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Abstract

In a general Sparre Andersen risk model with surplus-dependent premium income, the generaliza-
tion of Gerber-Shiu function proposed by Cheung et al. (2010a) is studied. A general expression for
such Gerber-Shiu function is derived, and it is shown that its determination reduces to the evalua-
tion of a transition function which is independent of the penalty function. Properties of and explicit
expressions for such a transition function are derived when the surplus process is subject to (i) con-
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Keywords: Generalized penalty function, Gerber-Shiu function, Sparre Andersen model, surplus-
dependent premium rate, threshold dividend strategy, credit interest, absolute ruin.

Acknowledgment: The author would like to thank the anonymous referee for his/her useful com-
ments and suggestions which improved the paper. Support for Eric C.K. Cheung from a start-up fund
provided by the Faculty of Science and the Department of Statistics and Actuarial Science at the Uni-
versity of Hong Kong is also gratefully acknowledged.

∗Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam, Hong Kong. eckc@hku.hk

1



1 Introduction

In this paper we model the surplus process of an insurance company as a generalized Sparre Andersen
risk model with surplus-dependent premium rate. The motivation for a surplus-dependent premium rate
is two-fold. First, as mentioned by Lin and Pavlova (2006), from the insurer’s point of view, a higher
surplus level allows the insurer to reduce premium to stay competitive. In contrast, in case of low surplus
level, the insurer might need to charge a higher premium to avoid the possibility of insufficient funds.
Second, from a mathematical point of view, the class of risk models with surplus-dependent premium rate
includes a large variety of risk models which may involve dividend strategies and/or interest earnings, as
we shall see later.

The model of interest is described as follows. Let {St}t≥0 ≡ {
∑Nt

i=1 Yi}t≥0 be the aggregate claims
process, where the claim number process {Nt}t≥0 is a renewal process defined through the sequence of
independent and identically distributed (i.i.d.) positive interclaim times {Vi}∞i=1, with V1 being the time
of the first claim and Vi the time between the (i − 1)-th claim and the i-th claim for i = 2, 3, . . .. Let
K(t) = 1 − K(t) = Pr{V ≤ t} be the cumulative distribution function (c.d.f.) of V , with V being an
arbitrary Vi. We further assume that K(t) is differentiable and hence V has density k(t) = K ′(t) and
Laplace transform k̃(s) =

∫∞
0 e−stk(t) dt. Also, the claim size random variables (r.v.’s) {Yi}∞i=1, with Yi

being the size of the i-th claim, are assumed to form a sequence of i.i.d. positive r.v.’s. In contrast to
the traditional Sparre Andersen risk model in which the sequences {Vi}∞i=1 and {Yi}∞i=1 are assumed to
be independent, the generalized (or dependent) Sparre Andersen risk model relaxes this independence
assumption by assuming that the pairs {(Vi, Yi)}∞i=1 are i.i.d. (see e.g. Albrecher and Teugels (2006) and
Cheung et al. (2010b)). With (V, Y ) being an arbitrary pair of (Vi, Yi), it is convenient to specify the
joint distribution of (V, Y ) by the product of the marginal density k(t) and the conditional density of Y
given V . To do so, we define the conditional c.d.f. Pt(y) = Pr{Y ≤ y|V = t} = 1− P t(y) for y ≥ 0. By
assuming that Pt(y) is differentiable in y for each fixed t > 0, its corresponding density is pt(y) = P ′

t(y),
so that the joint density of (V, Y ) at (t, y) is given by pt(y)k(t). We remark that the traditional Sparre
Andersen model can be recovered from the present model by assuming that Pt(y) does not depend on
t. If we denote the surplus process of the insurance company by {Ut}t≥0, then by surplus-dependent
premium rate we mean that the instantaneous premium rate at time t ≥ 0 is assumed to be c(Ut), where
c(.) is a positive function. Therefore {Ut}t≥0 satisfies

dUt = c(Ut) dt− dSt , t ≥ 0 .

We also assume the two technical conditions
∫ x
0 [c(v)]

−1 dv < ∞ for any finite x ≥ 0 and
∫∞
0 [c(v)]−1 dv =

∞ (see Lin and Sendova (2008)). Indeed, the class of risk models with surplus-dependent premium rate
includes many existing models as special cases. Apart from the simplest case of constant premium, it
includes risk models with a threshold (Lin and Pavlova (2006) and Zhou (2004)) or a multi-threshold
(Lin and Sendova (2008)) dividend strategy, and also risk models with credit interest (see e.g. Cai and
Dickson (2002) and Sundt and Teugels (1995)) or even with liquid reserves (see e.g. Cai et al. (2009a)
and Embrechts and Schmidli (1994)).

The main goal of this paper is the evaluation of the Gerber-Shiu function with a general penalty func-
tion in the generalized Sparre Andersen model, and this will be achieved by exploiting certain structural
properties under a surplus-dependent premium rate. Here we give a brief review of the literature re-
garding the classical Gerber-Shiu functions. In Gerber and Shiu (1998), the expected discounted penalty
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function
mδ,12(u) = E

[
e−δTw12(UT− , |UT |)1(T < ∞)

∣∣U0 = u
]
, u ≥ 0 , (1.1)

was introduced, where T is the time of ruin defined by T = inf{t ≥ 0 : Ut < 0} with T = ∞ if Ut ≥ 0 for
all t ≥ 0. In addition, UT− is the surplus immediately prior to ruin, |UT | is the deficit at ruin, w12(x, y)
is the so-called penalty function, 1(A) is the indicator function of the event A, and δ ≥ 0 can either be
viewed as a force of interest or a Laplace transform argument. The classical Gerber-Shiu function (1.1) (or
its special cases) with c(.) ≡ c has been studied extensively in the literature in various generalized Sparre
Andersen models. For models assuming a specific dependency structure for the pair (V, Y ), interested
readers are referred to Badescu et al. (2009), Boudreault et al. (2006) and Cossette et al. (2008). For an
arbitrary dependency structure, the asymptotic ruin probability was studied by Albrecher and Teugels
(2006).

In generalizing the Gerber-Shiu function (1.1), we shall incorporate an additional r.v. into the penalty
function. With an initial surplus of U0 = u, we suppose that the first claim occurs at some time t > 0.
Furthermore, let γ(u, s) denote the surplus level at time s for 0 ≤ s < t, with the definition that
γ(u, t) = γ(u, t−) being the surplus level just before the first claim. Then,

γ(u, t) = u+

∫ t

0
c(γ(u, s)) ds . (1.2)

We define the sequence of {Rn}∞n=0 recursively via the function γ(u, t) such that R0 = U0 = u and

Rn = γ(Rn−1, Vn)− Yn , n = 1, 2, . . . .

Clearly, Rn is the surplus level immediately following the n-th claim if n ≥ 1, and therefore RNT−1 is the
surplus immediately after the second last claim before ruin occurs if NT > 1, and RNT−1 = U0 = u if
NT = 1. One could easily see that the definition R0 = U0 = u is consistent with the usual assumption in
a (generalized) Sparre Andersen model that a claim (called the 0-th claim) occurs at time 0−. Therefore
in the case where ruin occurs upon the first claim, the second last claim can be regarded as the 0-th
claim and thus the surplus immediately after the second last claim is U0. Then (1.1) is generalized to

mδ(u) = E
[
e−δTw(UT− , |UT |, RNT−1)1(T < ∞)

∣∣U0 = u
]
, u ≥ 0 , (1.3)

where w(x, y, z) is the generalized penalty function. The generalized Gerber-Shiu function (1.3) was
first introduced by Cheung et al. (2010a) in the context of a classical compound Poisson risk model
with c(.) ≡ c, and Willmot and Woo (2010) generalized the study to the traditional Sparre Andersen
model with Coxian interclaim times. In addition, Badescu et al. (2009) obtained the discounted joint
density of the triplet (UT− , |UT |, RNT−1) when (V, Y ) follows a bivariate phase-type distribution, and
Cheung et al. (2010b) studied a more general Gerber-Shiu function than (1.3) by further incorporating
the minimum surplus level before ruin in a general Sparre Andersen model. Obviously, the classical
Gerber-Shiu function mδ,12(u) can be retrieved from mδ(u) by letting w(x, y, z) ≡ w12(x, y).

We remark that Cheung et al. (2010a) showed that (1.3) can be used to study the last interclaim
time before ruin VNT

= (UT− − RNT−1)/c (and its joint distribution with the claim causing ruin YNT
=

UT− + |UT |) when c(.) ≡ c. When the premium rate is surplus-dependent, the last interclaim time VNT

can still be studied via (1.3) through the introduction of a new function as follows. With an initial surplus
of U0 = u, if x = γ(u, t) denotes the surplus level just before the first claim, it can be verified that the
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time of the first claim must be t = ϑ(u, x), where

ϑ(u, x) =

∫ x

u

dv

c(v)
, x > u . (1.4)

Then the last interclaim time can be expressed as VNT
= ϑ(RNT−1, UT−). Interested readers are referred

to Cheung et al. (2011) for some ordering properties of VNT
in relation to V in the present model.

This paper is organized as follows. In Section 2, an expression for the generalized Gerber-Shiu function
(1.3) is derived in terms of a transition function which is independent of the penalty function. Section 3
deals with the case with constant premium c(.) ≡ c, and the transition function characterizing mδ(u) is
studied in detail. More complicated assumptions on c(.) are studied in Sections 4 and 5 respectively in
which models with threshold dividend strategy or credit interest are covered. Extension of the approach
is also discussed in the context of an absolute ruin model with debit interest in Section 6, and Section 7
ends the paper with some concluding remarks.

