shows that the link travel times estimated by the LI-type and MLI-type travel time functions

are very close.

From Table 3, we can observe that the cumulative outflow parameters estimated by the two types of

models are essentially different. The result confirms that the LI-type cumulative outflow parameters are

always greater than or equal to the MLI-type parameters.

To illustrate the monotonicity of each type of link travel time function, we directly calculated the

Jacobian matrices of the SF-type and MLI-type link travel time functions (see Appendices B and E

respectively), and calculated the Jacobian matrix of the LI-type link travel time function by numerical
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approximation. The inflow belonging to a particular interval was perturbed by a small amount and the

LTM was applied to generate cumulative flows. Then the proposed LI-type formulation was employed

to evaluate the travel times of all intervals with inflows. The differences of these values from the corre-

sponding original link travel times divided by the perturbed inflow generate one column of the Jacobian

matrix. The process was repeated for all the intervals to produce the full Jacobian matrix. The Jacobian

matrices of the three type of link travel time functions are given as follows:

∇ta(ya) =





























0.864 0 0 0 0 0

0 0 0 0 0 0

0 0 0.700 0 0 0

0 0 1.667 1.042 0 0

0 0 0 0 0 0

0 0 0 0 0 0





























, (40)

∇t̂a(ya) =





























0.738 −0.089 0 0 0 0

0.600 −0.400 0 0 0 0

0 0 0.714 0 0 0

0 0 1.437 0.722 −0.012 −0.012

0 0 1.111 1.111 0.278 −0.555

0 0 0.417 0.417 0.417 −0.417





























, (41)

and

∇t̄a(ya) =





























0.714 0 0 0 0 0

0.714 0 0 0 0 0

0 0 0.714 0 0 0

0 0 1.429 0.714 0 0

0 0 1.429 1.429 0.714 0

0 0 0.714 0.714 0.714 0





























. (42)

The results illustrate that Jacobian matrices of the SF-type and MLI-type link travel time functions

are positive semidefinite and the two types of link travel time functions are monotone. Since Ua(2) =

Va(2 + 3) = 12 vehicles, and m2 6= n2, the link is not under the congestion condition. The Jacobian

matrices presented in Eqs. (40) and (42) are lower triangular matrices. This result confirms that the

SF-type and MLI-type link travel time functions satisfy causality.

The Jacobian matrix of the LI-type travel time function given in Eq. (41) indicates that this link

travel time function is not a lower triangular matrix and hence does not satisfy causality. Therefore,

some unrealistic results will be obtained from this type of travel time function. For example, if some

more flows enter the link during intervals 2 and 6, the link travel times of some intervals will decrease.

Example 3. With given inflows and outflows and under the link congestion condition.
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Compared with Example 2, three and two more vehicles are appended to enter link a during interval 2

and interval 6, respectively. That is, the inflow is ya = (9, 6, 10, 12, 2, 5)T . The other input parameters

are the same as those in Example 2. In this example, the traffic flow is under the link congestion condition,

because Ua(k) < Va(k+3) and mk = nk are satisfied for all k ≤ 6. The Jacobian matrices of the SF-type

and MLI-type link travel time functions are given as follows:

∇ta(ya) =





























0.864 0 0 0 0 0

1.667 1.389 0 0 0 0

1.000 1.000 0.700 0 0 0

1.667 1.667 1.667 0.903 0 0

0 0 0 0 0 0

2.000 2.000 2.000 2.000 2.000 1.200





























, (43)

and

∇t̄a(ya) =





























0.714 0 0 0 0 0

1.429 0.714 0 0 0 0

1.429 1.429 0.714 0 0 0

1.429 1.429 1.429 0.714 0 0

1.429 1.429 1.429 1.429 0.714 0

1.429 1.429 1.429 1.429 1.429 0.714





























. (44)

The matrix ∇ta(ya) in Eq. (43) is positive semidefinite. This result implies that the SF-type link

travel time function may not be strictly monotone under the congestion condition. In particular, for

the interval k = 5, we have nk = nk−1 intervals and ta(k) = (nk − k)δ. By Eq. (51) in Appendix B,

∂ta(k)/∂ya(h) = 0 for all h ∈ [1, 6]. Therefore, the values in the fifth row in Eq. (43) are equal to zero.

