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Abstract Anaerobic ammonium-oxidizing (anammox) pro-
cess plays an important role in the nitrogen cycle of the
worldwide anoxic and mesophilic habitats. Recently, the
existence and activity of anammox bacteria have been
detected in some thermophilic environments, but their
existence in the geothermal subterranean oil reservoirs is
still not reported. This study investigated the abundance,
distribution and functional diversity of anammox bacteria in
nine out of 17 high-temperature oil reservoirs by molecular
ecology analysis. High concentration (5.31–39.2 mg l−1) of
ammonium was detected in the production water from these
oilfields with temperatures between 55°C and 75°C. Both
16S rRNA and hzo molecular biomarkers indicated the
occurrence of anammox bacteria in nine out of 17 samples.
Most of 16S rRNA gene phylotypes are closely related to
the known anammox bacterial genera Candidatus Brocadia,
Candidatus Kuenenia, Candidatus Scalindua, and Candi-

datus Jettenia, while hzo gene phylotypes are closely
related to the genera Candidatus Anammoxoglobus, Can-
didatus Kuenenia, Candidatus Scalindua, and Candidatus
Jettenia. The total bacterial and anammox bacterial densities
were 6.4±0.5×103 to 2.0±0.18×106 cells ml−1 and 6.6±
0.51×102 to 4.9±0.36×104 cell ml−1, respectively. The
cluster I of 16S rRNA gene sequences showed distant
identity (<92%) to the known Candidatus Scalindua species,
inferring this cluster of anammox bacteria to be a new
species, and a tentative name Candidatus “Scalindua sinooil-
field” was proposed. The results extended the existence of
anammox bacteria to the high-temperature oil reservoirs.

Introduction

A petroleum reservoir is a typically extreme environment
characterized by high temperature, high pressure, high
salinity, and strictly anoxic condition. From the first
description of the microorganisms in oil deposits [4], the
microbiology of petroleum reservoirs subsequently devel-
oped along with petroleum exploration. A wide range of
microorganisms have been cultured from oilfields with
sulfate reduction, fermentation, acetogenesis, and methano-
genesis as major metabolic types [40, 63]. The culture-
independent researches indicated more diverse microbes
than previously perceived in oilfields worldwide [1, 5, 7,
12, 15, 28, 33, 41, 42, 46]. Recently, much more attention
has been paid to the microbial flora associated with the
nitrogen cycle in the subterranean petroleum-rich strata
because the source of nitrogen is a limiting factor to the
microbial community activity under the oilfield condition. In
the petroleum industry, substantial amounts of nitrate were
injected into the oil reservoirs in an attempt to control the
souring [21] through changing the microbial community
structure in the subsurface strata. Several nitrogen-cycle-
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related microorganisms were activated by the injected
nitrate, including the nitrate-reducing interdependent with
sulfite oxidation bacteria and heterotrophic nitrate-reducing
bacteria [20]. Along with these processes, nitrite and
ammonium were produced through the nitrate-reducing
pathway [16]. Because of the well-known stable chemical
property under the anoxic condition, ammonium will be
accumulated in the formation water. Thus, the high concen-
tration of ammonia was detected frequently in the production
water from the oilfield, which is a problem in production
water treatment for recycled water flooding and potentially
imposed an environmental hazard. However, the detected
concentration of ammonium was lower than the estimated
value of stoichiometric calculation. To explain the elimina-
tion of ammonium in in situ oil reservoirs, we hypothesize
that the anaerobic ammonium-oxidation (anammox) process
might be responsible for consuming the ammonia in the
anoxic oil strata. Because the anammox process was
implicated to be most importantly responsible for the
nitrogen cycle in all the anoxic habitats [11, 24, 31] and
consistent with the growth condition of anammox bacteria,
the subsurface oil reservoir formed a suitable niche for them.