2 The general structure

As in Cheung et al. (2010a,b), we begin by introducing the joint distribution of the time of ruin T , the
surplus prior to ruin UT− , the deficit at ruin |UT |, and the surplus immediately after the second last claim
before ruin RNT−1. According to the way the function ϑ(u, x) in (1.4) is defined, with an initial surplus
of U0 = u, if ruin occurs on the first claim, there is a one-to-one relationship between UT− and T given
by T = ϑ(u,UT−), and additionally RNT−1 = u. Thus, it is sufficient to specify the joint distribution of
(UT− , |UT |) at (x, y) for ruin upon the first claim. In order to have a deficit of |UT | = y after reaching
level UT− = x, the first claim has to be of size x + y. By applying the joint density of (V1, Y1) (with a
change of variable), such joint (defective) density of (UT− , |UT |) is given by

h1(x, y|u) =
1

c(x)
k(ϑ(u, x))pϑ(u,x)(x+ y) , x > u; y > 0 . (2.1)

On the other hand, if ruin occurs on claims subsequent to the first, T and RNT−1 are no longer sim-
ple functions of UT− and |UT |, and we denote the joint (defective) density of (T,UT− , |UT |, RNT−1) at
(t, x, y, z) given U0 = u by h2(t, x, y, z|u). Then the discounted joint densities corresponding to h1(x, y|u)
and h2(t, x, y, z|u) are given by

h1,δ(x, y|u) = e−δϑ(u,x)h1(x, y|u) , x > u; y > 0 , (2.2)

and

h2,δ(x, y, z|u) =
∫ ∞

0
e−δth2(t, x, y, z|u) dt , x > z > 0; y > 0 , (2.3)

respectively. Using the Dirac delta function ∆(x) heuristically defined as

∆(x) =

{
+∞, x = 0
0, x ̸= 0

satisfying
∫ +∞
−∞ ∆(x) dx = 1, the discounted densities (2.2) and (2.3) can be expressed as

h1,δ(x, y|u) = E
[
e−δT∆(UT− − x)∆(|UT | − y)1(NT = 1)

∣∣U0 = u
]

= E
[
e−δV1∆(γ(u, V1)− x)∆(Y1 − (x+ y))

]
, x > u; y > 0 , (2.4)
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and

h2,δ(x, y, z|u) = E
[
e−δT∆(UT− − x)∆(|UT | − y)∆(RNT−1 − z)1(NT > 1)|U0 = u

]
, x > z > 0; y > 0 ,

(2.5)
respectively. We have the following lemma.

Lemma 1 The discounted densities h1,δ and h2,δ are related by

h2,δ(x, y, z|u) = τδ(u, z)h1,δ(x, y|z) , x > z > 0; y > 0 , (2.6)

where

τδ(u, z) =

∞∑
n=1

E
[
e−δ

∑n
j=1 Vj∆(Rn − z)1(Ri ≥ 0, i = 1, 2, . . . , n)

∣∣U0 = u
]
, z > 0 . (2.7)

Proof. By conditioning on the number of claims causing ruin, (2.5) can be expressed as

h2,δ(x, y, z|u) =
∞∑
n=1

E
[
e−δT∆(UT− − x)∆(|UT | − y)∆(RNT−1 − z)1(NT = n+ 1)

∣∣U0 = u
]

=

∞∑
n=1

E

[
e−δ

∑n+1
j=1 Vj∆(γ(Rn, Vn+1)− x)∆(|γ(Rn, Vn+1)− Yn+1| − y)

∆(Rn − z)1(NT = n+ 1)

∣∣∣∣U0 = u

]

=

∞∑
n=1

E

[
e−δ

∑n+1
j=1 Vj∆(γ(z, Vn+1)− x)∆(Yn+1 − (x+ y))∆(Rn − z)

1(Ri ≥ 0, i = 1, 2, . . . , n)

∣∣∣∣U0 = u

]

=

∞∑
n=1

E
[
e−δ

∑n
j=1 Vj∆(Rn − z)1(Ri ≥ 0, i = 1, 2, . . . , n)

∣∣U0 = u
]

× E
[
e−δVn+1∆(γ(z, Vn+1)− x)∆(Yn+1 − (x+ y))

]
, x > z > 0; y > 0 , (2.8)

where the last line follows from the independence of (Vn+1, Yn+1) on {(Vi, Yi)}ni=1 together with the fact
that for n = 1, 2, . . ., Rn only depends on {(Vi, Yi)}ni=1 and R0 = U0. By further using the fact that
(Vn+1, Yn+1) has identical distribution as (V1, Y1), application of (2.4) to (2.8) leads to (2.6) with τδ(u, z)
given by (2.7).

The result given in Lemma 1 is in fact very intuitive. In order for ruin to occur upon at least two
claims and the surplus level after the second last claim before ruin to be z (as h2,δ(x, y, z|u) suggests),
the surplus process {Ut}t≥0, starting with initial surplus U0 = u, has to first make a transition from level
u to level z after an arbitrary number (≥ 1) of claims without ruin occurring in the interim. Such a
transition is explained by the term τδ(u, z). After reaching level z, the process restarts, and if the next
claim causes ruin (according to h1,δ(x, y|z)), then the triplet (UT− , |UT |, RNT−1) will be exactly (x, y, z).
An immediate consequence of Lemma 1 is the following Proposition.

Proposition 1 The generalized Gerber-Shiu function mδ(u) in (1.3) has the representation

mδ(u) = βδ(u) +

∫ ∞

0
τδ(u, z)βδ(z) dz , u ≥ 0 , (2.9)

where

βδ(u) =

∫ ∞

0

∫ ∞

u
w(x, y, u)h1,δ(x, y|u) dx dy , u ≥ 0 . (2.10)

5



Proof. Since the generalized Gerber-Shiu function (1.3) is an expectation of a discounted penalty, it can
simply be written as an integral of the penalty function with respect to the discounted densities h1,δ and
h2,δ as

mδ(u) =

∫ ∞

0

∫ ∞

u
w(x, y, u)h1,δ(x, y|u) dx dy +

∫ ∞

0

∫ ∞

0

∫ ∞

z
w(x, y, z)h2,δ(x, y, z|u) dx dy dz

=

∫ ∞

0

∫ ∞

u
w(x, y, u)h1,δ(x, y|u) dx dy +

∫ ∞

0
τδ(u, z)

∫ ∞

0

∫ ∞

z
w(x, y, z)h1,δ(x, y|z) dx dy dz

= βδ(u) +

∫ ∞

0
τδ(u, z)βδ(z) dz ,

where the second last line follows from the substitution of (2.6), and βδ(u) is as defined in (2.10).

Proposition 1 is again an intuitive result. Essentially, it separates the contributions to mδ(u) into
cases where ruin occurs on the first claim or on subsequent claims. To see this, it is clear from (2.10)
that βδ(u) is the contribution by ruin upon the first claim. For the remaining contribution from ruin on
subsequent claims, the surplus process {Ut}t≥0 has to first make a transition from level u to an arbitrary
level z > 0 after a number of claims avoiding ruin enroute, which is represented by τδ(u, z). Being at
level z, ruin occurs on the next claim, giving rise to βδ(z). Since the level z is arbitrary, this explains the
integral term

∫∞
0 τδ(u, z)βδ(z) dz.

Note that the representation (2.9) in Proposition 1 holds true very generally, as it has been mentioned
in the introduction that the model with surplus-dependent premium considered here contains various
risk models under dividend strategies or credit interest. The advantage of such representation is that the
dependence of mδ(u) on the penalty function w(x, y, z) only appears through βδ(u), which is explicitly
given by (2.10) (since h1,δ is known from (2.1) and (2.2)). Therefore, the generalized Gerber-Shiu function
mδ(u) can be characterized by the transition function τδ(u, z) defined by (2.7), which is independent of
the choice of w(x, y, z). Once τδ(u, z) is determined, mδ(u) follows accordingly. Thus, the determination
of mδ(u) reduces to the evaluation of τδ(u, z).

Since the quantity τδ(u, z) characterizes both the discounted joint density h2,δ(x, y, z|u) (via (2.6))
and the generalized Gerber-Shiu function mδ(u) (via (2.9)), the procedure of its determination is outlined
here. The determination of τδ(u, z) can be done through its Laplace transform defined by

φδ,r(u) =

∫ ∞

0
e−rzτδ(u, z) dz , u ≥ 0 , (2.11)

which by substitution of (2.7) yields

φδ,r(u) =

∞∑
n=1

E
[
e−δ

∑n
j=1 Vje−rRn1(Ri ≥ 0, i = 1, 2, . . . , n)

∣∣U0 = u
]
, u ≥ 0 . (2.12)

Then, φδ,r(u) can obtained by conditioning on the time t and the amount y of the first claim as

φδ,r(u) =

∫ ∞

0
e−δt

{∫ γ(u,t)

0

[
e−r(γ(u,t)−y) + φδ,r(γ(u, t)− y)

]
pt(y) dy

}
k(t) dt . (2.13)

Note that there is only contribution to φδ,r(u) if the first claim does not cause ruin. In such case, the
term e−r(γ(u,t)−y) is due to the process reaching level γ(u, t)− y immediately after the first claim, while
φδ,r(γ(u, t)−y) represents the future contribution to φδ,r(u) with the process restarting at level γ(u, t)−y.
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Remark 1 It appears that the representation of φδ,r(u) given by (2.12) has certain similarities with the
so-called expected present value of total claim costs up to the time of ruin studied by Cai et al. (2009b)
(see also Feng (2009)). According to Cai et al. (2009b, Equation (1.2)), it is given by (adopted to our
notation)

C(u) = E

[
NT∑
n=1

e−δWnω(UW−
n
, UWn)

∣∣U0 = u

]
, u ≥ 0 , (2.14)

where Wn =
∑n

j=1 Vj is the time of the n-th claim for n = 1, 2, . . ., and ω(x, y) is a function representing
the ‘cost’ associated to a claim. It can be verified that φδ,r(u) is indeed a special case of C(u) under the
choice

ω(x, y) =

{
e−ry , y ≥ 0
0 , y < 0

. (2.15)

However, it is instructive to note that Cai et al. (2009b) and Feng (2009) defined C(u) in the compound
Poisson model and the Sparre Andersen model with phase-type interclaim times respectively, whereas in
the present paper φδ,r(u) is defined more generally in a generalized Sparre Andersen risk model.