Unlike ∇ta(ya), the matrix ∇t̄a(ya) in Eq. (44) is positive definite. This implies that the MLI-type link

travel time function is strictly monotone, which is consistent with Proposition 20.

Example 4. With a plateau shaped inflow profile.

In this example, we assume the link is empty initially. The input parameters for the LTM are given as

follows:

• Jam density: 133 vehicles/km (i.e., 7.5m for every vehicle);

• Free-flow speed: 72 km/h (i.e., 20 m/s);

• Flow capacity: 36 veh/min;

• Link length: 2400m, and;

• Free flow travel time: 2 minutes.
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Following Carey and Ge (2005), we employ the following inflow function in this example:

ua(t) =



























32 sinπt/10, if 0 ≤ t ≤ 5,

32, if 5 < t < 10,

20 + 12 sin5(π(t+ 4)/28), if 10 ≤ t ≤ 20,

(45)

where the unit for the inflow is veh/min. We set a constant outflow capacity of 25.2 veh/min. Again, the

LTM was employed to generate cumulative flows. Then we applied the three types of models to these

inflows and computed the link travel times and their mean errors over the study period under different

interval lengths: δ = 1, 5, 10, 20, 30, 40, 60 seconds.

The link travel time results are shown in Fig. 7. As shown in this figure, the profiles of link travel times

almost coincide with each other. This observation is consistent with Eqs. (33) and (34). The mean errors

corresponding to each type of travel time models are also presented in Table 4. This table shows that for

a given value of δ, the LI-type and MLI-type of link travel time models have a higher accuracy than the

SF-type model in terms of all three error measures, but with a slight advantage for the MLI-type model

over the LI-type model. We can also observe that MAE and MPE will uniformly increase for every type

of link travel time models when we increase the value of δ. This result indicates that shortening interval

length can improve the accuracy of travel time models. However, the IRE of the SF-type model does not

decrease but fluctuates around a constant value (e.g., about 3.18% in this example) even when a small

value of δ is used. This result indicates that the total absolute calculation error cannot be eliminated by

shortening interval length if we use the SF-type travel time model. The results in Table 4 also show that

the IREs of the LI-type and MLI-type models are lower than the IRE of the SF-type model. Moreover,

the IREs of the LI-type and MLI-type models can be effectively reduced by using a smaller value of δ.

5 Conclusion

This paper developed three discretized travel time models based on cumulative flows which can be usually

generated by DNL models. The first model, namely the SF-type model, assumes that the profiles of

link cumulative inflows and outflows are piecewise linearized by step functions whereas the other two

models, namely, LI-type and MLI-type models, assume that the profiles are piecewise linearized by linear

interpolations. Their model properties such as (S)FIFO, causality, continuity and monotonicity were

analyzed and elaborately discussed. Based on the analysis, we find that all the three models satisfy

Link FIFO and continuity, no matter how large is the time step used for discretization. The SF-type

model has a simpler calculation and ensures causality and monotonicity, while the LI-type model may

potentially have a higher accuracy but also may disobey causality, and monotonicity. As an extended

model of the LI-type model, the MLI-type model maintains both the accuracy and desirable properties

such as ensuring strong FIFO, causality and monotonicity. The theoretical analysis demonstrates that
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the difference between the SF-type and (M)LI-type link travel times is less than 0.5 interval. This result

indicates that if the interval length is small enough, these models will converge to the same solution.

In our numerical experiments, the first two examples were applied to demonstrate the properties of

these link travel time models. The results show that the LI-type link travel time may disobey causality,

which implies vehicles that enter a link later may influence vehicles that enter the link earlier. Compared

with the SF-type model, the MLI-type model has more desirable properties: satisfying SFIFO and may

be strictly monotone. The last example was employed to illustrate the accuracy of the models. The

results indicate that the MLI-type model has the highest accuracy compared with the other two models.

Since both cumulative route and link flow curves have the monotonicity property, the SF-type and LI-

type link travel time models can be directly extended to calculate route travel times. Moreover, link FIFO

implies route FIFO (Wu et al., 1998), and thus the extended route travel time models will satisfy route

FIFO. We also can prove that the SF-type route travel time model satisfies causality, but the LI-type

model does not. Unfortunately, it is very difficult to observe monotonicity of route travel time functions.