The anammox bacteria are among the latest additions to
the biogeochemical nitrogen cycle with ability to convert
ammonium and nitrite into dinitrogen gas in a strictly
anoxic environment. So far, five anammox genera have
been identified with similar physiological property belong-
ing to the Brocadiales order, while the phylogenetic
distance is quite large with 16S rRNA gene sequence
identities ranging from 87% to 99% [25]. Up to now, the
presence of anammox bacteria has been demonstrated in
worldwide oxygen-limited marine and freshwater systems
and in the activated sludge [26, 27, 35, 47, 53, 54, 59],
marine sediment and oxygen minimum zones [6, 9, 31, 32,
45, 55, 64], freshwater [22, 65], and river estuary
ecosystem [8, 10]. Moreover, the phylogenetic biomarkers
of the functional gene hzo and nirS encoding the key
enzymes involving the anammox process were developed
to investigated the functional diversity of anammox bacteria
in wastewater treatment plants and natural environment [30,
32, 35, 47, 54, 57, 59], which significantly improved the
understanding of the anammox bacterial community.

However, the existence of anammox process in oil
reservoirs is still unknown, and the knowledge of anammox
in thermophilic habitats is also very limited. Given that the
anammox bacteria were cultured in the experimental trail
with optimum temperature below 43°C [58], the distribu-
tion of anammox bacteria in thermophilic habitats looks
unfeasible. More recently, the discovery of anammox
bacteria in the deep-sea hydrothermal vent and terrestrial
hot springs substantially extends the temperature limit of
anammox bacterial distribution [6, 22] by proving the
presence and activity of anammox bacteria in the natural

ecosystem with temperatures up to 100°C. The geothermal
environment of an underground oil reservoir is a special hot
habitat, while very little is known about the anammox
bacterial distribution. Therefore, we initiated this survey of
high-temperature oil reservoir ecosystems in order to find
indications of other anammox bacteria that might thrive in
the thermophilic environment and provide further informa-
tion on bacterial nitrogen cycle in oil reservoirs. In this
study, various oil reservoir samples were collected in
Shengli Oilfield and observed by chemical and molecular
ecology methods (i.e., 16S rRNA gene and hzo phylogeny).
The existence of anammox bacteria was detected in the hot
habitat to develop a general view of ecology and
biogeography characteristics of the anammox bacterial
population in the geothermal and anoxic subsurface
petroleum reservoir.

Materials and Methods

Sample Collection and Physicochemical Analyses

Shengli Oilfield is the second largest in China, located at
Yellow River Delta in Shandong province in Eastern China.
In total, 17 sampling wells distributed in an area of at least
2,000 km2 were selected to represent contrasting geograph-
ical and biogeochemical attributes and oil production
operation. Seven wells (S3–S9) were in the middle of the
Yellow River Delta and two wells (S1, S2) in the vicinity of
Bohai Sea (Fig. 1). The formation-water samples were
collected directly from the well head in sterilized steel
screw-cap bottles after flushing the lines for 30 min. The
bottles were filled with oil/water mixture, sealed, and
immediately stored in a large plastic box with ice and
transported to the laboratory. The residual oil was removed
by heating the sample to 50°C for 15 min and by phase
separation in 2 l sterilized separatory funnel. Microbial
biomass was collected from 2 l water phase by centrifuga-
tion at 15,000×g, 4°C. The chemical properties of the
formation water were measured using Hach kits by
following the manufacturer’s instructions (Hach, USA).

Generation of 16S rRNA Gene and hzo Clone Library

Total community DNA was extracted from cell pellets
using the lysozyme/proteinase K/sodium dodecyl sulfate
treatment followed by standard phenol/chloroform extrac-
tions. Nucleic acids were purified by the DNA purifica-
tion kit (Promega, USA). Sample DNA was extracted
several times, pooled, and concentrated. Polymerase chain
reaction (PCR) amplification of 16S rRNA gene was
performed by two protocols. Firstly, the initial PCR
amplification was performed with forward primer Pla46F
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[43] in combination with the reverse primer 1037R
[39], and the nested PCR was performed with the
anammox-specific primers Amx 368F [3, 53] and Amx
820R [3, 52] according to the previous study [8]. Secondly,
PCR was performed with the primer sets Brod541F [45] in
combination with Amx820R [52] according to the previous
study [23, 56]. The hzo gene fragments were amplified
according to the previous study with two sets of primers
hzocl1F1 and hzocl1R2 [54], and Ana-hzo1F and Ana-
hzo2F [47]. PCR products from different primer sets were
purified by gel cut procedure, and a combined library for
the same sample with pMD-18T-vector (Takara, Japan) was
constructed.

