Formation and Evolution of Satellite Systems

Man Hoi Lee 李文愷 (HKU)

Collaborators:

Neal Turner (*JPL*), Takayoshi Sano (*Osaka*); W. H. Cheng (*HKU*), Stan Peale (*UCSB*)

Selected Moons of the Solar System, with Earth for Scale

Satellite Systems

- Regular satellites of Jupiter, Saturn, and Uranus:
 - Prograde orbits nearly coplanar with planet's equator plane.
 - -a up to tens of R_p
 - $-M_{\text{tot}}/M_{\text{p}} = 1.1 2.5 \times 10^{-4}$
 - Formation in circumplanetary disk
- Earth-Moon and Pluto-Charon:
 - $-M_{\rm s}/M_{\rm p} \approx 1/80$ and 1/9
 - $a/R_p = 60 \text{ an } 17$
 - Pluto-Charon dual synchronous
 - Giant impact origin

Formation of the Galilean Satellites

Constraints:

- Ganymede and Callisto about half rock and half ice.
- Callisto only partially differentiated ($I/MR^2 \approx 0.355$; Anderson et al. 2001).
- Formation scenarios:
 - Gas poor planetesimal capture model (Safronov et al. 1986; Estrada & Mosqueira 2006).
 - Minimum mass subnebula model (Lunine & Stevenson 1982; Takata & Stevenson 1996; Mosqueira & Estrada 2003).
 - Gas-starved subnebula model (Canup & Ward 2002).

- Nature of mass and angular momentum transport in subnebula is a major uncertainty in modeling satellite origins.
- Turbulence driven by Magneto-Rotational Instability (MRI) provides transport if gas is sufficiently ionized to couple to the magnetic fields.

Origin of the Laplace Resonance: Tidal or Primordial?

- Orbits of Io, Europa, and Ganymede are in the Laplace resonance, with orbital periods nearly in the ratio 1:2:4.
- Resonances could be assembled inside-out long after the formation of the satellites by tidal expansion of orbits (Goldreich 1965, Yoder 1979, Yoder & Peale 1980).

- Alternatively, resonances could be assembled outside-in during satellite formation by the differential migration of satellites due to interactions with circumjovian disk (Peale & Lee 2002; Sasaki, Stewart & Ida 2009).
- Probability of capture into the observed Laplace resonance could be sensitive to circumjovian disk model.

Nebula Induced Evolution of Galilean Satellites into Laplace Resonance

Minimum Mass Subnebula Model

- Analogous to minimum mass solar nebula.
- Galilean satellites + enough volatiles for Solar abundance.

(Pollack & Consolmagno 1984)

- Very high gas surface density $\sigma_{\rm G}$ ~ 1/r.
- Sharp drop in σ_G at $r/R_J \approx 23$ in the Mosqueira & Estrada (2003) model.
- Temperature $T \sim 1/r$ at $r/R_{\rm J} < 30$ and \sim constant at $r/R_{\rm J} > 30$.

Gas-starved Subnebula Model

- Not all mass needed to form the satellites in the disk all at once.
- Replenished by slow inflow of gas and solids from the solar nebula after Jupiter opens a gap.

(Canup & Ward 2002)

We have constructed Improved Gas-starved Subnebula models with

- Improved treatment of low τ_c (optical depth to the midplane) regime and incoming radiation of Jupiter.
- Midplane temperature T_c using
 - Analytic vertical structure model of Hubeny (1991) for viscous dissipation and isotropic solar nebula irradiation
 - Extension by Malbet et al. (2001) for irradiation by a central source (i.e. Jupiter).

$$T_c^4 = \frac{3}{4} \left[\frac{\tau_c}{2} + \frac{1}{\sqrt{3}} + \frac{1}{3\tau_c} \right] T_d^4 + T_{\text{neb}}^4$$

$$+ \frac{3}{4} \left[\mu_J \left(1 - e^{-\tau_c/\mu_J} \right) + \frac{1}{\sqrt{3}} + \frac{1}{3\mu_J} e^{-\tau_c/\mu_J} \right] \left(\frac{\mu_J}{2} \right) \left(\frac{R_J}{r} \right)^2 T_J^4,$$

• Opacity $\kappa = f_{\rm opac} \ \kappa_{\rm P}$, where $\kappa_{\rm P}$ is the Pollack et al. (1994) temperature dependent opacity and $f_{\rm opac} \le 1$.