Compared with the SF-type and LI-type models, the MLI-type model has more desirable properties (i.e.,

the travel time satisfies Link SFIFO, and is strictly monotone under the link congestion condition) and

obtains travel times with a higher accuracy. However, the MLI-type model cannot be directly extended

to route travel time. The calculation of the MLI-type link travel time relies on link outflow capacity, and

we do not have outflow capacity corresponding to a route easily. Therefore, the MLI-type route travel

time model should be improved in the future.
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Appendix A

Substituting Eq. (11) into Eq. (15) and rearranging the resulting expression, we have:

Ta(k)/δ =
K
∑

l=1

[Yak(l) − Yak(l − 1)](l − k)

=

K
∑

l=1

l[Yak(l) − Yak(l − 1)] − k

K
∑

l=1

[Yak(l) − Yak(l − 1)]

=

K
∑

l=1

lYak(l) −

K
∑

l=1

lYak(l − 1) − kYak(K) + kYak(0)

=

K
∑

l=1

lYak(l) − Yak(0) −

K
∑

l=2

lYak(l − 1) − kYak(K) + kYak(0).

(46)
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By definition, the second and the last terms in Eq. (46) are equal to zero and Yak(K) = ya(k). Hence,

Eq. (46) can be rewritten as follows:

Ta(k)/δ =

K
∑

l=1

lYak(l) −

K
∑

l=2

lYak(l − 1) − kya(k)

=

K
∑

l=1

lYak(l) −

K
∑

l=2

(l − 1)Yak(l − 1) −

K
∑

l=2

Yak(l − 1) − kya(k)

=

K
∑

l=1

lYak(l) −

K−1
∑

l=1

lYak(l) −

K−1
∑

l=1

Yak(l) − kya(k)

= Kya(k) −

K−1
∑

l=1

Yak(l) − kYak

= (K − k)ya(k) −

K−1
∑

l=1

Yak(l)

= (K − k)ya(k) −

nk−1
∑

l=1

Yak(l) −

nk−1
∑

l=nk−1

Yak(l) −

K−1
∑

l=nk

Yak(l).

(47)

Substituting Eqs. (8) and (14) into (47), we have:

Ta(k)/δ = (K − k)ya(k) − 0 −

nk−1
∑

l=nk−1

[Va(l) − Ua(k − 1)] −

K−1
∑

l=nk

ya(k)

= (K − k)ya(k) −

nk−1
∑

l=nk−1

[Va(l) − Ua(k − 1)] − (K − 1 − (nk − 1))ya(k)

= (nk − k)ya(k) −

nk−1
∑

l=nk−1

[Va(l) − Ua(k − 1)].

(48)

Therefore, we have:

Ta(k) = (nk − k)δya(k) −

nk−1
∑

l=nk−1

δ[Va(l) − Ua(k − 1)].

Appendix B

Below is the proof of Proposition 9.

Proof. We consider the inflow pattern ya = (ya(1), ya(2), · · · , ya(k), ya(k + 1), · · ·)T and its perturbation

at interval h indicated as y′

a = (ya(1), ya(2), · · · , ya(h) + 4, ya(h + 1), · · ·)T, where 4 is arbitrary but

satisfies ya(h) + 4 ≥ 0. The variables corresponding to the inflow pattern ya are added apostrophe to

represent the variables corresponding to the inflow pattern y′

a.

To prove that the link travel time function is differentiable, we should prove that the following limits

exist and is satisfied:

lim
∆→0

t′a(k) − ta(k)

y′a(h) − ya(h)
=
∂ta(k)

∂ya(h)
. (49)
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Proposition 3 indicates that Ua(l) > Va(ml − 1) for all l ∈ Kd, and this proposition assumes that

Sa(ml) > Ua(l) − Va(ml − 1) for all l ∈ Kd. We let:

ψ = min
l

{

Ua(l) − Va(ml − 1), Sa(ml) − Ua(l) + Va(ml − 1)
}

> 0. (50)

and let ∆ ∈ (−ψ, ψ), then n′

l
= nl is satisfied for all l ∈ Kd.

There are three cases:

Case I: h < k.