Sequencing and Phylogenetic Analysis

The insertion of 16S rRNA gene and hzo fragments was
screened and retrieved by PCR amplification with the
primer set of M13F and M13R. The different numbers of
positive clones in each library were randomly selected for
sequencing on an automated ABI Prism 3730 DNA
analyzer by using M13 universal sequencing primers and
the Big Dye Terminate kit (Applied Sciences, Foster City,
CA). The sequences without chimeras were initially
submitted to the FASTA program (version 3) [44] to
determine their closest phylogenetic relatives. For 16S
rRNA gene, DNA sequences were manually compiled and
aligned using CLUSTAL X [62]. For hzo gene, nucleic acid
sequences were first translated into amino acids, and the
resulting protein sequences were aligned to their nearest
neighbor using CLUSTAL X. Phylogenetic trees were
constructed based on the Kimura two-parameter model
[29] and the neighbor-joining algorithm [49] using the
MEGA 4.0 software [60]. Bootstrap analysis with 1,000

replicates was applied to assign confidence levels to the
nodes of the consensus trees.

Statistical Analyses

Operational taxonomic units (OTUs) for 16S rRNA and hzo
gene diversity analysis were defined by 3% differences in
nucleotide and amino acid sequences, as determined by
using the furthest neighbor algorithm in DOTUR program
[50]. DOTUR was also used to generate Chao, Shannon,
and Simpson index for each clone library. The coverage of
clone libraries was calculated from the equation C ¼
1� n1 N=ð Þ½ � � 100 [13]. Community classification of

the anammox assemblages was determined with principal
coordinates analyses (PCoA) [37]. Correlations between the
anammox bacterial communities and environmental factors
were determined by the canonical correspondence analysis
(CCA) using the software CANOCO (ver. 4.5, Microcom-
puter Power, Ithaca, NY, USA) [61].

Real-Time PCR Assay

Gene copy numbers of total bacterial and anammox
bacterial 16S rRNA gene in each sample were quantified
with the quantitative PCR (qPCR) analysis. Real-time PCR
was performed by using a FastStart Universal SYBR Green
Master PCR mix (Roche Applied Science, Mannheim,
Germany) in 96-well optical plates placed in an ABI 7000
Sequence detection system (Applied Biosystems, Foster
City, CA). qPCR of total bacteria was performed with the
primers 8F [2] and 338R [36] under the condition
previously described [12, 35], and the qPCR assay of
anammox bacteria was performed with the primers AMX-
808-F and AMX-1040-R [17] under the adjusted condition
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previously described [35]. Each reaction was performed in
a 25-μl volume containing 1 μl of DNA template, 2.5 μl
bovine serum albumin (0.1%), 0.5 μl of each primer
(20 μM), and 12.5 μl of the ready reaction mix. The PCR
cycle was started with 2 min at 50°C, 3 min at 95°C,
followed by 45 cycles of 95°C for 30 s, annealing for 30 s
at 55°C, and extension for 30 s at 72°C [35]. Cycle
thresholds were determined by comparison with standard
curves constructed using several concentrations of positive
clone. The plasmid DNA concentration was determined on
a Biophotometer (Eppendorf, Germany), and the copy
number of target gene was calculated directly from the
concentration of the extracted plasmid DNA. Tenfold serial
dilutions of a known copy number of the plasmid DNA
were prepared to generate an external standard curve. The
R2 values were greater than 0.98 for the curves. Samples
and standards were prepared in triplicate. The specificity of
the PCR amplification was determined by the melting curve
and gel electrophoresis.

Nucleotide Sequence Accession Numbers

The GenBank accession numbers of 16S rRNA and hzo
gene sequences are HM208755 to HM208788 and
HM208789 to HM208820, respectively.

Results

Characteristics of Petroleum Reservoirs

The investigated oil reservoirs are between 55°C and 75°C
and on average 1,200–1,900 m below the ground surface.
The sampling wells experienced three different stages of
crude oil recovery processes, namely primary production
(S6, S7), secondary production (S1–S4, S8, and S9), and
tertiary production (S5) (Table 1). Sampling wells S6 and
S7 were of primary production containing water mainly
from an aquifer in the strata. Wells S1–S5, S8, and S9
were developed for 5–10 years with water flooding to
maintain the strata pressure and allow the extraction of
residual oil. In particular, well S5 has been flooded for
2 years with injection of aqueous polyacrylamide solution.
Overall, the formation water was carbonate type with
slightly alkaline pH values between 7.3 and 8.1 under
surface atmospheric pressure. The major physicochemical
parameters for the geological formation water are pre-
sented in Table 1, showing low to moderate concentrations
of sulfate, phosphate, and nitrate in the production water.
The ammonium measured was high in the formation water
(Table 1). Nitrite was near detection limit. Sulfide and
ionic iron in S6 and S7 were higher than the other water
samples. T
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Diversity of Anammox Bacteria in Petroleum Reservoirs