Nonetheless, in the simplest case of the classical compound Poisson risk model where k(t) = λe−λt

and pt(y) = p(y), Cai et al. (2009b, Proposition 3.1) showed that C(u) defined by (2.14) is a special case
of the so-called expected present value of total operating costs up to default, namely

H(u) = E

[∫ T

0
e−δtl(Ut)

∣∣U0 = u

]
, u ≥ 0 , (2.16)

under the choice of ‘cost function’

l(x) = λ

∫ ∞

0
ω(x, x− y)p(y) dy , x ≥ 0 .

Hence, according to (2.15), the function φδ,r(u) can be retrieved from (2.16) by letting

l(x) = λ

∫ x

0
e−r(x−y)p(y) dy , x ≥ 0 . (2.17)

We also refer interested readers to Feng (2009, Theorem 4.1) for the relationship between C(u) and H(u)
in a Sparre Andersen model with phase-type interclaim times. �

The integral equation (2.13) is usually solved by making additional distributional assumptions on the
claim size and/or the interclaim time. In contrast, if we condition on the time and the amount of the
first claim to get an integral equation for mδ(u), we do not expect that such integral equation can be
solved easily without making any further assumption on the form and/or differentiability of the penalty
function w(x, y, z) in case where c(.) is not constant. To illustrate the generality of the our approach,
the remainder of this paper provides a detailed study of the function φδ,r(u) (and hence τδ(u, z)) under
a variety of cases where specific choices of c(.) are assumed.

We remark that in cases where c(.) is constant, (2.6) and (2.9) have been shown to hold true (with
τδ(u, z) obtained explicitly) in certain models which are special cases of the generalized Sparre Andersen
risk model presented here. We refer interested readers to Badescu et al. (2009), Cheung et al. (2010a),
Willmot and Woo (2010) and Woo (2010) for such details. Furthermore, equations of the form (2.6) and
(2.9) also hold true in a matrix form in a semi-Markovian risk model with exponential interclaim time
distribution. See Cheung and Landriault (2009).
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3 Model with constant premium rate

For this entire section, we make the assumption that c(.) ≡ c. Under such simplest premium rate function,
we are able to provide a general form of the function τδ(u, z) in terms of τδ(0, z). As mentioned in Section
2, the generalized Gerber-Shiu function mδ(u) can be characterized by τδ(u, z). Here we are going to
analyze τδ(u, z) through its Laplace transform φδ,r(u) defined by (2.11).

To begin, define

ϕδ =

∫ ∞

0

∫ ∞

0

{
h1,δ(x, y|0) +

∫ x

0
h2,δ(x, y, z|0) dz

}
dx dy , (3.1)

and the (proper) ladder height density

fδ(y) =
1

ϕδ

∫ ∞

0

{
h1,δ(x, y|0) +

∫ x

0
h2,δ(x, y, z|0) dz

}
dx , y > 0 . (3.2)

In general, ϕδ < 1 if δ > 0 or the positive security loading condition cE[V ] > E[Y ] holds. Note that ϕδ

and fδ(y) only depend on the (defective) density of the deficit at ruin |UT | given U0 = 0, which is already
known in various Sparre Andersen risk models with or without dependency (see Examples 1 and 5).

By conditioning on the first drop in surplus below its initial level, one finds, according to (2.12),

φδ,r(u) = φδ,r(0)e
−ru + ϕδ

∫ u

0
e−r(u−y)fδ(y) dy + ϕδ

∫ u

0
φδ,r(u− y)fδ(y) dy , u ≥ 0 . (3.3)

The derivation of (3.3) is given probabilistically as follows by noting that every claim could possibly
contribute to φδ,r(u) as long as ruin has not occurred by the time of the claim arrival.

1. φδ,r(0)e
−ru is the contribution to φδ,r(u) by claims preceding the one causing the first drop in

surplus (excluding the drop itself). The term e−ru appears because in considering the first drop
the surplus process has been shifted by u units.

2. ϕδ

∫ u
0 e−r(u−y)fδ(y) dy corresponds to the contribution to φδ,r(u) by the claim causing the first drop

in surplus to some level u− y (0 < y < u).

3. ϕδ

∫ u
0 φδ,r(u−y)fδ(y) dy corresponds to the future contribution to φδ,r(u) if the first drop in surplus

brings the surplus to some level u− y (0 < y < u).

The defective renewal equation (3.3) has solution (see e.g. Resnick (1992, Section 3.5))

φδ,r(u) = φδ,r(0)e
−ru + ϕδ(e

−r· ∗ fδ)(u) +
1

1− ϕδ

[
φδ,r(0)(e

−r· ∗ gδ)(u) + ϕδ(e
−r· ∗ fδ ∗ gδ)(u)

]
, u ≥ 0 ,

(3.4)
where ‘∗’ is the convolution operator defined by (A1 ∗ A2)(x) =

∫ x
0 A1(x − y)A2(y) dy for two functions

A1(.) and A2(.) on (0,∞), and gδ(y) is the compound geometric density

gδ(y) =

∞∑
n=1

(1− ϕδ)ϕ
n
δ f

∗n
δ (y) , y > 0 , (3.5)
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with f∗n
δ (.) being the n-fold convolution of fδ(.) with itself. Clearly, the Laplace transform of gδ(.),

namely g̃δ(s) =
∫∞
0 e−sygδ(y) dy, is given by

g̃δ(s) =

∞∑
n=1

(1− ϕδ)ϕ
n
δ [f̃δ(s)]

n ,

where f̃δ(s) =
∫∞
0 e−syfδ(y) dy. To simplify the term (e−r· ∗ fδ ∗ gδ)(u) in (3.4), we consider

f̃δ(s)g̃δ(s) =
∞∑
n=1

(1− ϕδ)ϕ
n
δ [f̃δ(s)]

n+1 =
1

ϕδ
g̃δ(s)− (1− ϕδ)f̃δ(s) ,

and hence

(fδ ∗ gδ)(u) =
1

ϕδ
gδ(u)− (1− ϕδ)fδ(u) . (3.6)

Thus, application of (3.6) to (3.4) followed by further simplifications leads to

φδ,r(u) = φδ,r(0)e
−ru +

1

1− ϕδ

[
φδ,r(0)(e

−r· ∗ gδ)(u) + (e−r· ∗ gδ)(u)
]
, u ≥ 0 . (3.7)

We then aim at inverting (3.7) with respect to r to obtain τδ(u, z). By recalling that φδ,r(0) =∫∞
0 e−rzτδ(0, z) dz, we arrive at

φδ,r(0)e
−ru =

{∫ ∞

0
e−rzτδ(0, z) dz

}
e−ru =

∫ ∞

u
e−rzτδ(0, z − u) dz

and

φδ,r(0)(e
−r· ∗ gδ)(u) =

{∫ ∞

0
e−rzτδ(0, z) dz

}{∫ u

0
e−rxgδ(u− x) dx

}
=

∫ u

0

∫ ∞

x
e−rzτδ(0, z − x)gδ(u− x) dz dx

=

(∫ u

0

∫ z

0
+

∫ ∞

u

∫ u

0

)
e−rzτδ(0, z − x)gδ(u− x) dx dz ,

and therefore inversion of (3.7) yields

τδ(u, z) =

{
1

1−ϕδ

{
gδ(u− z) +

∫ z
0 τδ(0, z − x)gδ(u− x) dx

}
, z < u

τδ(0, z − u) + 1
1−ϕδ

∫ u
0 τδ(0, z − x)gδ(u− x) dx , z ≥ u

, (3.8)

which relates τδ(u, z) to τδ(0, z). Relationship in the form of (3.8) can also be found in Woo (2010,
Chapter 2.2.1). Note from (3.1), (3.2) and (3.5) that ϕδ and gδ(y) appearing in (3.8) can be expressed
in terms of h1,δ(x, y|0) (which is known explicitly) and h2,δ(x, y, z|0) (which can be expressed in terms
of τδ(0, z) by (2.6) in Lemma 1). Therefore, in principle τδ(0, z) is sufficient to characterize τδ(u, z) and
hence mδ(u).

The next two examples illustrate the applications of (2.13) to determine φδ,r(0) =
∫∞
0 e−rzτδ(0, z) dz

when either the interclaim time or the claim size is exponentially distributed.