A small perturbation of inflow at interval h does not always affect the link travel time at interval k. If

∃l ∈ [h, k] such that nl = ml+1, then we have: t′a(k) = ta(k) and lim
∆→0

[t′a(k)−ta(k)]/[y′a(h)−ya(h)] =

0; else if nk = nk−1, we also have: t′a(k) = ta(k) and lim
∆→0

[t′a(k) − ta(k)]/[y′a(h) − ya(h)] = 0;

Otherwise,

y′ak(l) =



























yak(nk−1) − ∆, if l = nk−1,

yak(nk) + ∆, if l = nk,

yak(l), otherwise.

Therefore,

T ′

a(k) =

K
∑

l=1

y′ak(l)(l − k)δ = Ta(k) − ∆(nk−1 − k)δ + ∆(nk − k)δ,

and

t′a(k) = T ′

a(k)/y
′

a(k) = [Ta(k) − ∆(nk−1 − k)δ + ∆(nk − k)δ]/y′a(k).

We have:

lim
∆→0

t′a(k) − ta(k)

y′a(h) − ya(h)
= lim

∆→0

[Ta(k) − ∆(nk−1 − k)δ + ∆(nk − k)δ]/y′a(k) − Ta(k)/ya(k)

∆

= (nk − nk−1)δ/ya(k).

Case II: h = k.

If nk = mk + 1 is satisfied, then we have: t′a(k) = ta(k) and lim
∆→0

[t′a(k)− ta(k)]/[y′a(h)− ya(h)] = 0;

otherwise,

y′ak(l) =











yak(nk) + ∆, if l = nk,

yak(l), otherwise.

Therefore,

T ′

a(k) =

K
∑

l=1

y′ak(l)(l − k)δ = Ta(k) + ∆(nk − k)δ,

and

t′a(k) = T ′

a(k)/y′a(k) = [Ta(k) + ∆(nk − k)δ]/[ya(k) + ∆].
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We have:

lim
∆→0

t′a(k) − ta(k)

y′a(h) − ya(h)
= lim

∆→0

[Ta(k) + ∆(nk − k)δ]/[ya(k) + ∆] − Ta(k)/ya(k)

∆

= lim
∆→0

Ta(k)
1/[ya(k) + ∆] − 1/ya(k)

∆
+ lim

∆→0

(nk − k)δ

ya(k) + ∆

= −
Ta(k)

[ya(k)]2
+

(nk − k)δ

ya(k)

=
(nk − k)δ − ta(k)

ya(k)
.

ta(k) in Eq. (17) implies nk − k ≥ ta(k). Therefore, we have:

lim
∆→0

t′a(k) − ta(k)

y′a(h) − ya(h)
≥ 0.

Case III: h > k.

Since the dynamic link travel time calculated by Eq.(17) satisfies causality (see Proposition 5), we

have t′a(k) = ta(k) and

lim
∆→0

t′a(k) − ta(k)

y′a(h) − ya(h)
= 0.

The results of the above three cases can be summarized as follows:

∂ta(k)

∂ya(h)
= lim

∆→0

t′a(k) − ta(k)

y′a(h) − ya(h)
=



























(nk − nk−1)δ/ya(k), if h < k,ml = nl for all l ∈ [h, k],

[(nk − k)δ − ta(k)]/ya(k), if h = k,mk = nk,

0, otherwise.

(51)

This completes the proof.

Appendix C

Below is the proof of Proposition 10.

Proof. Proposition 3 shows that Ua(k) − Va(mk − 1) ≤ Sa(mk) is satisfied for all k ∈ Kd. We firstly

consider the case that Ua(k) − Va(mk − 1) < Sa(mk), ∀k ∈ Kd. Under this condition, Proposition 9

indicates that the function ta(ya) is differentiable. Equation (51) indicates that the Jacobian matrix

∇ta(ya) is a lower triangular matrix and the diagonal entries of the matrix are non-negative. Thus,

∇ta(ya) is positive semidefinite. According to Lemma 1, the link travel time function ta(ya) is monotone

if Ua(k) − Va(mk − 1) < Sa(mk), ∀k ∈ Kd.

The definition domain of ta(ya) can be divided into a group of continuous subdomains by the equations

Ua(k) − Va(mk − 1) = Sa(mk), ∀k ∈ Kd. If the boundary of each subdomain is not considered (i.e.,

Ua(k) − Va(mk − 1) < Sa(mk), ∀k ∈ Kd), ta(ya) is monotone on each subdomain. For each subdomain,

ta(ya) is also monotone on the boundary. Therefore, ta(ya) is monotone on all subdomains. This implies

that ta(ya) is monotone on the definition domain (i.e., ya > 0).
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Appendix D

Below is the proof of Proposition 11.