Seventeen samples with different production history from
Shengli Oilfield were analyzed by PCR with anammox
bacterial specific primer sets, but only nine samples were
positive for anammox bacteria with the PCR primer sets
used in this study. Subsequently, the nine samples were
used to construct the 16S rRNA gene and hzo sequence
libraries. Fifty to 80 clones of each gene library per sample
were screened by PCR and then sequenced. The positive
clones were obtained from 22 to 35 of 16S rRNA gene
libraries and 23 to 34 of hzo gene libraries, with three to
five and three to four OTUs, respectively (Table 2). The
coverage value of all libraries ranged between 0.95 and
1.00, indicating that the majority of the phylotypes in the
clone libraries was detected (Table 2). Based on both
Shannon and Chaol estimator indices, the anammox
bacterial community diversity of samples S3 and S4 was
the highest, and that of samples S1 and S2 was the lowest,
which was consistent with the property of S3 and S4 with
the lowest temperature but S1 and S2 with the highest
temperature.

Phylogenetic Affiliation of Anammox Bacteria in Oilfields

Anammox bacterial diversity was constructed with the
community DNA obtained and then 16S rRNA gene clone
library from the formation water or production water of the
oil strata. Screening of 241 sequences without chimera
against the FASTA database indicated that the clones
matched sequences related to anammox bacterial genera:
Candidatus Scalindua [53], Candidatus Kuenenia [59],
Candidatus Brocadia [51], and Candidatus Jettenia [47].

Most of the sequence types had relatively high levels of
similarity with their closest counterparts in public data-
bases, whereas six phylotypes showed less than 92%
sequence similarity to their nearest database entries and
may belong to unknown phylotypes [48]. The phylogenetic
relationships of the anammox bacteria-like 16S rDNA
sequences from this study and their closest relatives are
represented in a consensus tree (Fig. 2). Most of the OTUs
fell into the Candidatus Scalindua cluster containing the
species: Candidatus Scalindua brodae [53], Candidatus
Scalindua sorokinii [31], and Candidatus Scalindua wag-
neri [53] with sequence identities of 90.1–99.6%, and this
cluster was supported by 99% bootstrap value (Fig. 2). The
sequences related to Candidatus sorokinii/brodae were
similar to the sequence type Menez Gwen (AM941036),
recovered from the hydrothermal deep-sea vent recently [6].
In addition, six phylotypes in this subcluster were further
divided into two groups that are distantly affiliated with
each other (Fig. 2). The remaining sequences were more
diverse and distributed within the Candidatus Scalindua
wagneri subcluster, such as the Colne Estuary (EU394279)
in the UK [10] and the Cape Fear River Estuary (FJ490132)
in North Carolina [8], which were isolated from freshwater
systems. The second large fraction of sequences were
grouped within Candidatus Kuenenia genus (Fig. 2); the
most abundant phylotypes, S4E6 and S2B10, in this cluster
were affiliated with the sequence obtained from California
Leonard hot spring clone HRH850 from a 52°C spring [22]
and Rainbow hydrothermal chimney clone (AM941023)
which was the first finding of anammox bacteria in the hot
habitat of an active deep-sea vent with environmental fluid
temperatures up to 100°C [6]. In addition, the Brodcadia
cluster included the clones from high-temperature wells S1,

Table 2 Diversity and predicted richness of the anammox 16S rRNA gene and hzo sequences recovered from the production water samples of
Shengli Oilfield