Example 1 (Compound Poisson risk model)
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In this example we assume a classical compound Poisson risk model, i.e. k(t) = λe−λt and pt(y) = p(y).
Then the integral equation (2.13) becomes

φδ,r(u) =

∫ ∞

0
λe−(λ+δ)t

{∫ u+ct

0

[
e−r(u+ct−y) + φδ,r(u+ ct− y)

]
p(y) dy

}
dt .

A change of variable results in

φδ,r(u) =
λ

c

∫ ∞

u
e−

λ+δ
c

(x−u)

{∫ x

0
e−r(x−y)p(y) dy +

∫ x

0
φδ,r(x− y)p(y) dy

}
dx .

Differentiation of the above equation with respect to u results in the integro-differential equation

φ′
δ,r(u) =

λ+ δ

c
φδ,r(u)−

λ

c

∫ u

0
e−r(u−y)p(y) dy − λ

c

∫ u

0
φδ,r(u− y)p(y) dy . (3.9)

We remark that the above equation can also be obtained using (2.17) in Remark 1 along with Cai et al.
(2009b, Theorem 3.1). Taking Laplace transform on both sides of (3.9) yields

sφ̃δ,r(s)− φδ,r(0) =
λ+ δ

c
φ̃δ,r(s)−

λ

c
p̃(s)

1

r + s
− λ

c
p̃(s)φ̃δ,r(s) .

where φ̃δ,r(s) =
∫∞
0 e−suφδ,r(u) du and p̃(s) =

∫∞
0 e−syp(y) dy. Rearranging terms in the above equation

leads to [
s− λ+ δ

c
+

λ

c
p̃(s)

]
φ̃δ,r(s) = φδ,r(0)−

λ

c
p̃(s)

1

r + s
. (3.10)

By letting ρ = ρ(δ) be the unique non-negative solution to the Lundberg’s fundamental equation (in ξ)

ξ − λ+ δ

c
+

λ

c
p̃(ξ) = 0 , (3.11)

with φ̃δ,r(ρ) < ∞ putting s = ρ into (3.10) yields

φδ,r(0) =
λ

c
p̃(ρ)

1

r + ρ
. (3.12)

Inversion with respect to r in (3.12) gives

τδ(0, z) =
λ

c
p̃(ρ)e−ρz , z > 0 . (3.13)

We remark that (3.8) together with (3.13) lead to the same representation of τδ(u, z) given in Cheung
et al. (2010a, Theorem 2.2). In addition, in this case ϕδ and fδ(y) are given by (see Gerber and Shiu
(1998))

ϕδ =
λ

c

∫ ∞

0

∫ ∞

0
e−ρxp(x+ y) dx dy =

λ

c
T0Tρp(0) (3.14)

and

fδ(y) =

∫∞
0 e−ρxp(x+ y) dx∫∞

0

∫∞
0 e−ρxp(x+ y) dx dy

=
Tρp(y)
T0Tρp(0)

, y > 0 , (3.15)

respectively. Here the Dickson-Hipp operator Ts (see Dickson and Hipp (2001)) is defined as, for any
integrable function A(.) on (0,∞) and any complex number s with Re(s) ≥ 0,

TsA(y) =
∫ ∞

y
e−s(x−y)A(x) dx , y ≥ 0 .

10



These expressions will be useful in Section 4. �

We remark that φδ,r(0) can also be obtained in a similar manner as in Example 1 for more complicated
interclaim time distribution such as the Coxian distribution. Inversion with respect to r again results
in τδ(0, z) and hence τδ(u, z) can be characterized via (3.8). The function τδ(u, z) under the assumption
that the interclaim times are Coxian was derived by Willmot and Woo (2010) using a different method.

Example 2 (Sparre Andersen risk model with arbitrary interclaim times and exponential claims)

In this example we assume a traditional Sparre Andersen risk model with exponential claims, i.e.
pt(y) = p(y) = µe−µy. By taking Laplace transforms on both sides of (3.3) and solving for φ̃δ,r(s), one
finds

φ̃δ,r(s) =
φδ,r(0) + ϕδ f̃δ(s)

(r + s)[1− ϕδf̃δ(s)]
.

It is known from Willmot (2007, Example 3.1) that with exponential claim sizes, the ladder height density
defined by (3.2) is also the same exponential density, and therefore the above equation can be rewritten
as

φ̃δ,r(s) =
φδ,r(0)(µ+ s) + ϕδµ

(r + s)[µ(1− ϕδ) + s]
.

By defining κ = κ(δ) = µ(1 − ϕδ), it is clear that φ̃δ,r(s) can be resolved into partial fractions as, for
some constants A1 and A2,

φ̃δ,r(s) =
A1

s+ κ
+

A2

s+ r
,

which, upon inversion, yields

φδ,r(u) = A1e
−κu +A2e

−ru , u ≥ 0 . (3.16)

Meanwhile, under exponential claim size assumption, the integral equation (2.13) reduces to

φδ,r(u) =

∫ ∞

0
e−δt

{∫ u+ct

0

[
e−r(u+ct−y) + φδ,r(u+ ct− y)

]
µe−µy dy

}
k(t) dt .

Then, the solution form (3.16) is substituted into both sides of the above equation. We omit the algebra
and arrive at

A1e
−κu +A2e

−ru = A1
µ

µ− κ
k̃(δ + cκ)e−κu + (1 +A2)

µ

µ− r
k̃(δ + cr)e−ru

−
[
A1

µ

µ− κ
+ (1 +A2)

µ

µ− r

]
k̃(δ + cµ)e−µu .

Since the above equation holds true for all u ≥ 0, equating the coefficients of e−κu, e−ru and e−µu on
both sides leads to 

1 = µ
µ−κ k̃(δ + cκ)

A2 = (1 +A2)
µ

µ−r k̃(δ + cr)

A1
µ

µ−κ + (1 +A2)
µ

µ−r = 0

. (3.17)

The first equation of (3.17) is equivalent to saying that −κ is the unique negative root of the Lundberg’s
fundamental equation (in ξ)

1 =
µ

µ+ ξ
k̃(δ − cξ) . (3.18)
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See e.g. Landriault and Willmot (2008). Solving the remaining two equations in (3.17) for A1 and A2

followed by substitution into (3.16) gives

φδ,r(u) =
1

r − µ[1− k̃(δ + cr)]

[
(µ− κ)e−κu − µk̃(δ + cr)e−ru

]
, u ≥ 0 . (3.19)

which characterizes τδ(u, z) via its Laplace transform with respect to z. �

Example 3 (Explicit calculations under exponential-exponential assumptions)

This example aims at finding the generalized Gerber-Shiu function mδ(u) under the choice of penalty
function w(x, y, z) = e−s1x−s2y−s3z, so that mδ(u) represents the joint Laplace transform of the quadruple
(T,UT− , |UT |, RNT−1) with transform arguments (δ, s1, s2, s3). For an explicit evaluation, we assume the
classical compound Poisson risk model with exponential claims, i.e. k(t) = λe−λt and pt(y) = p(y) =
µe−µy , so that the notations defined in both Examples 1 and 2 can be used here. In particular, ρ ≥ 0 and
−κ < 0 are the roots of the equivalent equations (3.11) and (3.18) which are now quadratic equations.
First, we proceed by evaluating τδ(u, z) via (3.8). Since ρ satisfies (3.11), (3.13) becomes

τδ(0, z) =

(
λ+ δ

c
− ρ

)
e−ρz = (µ− κ)e−ρz , z > 0 , (3.20)

where the last equality follows because the sum of roots of (3.11), namely ρ − κ, equals (λ + δ)/c − µ.
Moreover, the compound geometric density gδ(y) can be obtained by differentiating equation (5.38) of
Gerber and Shiu (1998), which gives rise to

gδ(y) = ϕδκe
−κy , y > 0 . (3.21)

By substituting (3.20) and (3.21) into (3.8), performing straightforward integration and using the fact
that κ = µ(1− ϕδ), we arrive at

τδ(u, z) =

{
µ−κ
ρ+κ e

−κu [(µ+ ρ)eκz − (µ− κ)e−ρz] , z < u
µ−κ
ρ+κ e

−ρz [(µ+ ρ)eρu − (µ− κ)e−κu] , z ≥ u
. (3.22)

Next, we shall find βδ(u) defined by (2.10). With both Y and V exponentially distributed, (2.2) reduces
to

h1,δ(x, y|u) =
λµ

c
e−

λ+δ
c

(x−u)−µ(x+y) , x > u; y > 0 .

Hence, under the penalty function w(x, y, z) = e−s1x−s2y−s3z, (2.10) is found to be

βδ(u) =
λµ
c(

s1 +
λ+δ
c + µ

)
(s2 + µ)

e−(s1+s3+µ)u , u ≥ 0 . (3.23)

Substitution of (3.22) and (3.23) into (2.9) followed by some manipulations leads to

mδ(u) =
λµ

c

s1 + s3 +
λ+δ
c + µ(

s1 +
λ+δ
c + µ

)
(s2 + µ)(s1 + s3 + µ+ ρ)(s1 + s3 + µ− κ)

×
[
(s1 + s3)e

−(s1+s3+µ)u + (µ− κ)e−κu
]
, u ≥ 0 ,

which agrees with Cheung et al. (2010a, Equation (66)). �
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4 Model with a threshold dividend strategy

In this section, we shall consider the general Sparre Andersen risk model under a threshold dividend
strategy. Under a threshold strategy, it is assumed that the insurance company receives actual premium
at rate c. Moreover, there is a fixed level b > 0, called the threshold level, such that whenever the
surplus process is above b and ruin has not occurred, dividend is paid at rate α > 0 to the shareholders,
otherwise no dividend is paid. The positive security loading condition under the threshold model is
α < c − E[Y ]/E[V ], which will be assumed here. For further details regarding this model, interested
readers are referred to Gerber and Shiu (2006), Lin and Pavlova (2006) and Zhou (2004). In our setting,
the threshold model is recovered by the choice of c(.) given by

c(u) =

{
c1 = c , 0 ≤ u ≤ b
c2 = c− α , u > b

.