Proof. Similar to the proof of Proposition 5, we aim to prove that t̂a(k + 1) − t̂a(k) + δ > 0 is satisfied.

T̂a(k) in Eq. (29) can be reformulated as follows:

T̂a(k) = ta(k)ya(k)+
1

2
δ[µk−1yak(nk−1)+(µk−1)yak(nk)] = Ta(k)+

1

2
δ[µk−1yak(nk−1)+(µk−1)yak(nk)],

where the first term in the second equality is obtained by the definition of Ta(k) in Eq (17). Substituting

ya(k) = Yak(nk), Eq. (14) and Eq. (16) into the above, we have:

T̂a(k)

δ
= (nk − k)Yak(nk) −

nk−1
∑

l=nk−1

Yak(l) +
1

2
µk−1Yak(nk−1) +

1

2
(µk − 1)[Yak(nk) − Yak(nk − 1)]

= [nk − k +
1

2
(µk − 1)]Yak(nk)

−

{

1

2

nk−1
∑

l=nk−1+1

Yak(l) +
1

2
(1 − µk−1)Yak(nk−1) +

1

2

nk−2
∑

l=nk−1

Yak(l) +
1

2
µkYak(nk − 1)

}

.

(52)

By Eq. (29) and (52), we get:

t̂a(k)/δ = T̂a(k)/δYak(nk)

= [nk − k +
1

2
(µk − 1)]

−

{

1

2

nk−1
∑

l=nk−1+1

Yak(l) +
1

2
(1 − µk−1)Yak(nk−1) +

1

2

nk−2
∑

l=nk−1

Yak(l) +
1

2
µkYak(nk − 1)

}

/Yak(nk).

(53)

Since 0 ≤ µk ≤ 1 for all k and Yak(l) ≥ 0 for all l, the brace term

1

2

nk−1
∑

l=nk−1+1

Yak(l) +
1

2
(1 − µk−1)Yak(nk−1) +

1

2

nk−2
∑

l=nk−1

Yak(l) +
1

2
µkYak(nk − 1) ≥ 0. (54)

Moreover, because Yak(l) ≤ Yak(nk) = ya(k) , Yak(l) ≥ 0, and Yak(nk − 1) ≤ Yak(nk) for all k and l, the

brace term

1

2

nk−1
∑

l=nk−1+1

Yak(l) +
1

2
(1 − µk−1)Yak(nk−1) +

1

2

nk−2
∑

l=nk−1

Yak(l) +
1

2
µkYak(nk − 1)

≤
1

2

nk−1
∑

l=nk−1+1

Yak(nk) +
1

2
(1 − µk−1)Yak(nk) +

1

2

nk−2
∑

l=nk−1

Yak(nk) +
1

2
µkYak(nk)

= [nk − nk−1 −
1
2µk−1 + 1

2 (µk − 1)]Yak(nk).

(55)

If nk > nk−1, Eqs. (54) and (55) combined with Eq. (53) imply

(nk−1 − k +
1

2
µk−1)δ ≤ t̂a(k) ≤ [nk − k +

1

2
(µk − 1)]δ. (56)
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If nk−1 = nk, by Eqs. (27) and (29), we have:

t̂a(k) = [(nk − k) +
1

2
(µk−1 + µk − 1)]δ. (57)

Eqs. (56) and (57) will be used for the following four cases:

Case I: nk−1 = nk = nk+1.

t̂a(k + 1) − t̂a(k) + δ

= [(nk+1 − k − 1) + 1
2 (µk + µk+1 − 1)]δ − [(nk − k) + 1

2 (µk−1 + µk − 1)]δ + δ

= 1
2 (µk+1 − µk−1)δ.

In this case, Theorem 1 implies µk+1 > µk > µk−1, and t̂a(k + 1) − t̂a(k) + δ > 0 is satisfied.

Case II: nk−1 < nk = nk+1.

t̂a(k + 1) − t̂a(k) + δ

≥ [(nk+1 − k − 1) + 1
2 (µk + µk+1 − 1)]δ − [nk − k + 1

2 (µk − 1)]δ + δ

= 1
2µk+1δ.