Number Well number Number of sequences Number of OTUsa Coverageb Shannon Chao1

16S hzo 16S hzo 16S hzo 16S hzo 16S hzo

S1 YXD-9X5 25 23 3 3 1.00 1.00 0.64 1.23 4.00 3.00

S2 YXD-10X5 24 25 3 3 1.00 1.00 0.72 0.96 5.00 4.00

S3 C7-J9 31 30 4 4 0.96 0.96 1.62 1.42 7.00 5.00

S4 C6-15 35 34 5 4 0.97 0.97 1.64 1.36 9.00 5.00

S5 C26-G10 28 29 4 4 0.96 0.96 1.46 1.45 7.00 4.00

S6 C91-13 23 24 3 3 1.00 1.00 1.28 1.21 6.00 5.00

S7 CN13-13 24 25 3 3 1.00 0.96 1.29 1.20 5.00 5.00

S8 Luo801-10 29 27 4 4 0.95 0.96 1.45 1.48 8.00 5.00

S9 Luo801-19 22 26 3 4 1.00 0.96 1.34 1.50 6.00 5.00

a Unique OTUs were determined using the DOTUR program based on the 3% sequences difference
b The coverage, Shannon-Weiner, Simpson and SChao1 richness estimators were calculated using the OTUs data
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S2, and S8, which were closely related to the sequences of
California Leonard hot spring clone HRH852 [22] and
Geothermal stream clone HAuD-MB/2-35 from hot water
above 50°C in a Japanese gold mine [19]. The other
sequences belonging to Jettenia cluster were isolated from

lower temperature oilfields, closely related to the sequences
from freshwater environments (Fig. 2) of the Cape Fear
River Estuary in the UK [8]. Interestingly, cluster A
containing clones S6G9, S7G9, S1B7, and S2E8 were
distantly (90.1–92.6%) related to the known anammox
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the anammox bacterial 16S
rRNA genes retrieved from
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bacteria, while this cluster was adjacent to the Scalindua
cluster in the topology structure of the phylogenetic tree
(Fig. 2), which were retrieved from the no-water-flooding
and highest temperature oilfields, respectively. Samples S3,
S4, S6, and S7 yielded four sequence types forming cluster
B (Fig. 2), affiliated with the Rainbow hydrothermal
chimney clone CH10MOM07.5 (AM941027) from the
high-temperature deep-sea vent and the Nevada Patua-
Hazen hot spring clone HRH860 from a 51°C spring [22],
inferring a potentially new anammox bacterial cluster [6].

Functional Diversity of Anammox Bacteria by hzo Gene
Analysis

The HZO enzyme (hydrazine oxidoreductase) catalyzes the
initial hydrazine-forming reaction during the anammox

biochemical process. The encoding gene hzo cluster 1
[54] was proven to be an appropriate and feasible
biomarker for phylogenetic analysis of anammox bacteria
in the enrichment cultures and environmental samples [34,
54]. To detect the functional diversity of anammox bacteria
in the petroleum reservoirs, clone libraries of hzo gene were
constructed by using the community DNA from the
formation-water samples based on the cluster 1 hzo specific
primers sets. The deduced amino acid sequences of 243
nucleic acid sequences could be grouped into 12 OTUs
based on 3% substitutions/difference of amino acid sequen-
ces. The comparative analysis indicated that the closest
matched HZO sequences belong to the anammox bacteria
Candidatus Anammoxoglobus, Candidatus Kuenenia, Can-
didatus Jettenia, and Candidatus Scalindua (Fig. 3), but no
sequence type fell into the anammox bacteria Candidatus
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Figure 3 Phylogenetic tree
of the deduced anammox
bacterial HZO protein sequences
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Brocadia. The phylogenetic relationships of the HZO-like
sequences in this study and their closest relatives were
represented in a consensus tree, and the amino acid
sequences of HZO cluster 2a [54] were used as out-
groups to root the tree (Fig. 3). The most abundant clones
were grouped in the Scalindua cluster, which was 96.5–
98.9% similar to HZO sequences of Candidatus Scalindua
sp. [54]. Adjacent to this cluster, cluster D was distantly
related to other HZO phylotypes (Fig. 3). Consistent with
cluster C of 16S rRNA gene tree, this cluster had the same
phylogenetic topology status in the HZO tree, so it was
likely that sequences of these two clusters represented the
unknown anammox bacteria. Cluster D sequences also
formed a slightly distant group affiliated with other detected
hzo genes. However, no corresponding cluster sequences to
cluster C were found in the 16S rRNA gene libraries
(Figs. 2 and 3). Most sequences from water-flooding and
lower temperature oilfields were grouped within Jettenia
cluster, showing 97.6–99.5% sequence identities to the
HZO sequence of Candidatus Jettenia asiatica [47]. But
some of no-water-flooding oilfield sequences fell into
Anammoxoglobus cluster with 98.2–99.6% identities to
the HZO sequence of Candidatus Anammoxoglobus sp.
[54]. Consistent with the 16S rRNA gene phylogeny, most
of the highest temperature oilfield sequence types were
related to the HZO sequence of Candidatus Kuenenia
stuttgartiensis with 97.3–99.8% sequence identities [59].
Interestingly, no sequences related to Candidatus Brocadia
were detected in any of the samples used in this study.