To emphasize the dependence of φδ,r(u) (and τδ(u, z)) on the threshold level b, we shall write φδ,r(u; b)
instead of φδ,r(u) with φδ,r(u; b) =

∫∞
0 e−rzτδ(u, z; b) dz. Also, in general φδ,r(u; b) is of different functional

form depending on whether 0 ≤ u ≤ b or u > b, and therefore we shall use the notation

φδ,r(u; b) =

{
φδ,r,1(u; b) =

∫∞
0 e−rzτδ,1(u, z; b) dz , 0 ≤ u ≤ b

φδ,r,2(u; b) =
∫∞
0 e−rzτδ,2(u, z; b) dz , u > b

.

By continuity one also has
φδ,r,1(b; b) = φδ,r,2(b

+; b) , (4.1)

so one can easily extend the domain of φδ,r,2(u; b) to include u = b.

For later use, we define, for i = 1, 2, the corresponding φδ,r function in a (threshold-free) model with
c(.) ≡ ci as φδ,r,i(u) =

∫∞
0 e−rzτδ,i(u, z) dz. Then we let ϕδ,i and fδ,i(.) be identical to ϕδ and fδ(.) given

by (3.1) and (3.2) respectively but evaluated with c replaced by ci. Furthermore, gδ,i(.) is the compound
geometric density (3.5) with ϕδ,i and fδ,i(.) in place of ϕδ and fδ(.) respectively. Clearly, φδ,r,i(u) has
solution given by (3.7) with ϕδ,i and gδ,i(.) in place of ϕδ and gδ(.).

Analogous to the way (3.3) is obtained, the same argument leads to

φδ,r,2(u; b) = φδ,r,2(0)e
−ru + ϕδ,2

∫ u

0
e−r(u−y)fδ,2(y) dy + ϕδ,2

∫ u−b

0
φδ,r,2(u− y; b)fδ,2(y) dy

+ ϕδ,2

∫ u

u−b
φδ,r,1(u− y; b)fδ,2(y) dy , u ≥ b , (4.2)

which, upon defining ζδ,r,b(u) = φδ,r,2(u+ b; b) for u ≥ 0, can be rewritten as

ζδ,r,b(u) = ϕδ,2

∫ u

0
ζδ,r,b(u− y)fδ,2(y) dy +ϖδ,r(u+ b; b) , u ≥ 0 , (4.3)

where

ϖδ,r(u; b) = ϕδ,2

∫ u

u−b
φδ,r,1(u− y; b)fδ,2(y) dy+φδ,r,2(0)e

−ru+ϕδ,2

∫ u

0
e−r(u−y)fδ,2(y) dy , u ≥ b . (4.4)
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Clearly, (4.3) is a defective renewal equation in ζδ,r,b(u) with solution

ζδ,r,b(u) =
1

1− ϕδ,2

∫ u

0
ϖδ,r(u+ b− y; b)gδ,2(y) dy +ϖδ,r(u+ b; b) , u ≥ 0 ,

and therefore φδ,r,2(u; b) can be expressed as

φδ,r,2(u; b) =
1

1− ϕδ,2

∫ u−b

0
ϖδ,r(u− y; b)gδ,2(y) dy +ϖδ,r(u; b) , u ≥ b . (4.5)

Note that in the representation (4.5) φδ,r,2(u; b) is expressed in terms of ϖδ,r(u; b) which in turn depends
on φδ,r,1(u; b) via (4.4). The next example illustrates the determination of φδ,r,1(u; b) and hence τδ,1(u, z; b)
and τδ,2(u, z; b) in the compound Poisson risk model.

Example 4 (Compound Poisson risk model)

By assuming a classical compound Poisson risk model, i.e. k(t) = λe−λt and pt(y) = p(y), we omit
the rather straightforward details and state that the integral equation (2.13) implies

φ′
δ,r,1(u; b) =

λ+ δ

c1
φδ,r,1(u; b)−

λ

c1

∫ u

0
e−r(u−y)p(y) dy− λ

c1

∫ u

0
φδ,r,1(u−y; b)p(y) dy , 0 ≤ u ≤ b , (4.6)

and

φ′
δ,r,2(u; b) =

λ+ δ

c2
φδ,r,2(u; b)−

λ

c2

∫ u

0
e−r(u−y)p(y) dy

− λ

c2

{∫ u−b

0
φδ,r,2(u− y; b)p(y) dy +

∫ u

u−b
φδ,r,1(u− y; b)p(y) dy

}
, u ≥ b . (4.7)

We only need to turn our attention to the integro-differential equation (4.6) since one can verify that
(see Lin and Pavlova (2006, Theorem 4.1)) (4.7) can indeed be transformed to (4.2) with solution (4.5).
Note that (4.6) is structurally identical to (3.9) except for the domain. Therefore, from the theory of
integro-differential equations (see e.g. Lakshmikantham and Rao (1995, p.50)), we have that

φδ,r,1(u; b) = φδ,r,1(u) + ηδ,r(b)vδ(u) , 0 ≤ u ≤ b , (4.8)

for some constant ηδ,r(b) independent of u, and vδ(u) is a solution to the homogeneous version of the
integro-differential equation (3.9) and is unique up to a multiplicative constant. By Cheung and Landri-
ault (2010), the solution with initial condition vδ(0) = 1 can be expressed as

vδ(u) = eρ1u +
1

1− ϕδ,1

∫ u

0
eρ1(u−y)gδ,1(y) dy , u ≥ 0 .

Here, for i = 1, 2, ρi is the unique non-negative root to the Lundberg’s fundamental equation (3.11)
with c being replaced by ci. Then ϕδ,i and fδ,i(y) (and hence gδ,i(y)) can correspondingly be evaluated
via (3.14) and (3.15). We remark that an alternative form for vδ(u) was also given in Bühlmann (1970,
Section 6.4.9).

With the application of (4.4), ηδ,r(b) can then be determined by (4.5), (4.8) and the continuity
condition (4.1) as

ηδ,r(b) =
ϕδ,2

∫ b
0 φδ,r,1(b− y)fδ,2(y) dy − φδ,r,1(b) + φδ,r,2(0)e

−rb + ϕδ,2

∫ b
0 e−r(b−y)fδ,2(y) dy

vδ(b)− ϕδ,2

∫ b
0 vδ(b− y)fδ,2(y) dy

. (4.9)
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Now we already have a full characterization of φδ,r,1(u; b) and φδ,r,2(u; b) via (4.8) and (4.5).

In order to invert (4.8) and (4.5) with respect to r to obtain τδ,1(u, z; b) and τδ,2(u, z; b), note that
with the use of (3.12) one can write

φδ,r,2(0)e
−ru + ϕδ,2

∫ u

0
e−r(u−y)fδ,2(y) dy =

λ

c2
p̃(ρ2)

1

r + ρ2
e−ru + ϕδ,2

∫ u

0
e−ryfδ,2(u− y) dy

=
λ

c2
p̃(ρ2)

∫ ∞

u
e−rye−ρ2(y−u) dy + ϕδ,2

∫ u

0
e−ryfδ,2(u− y) dy

=

∫ ∞

0
e−rzχδ(u, z) dz , (4.10)

where

χδ(u, z) =

{
ϕδ,2fδ,2(u− z) , z < u
λ
c2
p̃(ρ2)e

−ρ2(z−u) , z ≥ u
.

Using (4.9) and (4.10), inversion of (4.8) with respect to r leads to

τδ,1(u, z; b) = τδ,1(u, z) +
ϕδ,2

∫ b
0 τδ,1(b− y, z)fδ,2(y) dy − τδ,1(b, z) + χδ(b, z)

vδ(b)− ϕδ,2

∫ b
0 vδ(b− y)fδ,2(y) dy

vδ(u) , 0 ≤ u ≤ b . (4.11)

Similarly, by application of (4.10) again, (4.4) can be written as

ϖδ,r(u; b) =

∫ ∞

0
e−rzσδ(u, z; b) dz , u ≥ b , (4.12)

where

σδ(u, z; b) = ϕδ,2

∫ u

u−b
τδ,1(u− y, z; b)fδ,2(y) dy + χδ(u, z) , u ≥ b . (4.13)

Hence, upon substitution of (4.12), inversion of (4.5) with respect to r yields

τδ,2(u, z; b) =
1

1− ϕδ,2

∫ u−b

0
σδ(u− y, z; b)gδ,2(y) dy + σδ(u, z; b) , u ≥ b . (4.14)

To summarize this example, for 0 ≤ u ≤ b, τδ,1(u, z; b) is explicitly given by (4.11), while for u ≥ b,
τδ,2(u, z; b) is given by (4.14). It is instructive to note that the expression (4.14) involves σδ(u, z; b), which
depends on τδ,1(u, z; b) via (4.13). �

We remark that a more general interclaim time than in the previous example such as a generalized
Erlang-n distribution can also be used. In such case, the corresponding ϕδ,2 and ladder height density
fδ,2(y) can be obtained from equation (8.3) of Gerber and Shiu (2005) so as to make use of the defective
renewal equation (4.3). In addition, equation in the form of (4.8) also holds true but with ηδ,r(b)vδ(u)
replaced by

∑n
i=1 ηδ,r,i(b)vδ,i(u), where the n linearly independent homogeneous solutions {vδ,i(u)}ni=1

were studied by Li and Garrido (2004, Section 4) and the constants {ηδ,r(b)}ni=1 are to be determined
by the appropriate boundary conditions. Similar ideas apply for certain models involving dependency as
well (see Example 5). Furthermore, the methodology presented in this section can be adopted to the case
where the risk process is subject to a multi-threshold dividend strategy (see Lin and Sendova (2008)).