In this case, Theorem 1 implies µk+1 > 0 , and t̂a(k + 1) − t̂a(k) + δ > 0 is satisfied.

Case III: nk−1 = nk < nk+1.

t̂a(k + 1) − t̂a(k) + δ

≥ [(nk − k − 1 + 1
2µk)]δ − [(nk − k) + 1

2 (µk−1 + µk − 1)]δ + δ

= 1
2 (1 − µk−1)δ.

In this case, Theorem 1 implies µk−1 < 1, and therefore 1
2 (1−µk−1) > 0. Thus, t̂a(k+1)−t̂a(k)+δ >

0 is satisfied.

Case IV: nk−1 < nk < nk+1.

t̂a(k + 1) − t̂a(k) + δ

≥ [(nk − k − 1 + 1
2µk)]δ − [nk − k + 1

2 (µk − 1)]δ + δ

= 1
2δ.

The above four cases demonstrate t̂a(k + 1) − t̂a(k) + δ > 0. This completes the proof.

29



Appendix E

Below is the proof of Proposition 17.

Proof. Similar to the proof of Proposition 9, we consider the inflow pattern ya = (ya(1), ya(2), · · · , ya(k),

ya(k + 1), · · ·)T and its perturbation at interval h indicated as y′

a = (ya(1), ya(2), · · · , ya(h) + 4, ya(h +

1), · · ·)T, where 4 is arbitrary but satisfies ya(h) + 4 ≥ 0. The variables corresponding to the inflow

pattern ya are added apostrophe to represent the variables corresponding to inflow pattern y′

a.

To prove that the link travel time function is differentiable, we should prove that the following limits

exist and is satisfied

lim
∆→0

t̄′a(k) − t̄a(k)

y′a(h) − ya(h)
=
∂t̄a(k)

∂ya(h)
. (58)

We let ∆ ∈ (−ψ, ψ) (ψ can be calculated by Eq. (50)), and three cases should be considered:

Case I: h < k.

A small perturbation of inflow at interval h does not always affect the link travel time at interval

k. If ∃l ∈ [h, k) such that nl = ml + 1, then we have t̄′a(k) = t̄a(k) and lim
∆→0

[t′a(k)− ta(k)]/[y′a(h)−

ya(h)] = 0; else if nk = mk + 1, we have: µ̄′

k−1 = µ̄k−1 + ∆/Sa(nk−1), µ̄
′

k
= µ̄k, t′a(k) = ta(k),

yak(nk−1) = ya(k), y′
ak

(l) = yak(l) for all l ∈ Kd. Therefore, t̄′a(k) can be calculated by Eq. (31):

t̄′a(k) = ta(k) +
1

2
δ[µ̄′

k−1yak(nk−1) + (µ̄k − 1)yak(nk)]/ya(k).

Then, we have:

lim
∆→0

t̄′a(k) − t̄a(k)

y′a(h) − ya(h)
=

δ

2Sa(nk−1)
.

If nl 6= ml + 1 (i.e., nl = ml) for all l ∈ [l, k], we have: µ̄′

k−1 = µ̄k−1 + ∆/Sa(nk−1) and µ̄′

k
=

µ̄k + ∆/Sa(nk). Therefore, t̄′a(k) can be calculated by Eq. (31):

t̄′a(k) = t′a(k) +
1

2
δ{µ̄′

k−1[yak(nk−1) − ∆] + (µ̄′

k − 1)[yak(nk) + ∆]}/ya(k).

Therefore, we have:

lim
∆→0

t̄′a(k) − t̄a(k)

y′a(h) − ya(h)
=

[nk − nk−1 + µ̄k − µ̄k−1]δ

ya(k)
.

Case II: h = k.

If nk = mk +1, then we have: t̄′a(k) = t̄a(k) and lim
∆→0

[t′a(k)− ta(k)]/[y′a(h)− ya(h)] = 0. Otherwise,

we have µ̄′

k−1 = µ̄k−1 and µ̄′

k
= µ̄k + ∆/Sa(nk). Therefore, t̄′a(k) can be calculated by Eq. (26):

t̄′a(k) = t′a(k) +
1

2
δ{µ̄k−1yak(nk−1) + (µ̄′

k − 1)[yak(nk) + ∆]}/[ya(k) + ∆].