Quantification of Anammox Bacteria

The abundance of total bacteria and anammox bacteria in
the oilfield production water was estimated based on the
quantification of bacterial 16S rRNA genes using the qPCR
method [12, 17, 35]. The amounts of total bacterial and
anammox bacterial 16S rRNA gene copy numbers ranged
from 2.3±0.18×104 to 7.3±0.65×106 ml−1 and from 6.6±
0.51×102 to 4.9±0.36×104 (Fig. 4), respectively. Based on
the estimation that 3.6 copy numbers of 16S rRNA gene per
bacterial cell genome [18], the total bacterial density was
calculated from 6.4±0.5×103 to 2.0±0.18×106 cells ml−1.
Assuming that the anammox bacteria contained one copy of
the 16S rRNA operon based on Candidatus Kuenenia
stuttgartiensisis genome [59], the anammox bacterial
density was calculated to be 6.6±0.51×102 to 4.9±0.36×
104 cells ml−1. The anammox bacteria was a small fraction
of the bacterial community in Shengli Oilfield production
waters, as the anammox bacteria accounted for 2.5% to
10.3% of all bacteria detected. The highest concentration of
total bacteria and anammox bacteria was found in the
production water from S4 (Fig. 4), where the lowest
temperature and moderate time scale of water-flooding

operation were observed (Table 1). Correlation analysis
showed that the total bacteria and anammox bacteria
populations were highly related to the temperature gradient.
The lowest bacterial abundance was found in sample S2,
where the highest temperature and longest term of flooding
were observed.

Anammox Bacterial Communities Classification

Significant difference of the anammox bacterial assemb-
lages in the oilfields was revealed by the PCoA test
(p<0.005) [38] based on the phylogenetic tree of 16S
rRNA gene and HZO protein sequences. The results
indicated that anammox bacterial assemblage fell into four
groups, S5 for chemical flooding, S3 and S4 for lower
temperature and water-flooding oilfield, S6 and S7 for no-
water-flooding oilfield, and S1, S2, S8, and S9 for high-
temperature water-flooding oilfield (p<0.032) (Fig. 5a).
Both S6 and S7 represented no-water-flooding oil reser-
voirs, and S5 represented chemical-flooding oilfield,
showing obvious difference from the other samples from
the water-flooding oilfield along the first principal coor-
dinate (P1) which explained 32.9% of the total anammox
bacterial community variability among all the sampling
oilfields (Fig. 5a). The PCoA analysis of the 16S rRNA
gene and HZO protein sequences of anammox bacterial
assemblages showed a slightly different classification
(Fig. 5b), with S9 closer to S8 in the former analysis,
but S8 was closer to S2 in the latter one.

Spatial Distribution of Anammox Bacterial Communities

To find the correlations between the distribution of
anammox bacterial community and the environmental
variables of the oilfields, canonical correspondence analysis
was conducted based on the 16S rRNA gene and HZO
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Figure 4 Abundance of total bacterial and anammox bacterial 16S
rRNA gene copy numbers in production water from Shengli Oilfield.
Mean values and standard deviations were calculated from triplicate
assay within a single qPCR setup (more detailed information available
in “Materials and Methods”)
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protein sequences and the physiochemical parameters
recovered in Shengli Oilfield. The results showed that the
CCA axe in 16S rRNA gene deduced scheme explained
40.1% but the CCA axe in HZO sequence deduced scheme
explained 54.6% of the cumulative variance of the correla-
tion between the environmental factors and the anammox
bacterial community distribution (Fig. 6). The CCA analysis
indicated that all of the anammox bacterial assemblages fell
into four groups, with the CCA1 distinguishing the
anammox bacterial assemblages of S1, S2, S8 and S9, S6,
and S7 together and S5 distant to others, while the CCA2
axe found S3 and S4 as one assemblage (Fig. 6). The oil