So far the first four examples are concerned with Sparre Andersen models in which the generic r.v.’s
Y and V are independent. To illustrate the generality of our approach, in the next example we shall
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show how to determine φδ,r(u; b) in the dependency model by Boudreault et al. (2006) under a threshold
strategy.

Example 5 (Boudreault et al. (2006)’s dependency model)

In this model, it is assumed that k(t) = λe−λt and

pt(y) = e−ςtp1(y) + (1− e−ςt)p2(y) , t, y > 0 ,

where pi(.) is a proper density function for i = 1, 2 and ς > 0 is a dependence parameter. In parallel
to (4.6) and (4.7), one finds that the integral equation (2.13) can be reduced to the piecewise integro-
differential equation (in u) as(

λ+ δ + ς

c1
I − D

)(
λ+ δ

c1
I − D

)
φδ,r(u; b) =

λ

c1

(
λ+ δ

c1
I − D

){∫ u

0
φδ,r(u− y; b)p1(y) dy + ϱr,1(u)

}
+

λ

c1

ς

c1

{∫ u

0
φδ,r(u− y; b)p2(y) dy + ϱr,2(u)

}
, 0 ≤ u ≤ b ,

(4.15)

and(
λ+ δ + ς

c2
I − D

)(
λ+ δ

c2
I − D

)
φδ,r(u; b) =

λ

c2

(
λ+ δ

c2
I − D

){∫ u

0
φδ,r(u− y; b)p1(y) dy + ϱr,1(u)

}
+

λ

c2

ς

c2

{∫ u

0
φδ,r(u− y; b)p2(y) dy + ϱr,2(u)

}
, u ≥ b ,

(4.16)

where for i = 1, 2,

ϱr,i(u) =

∫ u

0
e−r(u−y)pi(y) dy , u ≥ 0 ,

and I and D represent the identity and differentiation operators respectively. Similar to Example 4,
(4.16) can be transformed to (4.2) and thus φδ,r,2(u; b) is given by (4.5). Here ϕδ,2 and fδ,2(y) (and hence
gδ,2(y)) are available from Boudreault et al. (2006, Theorem 5), whereas φδ,r,2(0) =

∫∞
0 e−rzτδ,2(0, z) dz

appearing via ϖδ,r(u; b) can be obtained from Woo (2010, Chapter 3.1.5). Moreover, (4.15) has solution

φδ,r,1(u; b) = φδ,r,1(u) +

2∑
i=1

ηδ,r,i(b)vδ,i(u) , 0 ≤ u ≤ b , (4.17)

where φδ,r,1(u) =
∫∞
0 e−rzτδ,1(u, z) dz is again provided by Woo (2010, Chapter 3.1.5), and {vδ,i(u)}2i=1

are the linearly independent solutions to the homogeneous version of (4.15) with extended domain u ≥ 0
and are given by Landriault (2008). In addition, the constants {ηδ,r(b)}2i=1 can be solved from the system
of two linear equations consisting of the continuity condition (4.1) and the additional condition

c1φ
′
δ,r,1(b; b) = c2φ

′
δ,r,2(b; b) .

We remark that the above condition suggests that in general φ′
δ,r(u; b) is not continuous at u = b, and it

appeared in the literature in the study of Gerber-Shiu functions under threshold strategies. See Gerber
and Shiu (2006, Section 10) and Lin and Pavlova (2006, Section 3).

Having obtained {ηδ,r(b)}2i=1, the quantities φδ,r,1(u; b) and φδ,r,2(u; b) are fully characterized by (4.17)
and (4.5). Inversion of Laplace transforms with respect to r yields τδ,1(u, z; b) and τδ,2(u, z; b). Since the
ideas involved are identical to those in Example 4, the straightforward but rather tedious algebraic details
are omitted here. �
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5 Model with credit interest

In a risk model with credit interest, it is assumed that the insurance company receives actual premium
income at a constant rate c > 0, while at the same time interest is received on its surplus at a constant
force of interest ε > 0. Such model can be retrieved from the present one with surplus-dependent premium
rate by letting c(u) = c+ εu. See e.g. Cai and Dickson (2002), Gerber and Yang (2007) and Sundt and
Teugels (1995).

As an illustration, for the remainder of this section, we assume a classical compound Poisson risk
model with k(t) = λe−λt and pt(y) = p(y). Then, the integral equation (2.13) implies

φ′
δ,r(u) =

λ+ δ

c+ εu
φδ,r(u)−

λ

c+ εu

∫ u

0
e−r(u−y)p(y) dy − λ

c+ εu

∫ u

0
φδ,r(u− y)p(y) dy . (5.1)

In general, it is not easy to solve (5.1) for φδ,r(u). In the context of compound Poisson risk models
with credit interest, integro-differential equation of the form (5.1) is usually transformed into a Volterra
integral equation whose solution can be approximated recursively by Picard’s sequence (see e.g. Cai and
Dickson (2002) and Wu et al. (2007)). However, instead of inverting such a solution analytically with
respect to r to give τδ(u, z) (which does not appear to be an easy task), an explicit expression for τ0(u, z)
is obtainable in the case of exponential claims using a direct method as follows.

Additionally we assume p(y) = µe−µy. Then, omitting some straightforward algebra, application of
the operator (d/du+ µ) to (5.1) leads to the differential equation

φ′′
δ,r(u) +

(
µ+

ε− λ− δ

c+ εu

)
φ′
δ,r(u)−

δµ

c+ εu
φδ,r(u) = − λµ

c+ εu
e−ru . (5.2)

To solve the above equation for φδ,r(u), we further assume that δ = 0. Then (5.2) reduces to

φ′′
0,r(u) +

(
µ+

ε− λ

c+ εu

)
φ′
0,r(u) = − λµ

c+ εu
e−ru . (5.3)

By Polyanin and Zaitsev (2003, Section 2.1.9 Solution 3), the solution to (5.3) is given by

φ0,r(u) = C1 +

∫ u

0
e−Q1(x)

{
C2 +

∫ x

0
eQ1(z)Q2(z) dz

}
dx , u ≥ 0 , (5.4)

where

Q1(z) =

∫ z

0

(
µ+

ε− λ

c+ εv

)
dv = µz +

(
1− λ

ε

)
ln
(
1 +

ε

c
z
)

and Q2(z) = − λµ

c+ εz
e−rz , (5.5)

and C1 and C2 are constants to be determined by two boundary conditions. The first boundary condition
can be obtained by letting u → ∞ in (5.4) together with limu→∞ φ0,r(u) = 0. This yields

0 = C1 + C2

∫ ∞

0
e−Q1(x) dx+

∫ ∞

0
e−Q1(x)

∫ x

0
eQ1(z)Q2(z) dz dx . (5.6)

In addition, by putting u = 0 into the integro-differential equation (5.1), one arrives at

φ′
0,r(0) =

λ

c
φ0,r(0)
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which, according to (5.4), leads to the second boundary condition

C2 =
λ

c
C1 . (5.7)

Solving (5.6) and (5.7) simultaneously yields

C1 = −
∫∞
0 e−Q1(x)

∫ x
0 eQ1(z)Q2(z) dz dx

1 + λ
c

∫∞
0 e−Q1(x) dx

and C2 = −λ

c

∫∞
0 e−Q1(x)

∫ x
0 eQ1(z)Q2(z) dz dx

1 + λ
c

∫∞
0 e−Q1(x) dx

,

and therefore (5.4) becomes

φ0,r(u) = −

[
1 + λ

c

∫ u
0 e−Q1(x) dx

1 + λ
c

∫∞
0 e−Q1(x) dx

]∫ ∞

0
e−Q1(x)

∫ x

0
eQ1(z)Q2(z) dz dx+

∫ u

0
e−Q1(x)

∫ x

0
eQ1(z)Q2(z) dz dx .

(5.8)
From the above expression φ0,r(u) depends on r only through Q2(z). By noting that∫ u

0
e−Q1(x)

∫ x

0
eQ1(z)Q2(z) dz dx = −

∫ u

0
e−rz

{∫ u

z
e−Q1(x) dx

}
λµ

c+ εz
eQ1(z) dz ,

inversion of (5.8) with respect to r leads to

τ0(u, z) =

{[
1 + λ

c

∫ u
0 e−Q1(x) dx

1 + λ
c

∫∞
0 e−Q1(x) dx

]∫ ∞

z
e−Q1(x) dx− 1(z < u)

∫ u

z
e−Q1(x) dx

}
λµ

c+ εz
eQ1(z) . (5.9)

A more explicit formula for τ0(u, z) can be obtained by substituting into (5.9) the expression of Q1(z)
given in (5.5). We then obtain

τ0(u, z) =

{[
1 + λ

c

∫ u
0 e−µx

(
1 + ε

cx
)−1+λ

ε dx

1 + λ
c

∫∞
0 e−µx

(
1 + ε

cx
)−1+λ

ε dx

]∫ ∞

z
e−µ(x−z)

(
c+ εx

c+ εz

)−1+λ
ε

dx

− 1(z < u)

∫ u

z
e−µ(x−z)

(
c+ εx

c+ εz

)−1+λ
ε

dx

}
λµ

c+ εz
, (5.10)

which is expressed explicitly in terms of model parameters.