Define ḡa(k) = t̄a(k) − ta(k) and ḡ′a(k) = t̄′a(k) − t′a(k). Then, by Eq.(31) we get:

ḡa(k) =
1

2
δ[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]/ya(k),
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and

ḡ′a(k) =
1

2
δ{µ̄k−1yak(nk−1) + (µ̄′

k − 1)[yak(nk) + ∆]}/[ya(k) + ∆].

Consequently,

lim
∆→0

t̄′a(k) − t̄a(k)

y′a(h) − ya(h)

= lim
∆→0

[t′a(k) + ḡ′a(k)] − [ta(k) + ḡa(k)]

y′a(h) − ya(h)

= lim
∆→0

t′a(k) − ta(k)

∆
+ lim

∆→0

ḡ′a(k) − ḡa(k)

∆

=
(nk − k)δ − ta(k)

ya(k)
+ lim

∆→0

2{ya(k)[ya(k) + ∆]ḡ′a(k) − ya(k)[ya(k) + ∆]ḡa(k)}/δ

2ya(k)[ya(k) + ∆]∆/δ
.

The first term above is obtained using the result in Eq. (51). Since µ̄k = [Ua(k) − Va(nk −

1)]/Sa(nk) = yak(nk)/Sa(nk), and 1
2δ[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)] = [t̄a(k)− ta(k)]ya(k) (see

Eq. (31)), the numerator of the second term can be calculated as follows:

2{ya(k)[ya(k) + ∆]ḡ′a(k) − ya(k)[ya(k) + ∆]ḡa(k)}/δ

= ya(k){µ̄k−1yak(nk−1) + (µ̄′

k − 1)[yak(nk) + ∆])} − [ya(k) + ∆][µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]

= ya(k){µ̄k−1yak(nk−1) + [µ̄k +
∆

Sa(nk)
− 1][yak(nk) + ∆])} − ya(k)[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]

−[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]∆

=
ya(k)yak(nk)∆

Sa(nk)
+ ya(k)(µ̄k − 1)∆ + 2

ya(k)∆
2

Sa(nk)
− [µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]∆

= 2ya(k)µ̄k∆ − ya(k)∆ + 2
ya(k)∆

2

Sa(nk)
− 2[t̄a(k) − ta(k)]ya(k)∆/δ.

Thus,

lim
∆→0

2{ya(k)[ya(k) + ∆]ḡ′a(k) − ya(k)[ya(k) + ∆]ḡa(k)}/δ

2ya(k)[ya(k) + ∆]∆/δ
=

(̄µ
k
− 1

2 )δ − [t̄a(k) − ta(k)]

ya(k)
.

Therefore, we have:

lim
∆→0

t̄′a(k) − t̄a(k)

y′a(h) − ya(h)
=

(nk − k)δ − ta(k)

ya(k)
+

(µ̄k − 1
2 )δ − [t̄a(k) − ta(k)]

ya(k)
=

(nk − k + µ̄k − 1
2 )δ − t̄a(k)

ya(k)
.

In addition,

[nk − k + µ̄k − 1
2 ]δ − t̄a(k)

ya(k)

=
[nk − k + µ̄k − 1

2 ]δ − {ta(k) + 1
2δ[µ̄k−1yak(nk−1) + (µ̄k − 1)yak(nk)]/ya(k)}

ya(k)

=

1
2 µ̄kYak(nk) +

nk−1
∑

l=nk−1

Yak(l) −
1

2
µ̄k−1Yak(nk−1) −

1

2
(1 − µ̄k)Yak(nk − 1)

ya(k)2/δ

≥
1
2 µ̄kYak(nk)

ya(k)2/δ

=
µ̄kδ

2ya(k)

≥ 0.

(59)
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Case III: h > k

Since the dynamic link travel time calculated by Eq. (31) satisfies causality (see Proposition 15),

we have t̄′a(k) = t̄a(k) and

lim
∆→0

t̄′a(k) − t̄a(k)

y′a(h) − ya(h)
= 0.