recovery process contributed another important effect
(p=0.005, 1,000 Monte Carlo permutations) to the distinc-
tion of the anammox bacterial community and environment
relationship, which revealed that the distribution of the
anammox bacterial assemblages of S1, S2, S8, and S9 were
positively correlated with the water flooding but in the
opposite direction to the distribution of S6 and S7, and the
distribution of S5 was positively correlated with chemical
flooding (Fig. 6). The temperature and the concentration of
ammonium cation appeared to be significant (p=0.048,
1,000 Monte Carlo permutations) to the anammox bacterial
distribution, and the environmental parameter relationship
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with the S1, S2, S8, and S9 were positively correlated with
the two factors. Other environmental factors did not
contribute significantly (p>0.500) to the anammox bacterial
community, while the combination of these environmental
factors provided additionally 55.0% of the total CCA
explanatory power.

Discussion

The combined data of clone libraries of both 16S rRNA and
hzo genes confirmed the occurrence of anammox bacteria
in the anoxic geothermal oilfield environment at Shengli
Oilfield in China. Our results confirmed that Candidatus
Brocadia sp. and Candidatus Kuenenia sp. could be
detected in oil reservoirs with temperature up to 75°C and
were the first to detect the anammox bacterial species
Candidatus “Scalindua sinooilfield” in such habitat. It is
consistent with other findings observed in the deep-sea
hydrothermal vent at Mid-Atlantic Ridge [6] and in Great
Basin hot springs of Northern California and Western
Nevada [22]. By applying more specific primer sets for
anammox bacterial 16S rRNA gene and the functional
biomarker hzo gene, anammox bacteria were successfully
detected in the oil reservoir ecosystem. This is the first
report for the existence of anammox bacteria in the high-
temperature oil reservoir. Therefore, anammox bacteria are
present not only in the marine environments at generally
lower ambient temperatures [55, 64] but also in the high-
temperature environment, which expands our knowledge of
the biogeography of anammox bacteria.

The diversity of anammox bacteria depends on the oil
production processes and physicochemical conditions in
situ. Most phylotypes detected in relatively higher temper-
ature wells belong to Kuenenia and Brocadia clusters.
Although the highest optimum temperature was at 43°C in
enrichment culture [58], Candidatus Kuenenia species were
also obtained from the hydrothermal vent with fluid
temperatures more than 100°C and the hot springs with
higher than 52°C [6, 22]. In this study, the Brocadia-like
organisms were detected in the water samples from wells
S1, S2, and S8 with temperature up to 75°C, which was the
first report of the Brocadia-like organisms in such habitat.
Interestingly, the sequence detected in the no-water-
flooding wells belonged to the Anammoxoglobus cluster
closely related to Candidatus “Anammoxoglobus propioni-
cus” which had capability to oxidize simple organic acids
(acetate and propionate) at a higher rate and without a
transient nitrite accumulation [27]. This property may be
critical for them to thrive in an oil reservoir environment
because the crude oil consists of abundant hydrocarbons
which can be converted to short-chain fatty acids by
microbial fermentation process in the oil reservoirs under

primary operation without anthropogenic influences, such
as water flooding or chemical injection [14, 15].