We remark that the joint density of the triplet (UT− , |UT |, RNT−1) consists of two parts: h1,0 in (2.2)
and h2,0 in (2.3), where h2,0 follows immediately from (5.10) together with (2.6) in Lemma 1.

6 Extension of the approach: Absolute ruin model

In fact, the general structure regarding the discounted densities and the generalized Gerber-Shiu function
presented in Section 2 holds true more generally in the context of an absolute ruin model (see e.g. Cai
(2007), Cai et al. (2009b), Dassios and Embrechts (1989), Gerber and Yang (2007) and Zhu and Yang
(2008)). Under the absolute ruin model, the insurance company is allowed to continue its business even
if its surplus drops below zero as long as the surplus is still above a (negative) critical level u0. When the
surplus level at time t is UA

t such that u0 < UA
t < 0, the shortfall is subject to an instantaneous borrowing
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rate (or debit interest) of εd(U
A
t ), where εd(.) is a positive function. By extending the surplus-dependent

premium c(.) to negative surplus level, the critical level u0 is the largest root of the equation (in ξ)

c(ξ) + εd(ξ)ξ = 0 , ξ < 0 .

See Cai et al. (2009b). If we define the quantity

cA(u) =

{
c(u) , u ≥ 0
c(u) + εd(u)u , u0 < u < 0

,

the surplus process {UA
t }t≥0 satisfies

dUA
t = cA(UA

t ) dt− dSt , t ≥ 0 .

In addition to the technical conditions
∫ x
u [c

A(v)]−1 dv < ∞ for x > u > u0 and
∫∞
u [cA(v)]−1 dv = ∞ for

u > u0, we also assume that
∫ u0+ϵ
u0

[cA(v)]−1 dv = ∞ for any ϵ > 0. See Gerber and Yang (2007). The

time of ruin of the process {UA
t }t≥0 is defined by TA = inf{t ≥ 0 : UA

t ≤ u0} with TA = ∞ if UA
t > u0

for all t ≥ 0. The generalized Gerber-Shiu function of our interest is

mA
δ (u) = E

[
e−δTA

w(UA
(TA)− , |U

A
TA |, RA

N
TA−1)1(T

A < ∞)
∣∣UA

0 = u
]
, u > u0 , (6.1)

where the surplus prior to ruin UA
(TA)−

, deficit at ruin |UA
TA | and the surplus immediately after the second

last claim before ruin RA
N

TA−1 are defined accordingly. Furthermore, γA(u, t) and ϑA(u, x) are given

by (1.2) and (1.4) respectively with cA(.) in place of c(.). Analogous to (2.2) and (2.3), we define the
discounted joint densities

hA1,δ(x, y|u) =
1

cA(x)
e−δϑA(u,x)k(ϑA(u, x))pϑA(u,x)(x+ y) , x > u > u0; y > −u0 ,

for ruin occurring on the first claim and

hA2,δ(x, y, z|u) =
∫ ∞

0
e−δthA2 (t, x, y, z|u) dt , x > z > u0; y > −u0 ,

where hA2 (t, x, y, z|u) is the joint density of (TA, UA
(TA)−

, |UA
TA |, RA

N
TA−1) at (t, x, y, z) for ruin on subse-

quent claims given UA
0 = u. Adapting Lemma 1 and Proposition 1 to the absolute ruin context, we have

that
hA2,δ(x, y, z|u) = τAδ (u, z)hA1,δ(x, y|z) , x > z > u0; y > −u0 ,

and

mA
δ (u) = βA

δ (u) +

∫ ∞

−u0

τAδ (u, z)βA
δ (z) dz , u > u0 , (6.2)

where

βA
δ (u) =

∫ ∞

−u0

∫ ∞

u
w(x, y, u)hA1,δ(x, y|u) dx dy , u > u0 .

Again, the generalized Gerber-Shiu function (6.1) is characterized by τAδ (u, z) via (6.2), and τAδ (u, z) can
be determined through its (two-sided) Laplace transform φA

δ,r(u) =
∫∞
u0

e−rzτAδ (u, z) dz given by

φA
δ,r(u) =

∞∑
n=1

E
[
e−δ

∑n
j=1 Vje−rRA

n 1(RA
i > u0, i = 1, 2, . . . , n)

∣∣UA
0 = u

]
, u > u0 .
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Then φA
δ,r(u) can be obtained by conditioning on the time and the amount of the first claim

φA
δ,r(u) =

∫ ∞

0
e−δt

{∫ γA(u,t)−u0

0

[
e−r(γA(u,t)−y) + φA

δ,r(γ
A(u, t)− y)

]
pt(y) dy

}
k(t) dt . (6.3)

In general, due to the presence of debit interest below level 0, φA
δ,r(u) is of different functional form

depending on whether u0 < u < 0 or u ≥ 0. Therefore we shall denote

φA
δ,r(u) =

{
φA
δ,r,+(u) =

∫∞
u0

e−rzτAδ,+(u, z) dz , u ≥ 0

φA
δ,r,−(u) =

∫∞
u0

e−rzτAδ,−(u, z) dz , u0 < u < 0
.

By continuity one also has
φA
δ,r,+(0) = φA

δ,r,−(0
−) . (6.4)

Furthermore, the boundary condition
φA
δ,r,−(u

+
0 ) = 0 (6.5)

is a consequence of the additional technical assumption by Gerber and Yang (2007) since ruin is expected
to occur upon the first claim with initial surplus u+0 .

In order to exploit more structure, for the remainder of this section, we make the assumption that
c(.) ≡ c. In our analysis various quantities, for instance, φδ,r(u) ϕδ, fδ(y) and gδ(y) defined in Section
3 for the constant premium case, will be used. The positive security loading condition cE[V ] > E[Y ] is
assumed to hold.

Using the same argument used to obtain (3.3), one has the defective renewal equation for φA
δ,r,+(u)

given by

φA
δ,r,+(u) = ϕδ

∫ u

0
φA
δ,r,+(u− y)fδ(y) dy +ϖA

δ,r(u) , u ≥ 0 , (6.6)

where

ϖA
δ,r(u) = φδ,r(0)e

−ru + ϕδ

∫ u−u0

0
e−r(u−y)fδ(y) dy + ϕδ

∫ u−u0

u
φA
δ,r,−(u− y)fδ(y) dy , u ≥ 0 . (6.7)

The solution to (6.6) is

φA
δ,r,+(u) =

1

1− ϕδ

∫ u

0
ϖA

δ,r(u− y)gδ(y) dy +ϖA
δ,r(u) , u ≥ 0 . (6.8)

The above solution for φA
δ,r,+(u) depends on φA

δ,r,−(u) via ϖA
δ,r(u). The determination of φA

δ,r,−(u) is
usually done by making further assumptions on the interclaim time, the claim size and/or the debit
interest function εd(.).

Here we assume a compound Poisson model with constant debit interest such that k(t) = λe−λt,
pt(y) = p(y) and εd(.) ≡ εd, and therefore u0 = −c/εd. As in Example 4, one can verify that a change of
variables in (6.3) followed by differentiation leads to a piecewise integro-differential equation. One of the
two pieces is given by

(φA
δ,r,−)

′(u) =
λ+ δ

c+ εdu
φA
δ,r,−(u)−

λ

c+ εdu

∫ u+ c
εd

0
e−r(u−y)p(y) dy− λ

c+ εdu

∫ u+ c
εd

0
φA
δ,r,−(u− y)p(y) dy ,

− c

εd
< u ≤ 0 . (6.9)

20



while the remaining piece can be transformed to (6.8).