The results of upper three cases can be summarized as follows:

∂t̄a(k)

∂ya(h)
=











































δ/2Sa(nk−1), if h < k,mk 6= nk,ml = nl for all l ∈ [h, k),

[nk − nk−1 + µ̄k − µ̄k−1]δ/ya(k), if h < k,ml = nl for all l ∈ [h, k],

[(nk − k + µ̄k − 1/2)δ − t̄a(k)]/ya(k), if h = k,mk = nk,

0, otherwise.

(60)

This completes the proof.

Appendix F

Below is the proof of Proposition 20.

Proof. Similar to the proof of Proposition 10 in Appendix C, we also consider the case that Ua(k) −

Va(mk −1) < Sa(ml), ∀l ∈ Kd. Under this condition, Proposition 17 indicates that the function t̄a(ya) is

differentiable. Proposition 17 implies that µ̄ > 0 if link a is under the congestion condition, and therefore

Eq. (59) indicates that the Jacobian matrix ∇t̄a(ya) is a lower triangular matrix and the diagonal entries

of the matrix are positive. Thus, ∇t̄a(ya) is positive definite. According to Lemma 1, the link travel

time function t̄a(ya) is strictly monotone if Ua(l) − Va(ml − 1) < Sa(ml), ∀l ∈ Kd. Similar to the proof

of Proposition 10, we can prove that t̄a(ya) is strictly monotone under the link congestion condition.
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Table 1: A comparison of the properties between various types of link travel time functions.

Property SF-type LI-type MLI-type

Link FIFO Satisfy Satisfy Satisfy

Link SFIFO Not satisfy Satisfy Satisfy

Causality Satisfy Not satisfy Satisfy

Continuity Satisfy Satisfy Satisfy

Monotone Satisfy Not satisfy Satisfy

Strictly monotone Not satisfy Not satisfy May satisfy

Table 2: The flows and cumulative flows in Example 2.

k (interval) 1 2 3 4 5 6 7 8 9 10

ya(k) (veh) 9 3 10 12 2 3 - - - -

Ua(k) (veh) 9 12 22 34 36 39 39 39 39 39

va(k)δ (veh) 0 0 0 7 5 7 7 7 6 0

Va(k)(veh) 0 0 0 7 12 19 26 33 39 39

Table 3: The results related to various types of link travel times in Example 2.

k (interval) 1 2 3 4 5 6

mk (interval) 5 5 7 9 9 9

nk (interval) 5 6 7 9 9 10

µk (interval) 2/5 0 3/7 1/6 3/6 0

µ̄k (interval) 2/7 0 3/7 1/7 3/7 0

ta(k) (sec) 32.22 30.00 33.00 37.50 40.00 30.00

t̂a(k) (sec) 31.56 32.00 32.14 37.87 38.33 32.50

t̄a(k) (sec) 31.43 31.43 32.14 37.86 37.86 32.14
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Table 4: Errors of link travel time calculation in Example 4.

Mean absolute error (sec) Mean percentage error (%) Interval relative error (%)

SF-type LI-type MLI-type SF-type LI-type MLI-type SF-type LI-type MLI-type

δ = 1 sec 0.0316 0.0004 0.0003 0.0155 0.0002 0.0002 3.1619 0.0358 0.0331

δ = 5 sec 0.1552 0.0084 0.0067 0.0766 0.0040 0.0030 3.1031 0.1687 0.1332

δ = 10 sec 0.3157 0.0297 0.0195 0.1563 0.0143 0.0089 3.1570 0.2969 0.1952

δ = 20 sec 0.6157 0.1241 0.0901 0.3009 0.0591 0.0410 3.0787 0.6203 0.4503

δ = 30 sec 1.0066 0.1647 0.1059 0.4966 0.0792 0.0481 3.3553 0.5491 0.3531

δ = 40 sec 1.2636 0.4887 0.3481 0.6389 0.2334 0.1595 3.1590 1.2218 0.8703

δ = 60 sec 1.9487 0.3426 0.2095 0.9860 0.1694 0.1002 3.2478 0.5710 0.3491

Figure 1: Cumulative vehicle numbers as a function of time.

Figure 2: The profiles of t+ ta(t) with various interval lengths in Example 1.
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Figure 3: Cumulative flow functions approximated by step functions.

Figure 4: Linear interpolation of cumulative flows.
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Figure 5: Linear interpolation of cumulative flows of link a.

Figure 6: Cumulative flow curves for Example 2.

Figure 7: Link travel time profiles for Example 4.
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