For a more comprehensive analysis of the functional
diversity of anammox bacteria in oil reservoirs, the hzo
sequences were retrieved to compare the phylogenetic
diversity of anammox bacterial 16S rRNA gene. Consistent
with previous results [34, 35, 54], the topologies of the
phylogenetic tree of the obtained hzo was congruent with
retrieved 16S rRNA gene phylogeny, suggesting that the
hzo gene is a good alternative biomarker for detecting the
anammox bacteria in oil reservoirs. More importantly, our
results indicated that the phylogenetic diversities based on
16S rRNA and hzo genes are complementary to each other
for Brocadia-like organisms in the 16S rRNA gene library
and Anammoxoglobus-like ones in hzo library. Besides the
sequences closely related to the known anammox bacteria,
two clusters of sequences retrieved were apparently more
distantly related to the sequences from cultured and
uncultured anammox bacteria. Firstly, cluster A 16S rRNA
gene sequences were distantly related to other Candidatus
Scalindua-like phylotypes. Based on the sequence identities
of up to 97% of the 16S rRNA gene commonly used to
define different species [48], it was proposed that the
sequences of this cluster comprise a new species within the
genus Candidatus Scalindua, for which the name Candi-
datus “Scalindua sinooilfield” is proposed provisionally.
Given the cluster D hzo sequences have similar topology
structure compared to the cluster A 16S rRNA gene
phylogeny, we suggest that this cluster belongs to the new
anammox bacterial genus Candidatus “Scalindua sinooil-
field”. Assuming this hypothesis is correct, the distinctness
of the Candidatus “Scalindua sinooilfield” cluster could
also explain that cluster D hzo sequences have distinctly
different lengths compared to other hzo genes of Candida-
tus Scalindua species. In addition, the cluster C hzo
sequences show further separation from other hzo-like
sequences, whereas the corresponding sequence cluster
could not be found in the 16S rRNA gene phylogenetic
tree, which might be due to the differences of specificity
and efficiency of the PCR primer sets of these two
biomarkers [34]. Thus, to further investigate the functional
diversity of anammox bacteria in various ecosystems, more
effective primers need to be designed for the hzo or other
important anammox genes, such as the putative cytochrome
cd1-containing nitrite reductase gene (nirS) proven to be an
alternative biomarker for Scalindua-like sequences recently
[32].

The abundance of anammox bacteria decreased in the oil
reservoirs as the temperature increased. The lowest con-
centration was detected in samples with moderate water
flooding, which was comparable with the anammox
bacterial numbers in high-temperature deep-sea vents [6].
However, the significant variation of anammox bacterial
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abundance was observed in different oilfields with temper-
atures ranging from 55°C to 75°C. The mean concentration
of anammox bacteria was obviously lower than that in
marine ecosystem [8, 17, 55]. This discrepancy might be
related to the inhibition of high temperature to the growth
of anammox bacteria. Meanwhile, the water-flooding and
chemical-flooding operations seem to affect their number.
The anammox bacterial density in the moderate water-
flooding oilfield was higher than that in the no-water-
flooding and the longest water flooding. The chemical-
flooding oilfield S5 was lower by 90 times than that in the
no-chemical-flooding oilfields. The abundance of anammox
bacteria in primary production well samples was between
those of the chemical-flooding sample and the water-
flooding samples.

The distribution of anammox bacteria is affected by
the oilfield history and production processes. Both
temperature and recovery process are the two most
important environmental variables affecting the distribu-
tion of anammox bacteria in the oil reservoirs. Most
phylotypes detected in primary production wells belong
to Scalindua cluster observed from the freshwater
system, which might adapt to the oil reservoir environ-
ment in underground water system, while most phylo-
types in the water-flooding and chemical-flooding oil
reservoir samples fall into the Jettenia cluster, which
might be originated from the injected water. This
discrepancy might be related to the introduction of
microorganisms by injected water or chemical [7, 33],
resulting in the shift of microbial community composition.
Given that the members of Candidatus Scalindua and
Candidatus Jettenia genera were previously proved to be
ubiquitously distributed in environments such as river and
marine environments or granular sludge anammox reactor
[47, 55, 64, 65], it is reasonable to have anammox bacteria
in the injection water with sources of river water or
recycled flooding water. This explains the existence of the
putative Scalindua and Jettenia-related sequences in the
production water from oilfield. Interestingly, there are
more than one kind of anammox bacteria detected in most
of the oil reservoirs, which contradict the niche differen-
tiation of anammox bacteria, genera Candidatus Kuene-
nia, Candidatus Anammoxglobus, and Candidatus
Brocadia in anoxic freshwater and Candidatus Scalindua in
anoxic marine habitats [55], indicating that anammox
bacteria have broader distribution than previously estimated
[27, 55].

The existence of anaerobic ammonium-oxidizing bacteria
in the high-temperature oil reservoir was confirmed in this
study. Widely distributed and diverse 16S rRNA gene and hzo
sequence types were detected in the production water
samples. In addition, two clusters of sequences retrieved
from high-temperature oilfield might represent a novel

anammox bacterial phylotype. Anammox bacterial commu-
nities are influenced by temperature and production process-
es. Further study of anammox bacteria in oilfield ecosystems
would allow a better understanding of the nitrogen cycle in
the subterranean oil reservoir ecosystems.
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