By further assuming p(y) = µe−µy and δ = 0, application of the operator (d/du+µ) to (6.9) leads to

(φA
0,r,−)

′′(u) +

(
µ+

εd − λ

c+ εdu

)
(φA

0,r,−)
′(u) = − λµ

c+ εdu
e−ru , − c

εd
< u ≤ 0 ,

which is structurally identical to (5.3). Hence its general solution is given by

φA
0,r,−(u) = C3 + C4Γ1(u) + Γ2(u) , − c

εd
< u ≤ 0 , (6.10)

where

Γ1(u) =

∫ u

0
e−Q3(x) dx and Γ2(u) =

∫ u

0
e−Q3(x)

∫ x

0
eQ3(z)Q4(z) dz dx . (6.11)

Here Q3(z) and Q4(z) have the same definition as Q1(z) and Q2(z) respectively (as in (5.5)) but with ε
replaced by εd, and the constants C3 and C4 are determined by the boundary conditions (6.4) and (6.5).
First, (6.5) implies

C3 + C4Γ1

(
− c

εd

)
+ Γ2

(
− c

εd

)
= 0 . (6.12)

Second, by noting from (6.11) that Γ1(0) = Γ2(0) = 0, (6.4) together with (6.6) leads to

ϖA
0,r(0) = C3 . (6.13)

Utilizing the well-known results

ϕ0 =
λ

µc
and f0(y) = µe−µy , y > 0 , (6.14)

for exponential claims (see e.g. Gerber and Shiu (1998)), application of (6.7) to (6.13) yields

Θr +
λ

c

∫ c
εd

0
φA
0,r,−(−y)e−µy dy = C3 , (6.15)

where

Θr = φ0,r(0) +
λ

c

∫ c
εd

0
erye−µy dy . (6.16)

Substitution of the solution form (6.10) into (6.15) followed by some algebraic manipulations gives

Θr +
λ

c

∫ 0

− c
εd

Γ2(y)e
µy dy + C3

[
λ

µc

(
1− e

−µc
εd

)]
+ C4

{
λ

c

∫ 0

− c
εd

Γ1(y)e
µy dy

}
= C3 . (6.17)

Solving (6.12) and (6.17) simultaneously yields

C3 =
1

Υ

{
Γ1

(
− c

εd

)[
Θr +

λ

c

∫ 0

− c
εd

Γ2(y)e
µy dy

]
− λ

c
Γ2

(
− c

εd

)∫ 0

− c
εd

Γ1(y)e
µy dy

}
(6.18)

and

C4 = − 1

Υ

{
Γ2

(
− c

εd

)[
1− λ

µc

(
1− e

−µc
εd

)]
+Θr +

λ

c

∫ 0

− c
εd

Γ2(y)e
µy dy

}
, (6.19)
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where

Υ = Γ1

(
− c

εd

)[
1− λ

µc

(
1− e

−µc
εd

)]
+

λ

c

∫ 0

− c
εd

Γ1(y)e
µy dy . (6.20)

Hence a complete characterization of φA
0,r,−(u) is given by (6.10) together with (6.18), (6.19) and (6.20).

Then φA
0,r,+(u) can be determined by (6.8) together with (6.7) (at δ = 0). Note that the compound

geometric density appearing in (6.8) can be obtained from (3.21) at δ = 0, i.e.

g0(y) =
λ

µc

(
µ− λ

c

)
e−(µ−

λ
c )y , y ≥ 0 . (6.21)

To invert φA
0,r,−(u) with respect to r to obtain τA0,−(u, z), we note from (6.11) that Γ1(u) does not

depend on r while Γ2(u) depends on r through Q4(z). Note also that Υ is independent of r, and therefore
C3 and C4 given in (6.18) and (6.19) only depend on r via Γ2(u) and Θr. Using (3.12) with the fact that
ρ = 0 when δ = 0, (6.16) can be rewritten as

Θr =
λ

c

∫ ∞

0
e−rz dz +

λ

c

∫ 0

− c
εd

e−rzeµz dz . (6.22)

On the other hand, by changing the order of integration, one has

Γ2(u) = −
∫ 0

u
e−rz

{∫ z

u
e−Q3(x) dx

}
λµ

c+ εdz
eQ3(z) dz , (6.23)

and therefore∫ 0

− c
εd

Γ2(y)e
µy dy = −

∫ 0

− c
εd

e−rz

{∫ z

− c
εd

eµy
∫ z

y
e−Q3(x) dx dy

}
λµ

c+ εdz
eQ3(z) dz . (6.24)

Applying (6.22), (6.23) and (6.24) to (6.18) and (6.19), one arrives at

C3 =
λ

cΥ
Γ1

(
− c

εd

)∫ ∞

0
e−rz dz +

∫ 0

− c
εd

e−rzπ1(z) dz (6.25)

and

C4 = − λ

cΥ

∫ ∞

0
e−rz dz +

∫ 0

− c
εd

e−rzπ2(z) dz , (6.26)

where

π1(z) =
λ

cΥ

{
Γ1

(
− c

εd

)[
eµz −

(∫ z

− c
εd

eµy
∫ z

y
e−Q3(x) dx dy

)
λµ

c+ εdz
eQ3(z)

]

+

(∫ z

− c
εd

e−Q3(x) dx

)
λµ

c+ εdz
eQ3(z)

(∫ 0

− c
εd

Γ1(y)e
µy dy

)}
, − c

εd
< z < 0 ,

and

π2(z) =
1

Υ

(∫ z

− c
εd

e−Q3(x) dx

)
λµ

c+ εdz
eQ3(z)

[
1− λ

µc

(
1− e

−µc
εd

)]

+
λ

cΥ

[(∫ z

− c
εd

eµy
∫ z

y
e−Q3(x) dx dy

)
λµ

c+ εdz
eQ3(z) − eµz

]
, − c

εd
< z < 0 .
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Substitution of (6.23), (6.25) and (6.26) into (6.10) leads to

φA
0,r,−(u) =

λ

cΥ

[
Γ1

(
− c

εd

)
− Γ1(u)

] ∫ ∞

0
e−rz dz +

∫ 0

− c
εd

e−rz[π1(z) + Γ1(u)π2(z)] dz

−
∫ 0

u
e−rz

{∫ z

u
e−Q3(x) dx

}
λµ

c+ εdz
eQ3(z) dz , − c

εd
< u ≤ 0 . (6.27)

Clearly, by inversion of (6.27) with respect to r, we obtain, for −c/εd < u ≤ 0,

τA0,−(u, z) =

{
λ
cΥ

[
Γ1

(
− c

εd

)
− Γ1(u)

]
, z ≥ 0

π1(z) + Γ1(u)π2(z)− 1(z > u)
{∫ z

u e−Q3(x) dx
} λµ

c+εdz
eQ3(z) . − c

εd
< z < 0

, (6.28)

which gives an expression for τA0,−(u, z).

Next, to obtain τA0,+(u, z), we make use of (3.13), (6.14) and φA
0,r,−(u) =

∫∞
−c/εd

e−rzτA0,−(u, z) dz so

that (6.7) with δ = 0 can be represented as

ϖA
0,r(u) =

λ

c

∫ ∞

u
e−rz dz +

λ

c

∫ u

− c
εd

e−rze−µ(u−z) dz +
λ

c

∫ ∞

− c
εd

e−rz

∫ 0

− c
εd

e−µ(u−y)τA0,−(y, z) dy dz

=

∫ ∞

− c
εd

e−rzσA(u, z) dz , u ≥ 0 , (6.29)

where

σA(u, z) =
λ

c

{∫ 0

− c
εd

e−µ(u−y)τA0,−(y, z) dy + 1(z < u)e−µ(u−z) + 1(z ≥ u)

}
, u ≥ 0; z > − c

εd
.

By putting (6.29) into (6.8) with the use of (6.21), inversion of the resulting expression with respect to
r results in

τA0,+(u, z) =
λ

c

∫ u

0
σA(u− y, z)e−(µ−

λ
c )y dy + σA(u, z) , u ≥ 0; z > − c

εd
,

which is an expression of τA0,+(u, z) in terms of τA0,−(u, z) given by (6.28).

7 Concluding remarks

In this paper, the generalized Gerber-Shiu function proposed by Cheung et al. (2010a) is considered
in a general Sparre Andersen risk model with surplus-dependent premium rate. It is shown that under
the present model, the generalized Gerber-Shiu function mδ(u) can be characterized by a transition
function τδ(u, z) which is independent of the penalty function. The determination of τδ(u, z) can be done
through its Laplace transform φδ,r(u) =

∫∞
0 e−rzτδ(u, z) dz, which is in turn evaluated by additional

assumptions on the premium rate function c(.), claim size and/or interclaim time distributions. The
evaluation of φδ,r(u) (or its special case with δ = 0) is demonstrated in various risk models with (i)
constant premium; (ii) a threshold dividend strategy; (iii) credit interest; or (iv) debit interest. In most
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cases analytic Laplace transform inversion of φδ,r(u) with respect to r (to obtain τδ(u, z)) is performed,
leading to a complete characterization of the generalized Gerber-Shiu function of our interest according
to Proposition 1. The approach presented in this paper is different from the standard approach (which
usually involves conditioning on the time and the amount of the first claim to obtain an integral and/or
integro-differential equation for the Gerber-Shiu function itself), and we do not have to assume any
specific form or differentiability of the penalty function.

As far as the discounted joint distribution of the triplet (UT− , |UT |, RNT−1) is concerned, it is instruc-
tive to note that it can be readily obtained from τδ(u, z) via Lemma 1. This is also different from the usual
approach in which the generalized Gerber-Shiu function mδ(u) is evaluated with the choice of penalty
function w(x, y, z) = e−s1x−s2y−s3z and then inverted with respect to (s1, s2, s3). Our approach has the
advantage that we only have to perform Laplace transform inversion with respect to one argument (to
obtain τδ(u, z) from φδ,r(u)) instead of three in the usual approach.

Finally, we also remark that a matrix extension of the general structure exploited in Section 2 is
possible by employing the ideas in Cheung and Landriault (2009).

References

[1] Albrecher, Hansjörg and Jef L. Teugels. 2006. Exponential behavior in the presence of
dependence in risk theory. Journal of Applied Probability 43(1): 257-273.

[2] Badescu, Andrei L., Eric C.K. Cheung and David Landriault. 2009. Dependent risk models
with bivariate phase-type distributions. Journal of Applied Probability 46(1): 113-131.

[3] Boudreault, Mathieu, Helene Cossette, David Landriault and Etienne Marceau. 2006.
On a risk model with dependence between interclaim arrivals and claim sizes. Scandinavian Actuarial
Journal 2006(5): 265-285.
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