High opacity model:

$$f_{\text{opac}} = 1$$

 $\alpha = 5 \times 10^{-3}$
 $\tau_{\text{G}} = 7 \times 10^{7} \text{ yr}$

Red: Improved gas-starved disk model Black: CW02 model with $\kappa = f_{\text{opac}}$

Low opacity model:

$$f_{\text{opac}} = 10^{-4}$$

 $\alpha = 9 \times 10^{-4}$
 $\tau_{\text{G}} = 2 \times 10^{7} \text{ yr}$

Red: Improved gas-starved disk model

Black: CW02 model with $\kappa = f_{\text{opac}}$

Chemical Network Calculations

 Ionization state from chemical network with gasphase species H₂, H₂⁺, Mg, Mg⁺, and e⁻ after Ilgner & Nelson (2006).

Gas Phase Reactions:

- lonization by interstellar cosmic ray (Umebayashi & Nakano 2009), solar x-ray, and radioisotope decay: H₂
 → H₂⁺ + e⁻
- Dissociative Recombination: H₂⁺ + e⁻ → H₂
- Radiative Recombination: Mg⁺ + e⁻ → Mg + hv
- Charge Exchange: H₂⁺ + Mg → H₂ + Mg⁺
- The cosmic ray absorbing column ≈ 96 g cm⁻² and x-ray absorbing column ≈ 8 g cm⁻².

Grain Surface Reactions:

- Seven species added to reaction network if dust grains are present: Charged grains G⁰, G[±], G^{±2} and adsorbed neutrals H₂(G) and Mg(G).
- Thermal adsorption and desorption of neutrals and ions.
- Grain charging and neutralization in collisions with ions and elections.
- Charge exchange in grain-grain collisions.

Criteria for Dead Zone

MRI turbulence is absent if both

- 1. The equilibrium ionization is too small (Elsasser number $\Lambda = v_{A,z}^2/(\eta\Omega) < 1$) and
- 2. The recombination is too fast for ionized gas transported from regions of lower column depth to affect ionization fraction (t_{rec} < 0.1 t_{mix}).
- The Λ < 1 criterion was established by previous analytic and numerical results (Jin 1996; Sano & Miyama 1999; Sano & Inutsuka 2001; Sano & Stone 2002).

• The $t_{\rm rec}$ < 0.1 $t_{\rm mix}$ criterion from existing MHD+chemistry simulations of the Solar nebula.

- Green contours: $\Lambda > 1$ for equilibrium ionization fraction.
- Red contours: Λ < 1 for equilibrium ionization fraction.
- Large blue dots: $t_{rec} > t_{mix}$
- Medium blue dots: $t_{\text{mix}} > t_{\text{rec}} > 0.1 t_{\text{mix}}$

Dead Zone of Minimum Mass Subnebula

Mixing can slightly reduce the size of the dead zone if there is no dust.

Dead Zone of Minimum Mass Subnebula

• Even with the sharp drop in surface density at $r/R_J \approx 23$ in the Mosqueira & Estrada models, MMSN models are magnetically dead everywhere, except very high in the upper layers.

Dead Zone of Gas-Starved Subnebula

 Mixing does not significantly affect the size of the dead zone.

Dead Zone of Gas-Starved Subnebula

- No dead zone in the outer regions.
- Dead zone plus active upper layers in the inner regions.

Pluto Satellite System

- Charon was discovered in 1978.
- Two small satellites, Nix and Hydra, were discovered in 2005 by Weaver et al.

- Orbits of Nix and Hydra nearly circular and nearly coplanar with that of Pluto-Charon (Buie et al. 2006).
- Orbital periods of Charon, Nix and Hydra nearly in the ratio 1:4:6.
- Orbits of Nix and Hydra significantly non-Keplerian due to
 - large mass ratio of Charon-Pluto
 - proximity of Nix and Hydra to 3:2 commensurability

(Lee & Peale 2006).

Illustration Credit: NASA, ESA, W. J. Merline (SwRI), and the Pluto Companion Search Team

Giant Impact Origin of the Moon

Moon accreted from impact generated disk.

(Canup 2004)

Impact Origin of the Pluto Satellite System

- Impact captured Charon nearly intact into eccentric orbit with a_c ~ 4 R_p.
- Coplanarity: Nix and Hydra were debris from the same impact.
- But debris did not extend beyond ~ 15 R_p.
- Current a = 17, 42, and $56 R_p$ for Charon, Nix, and Hydra.

Resonant Migration of Nix and Hydra

- Nix and Hydra not in 4:1 and 6:1 resonances with Charon at present.
- But Nix and Hydra could once be in these resonances and were pushed out as Charon's orbit expanded due to tidal evolution (Ward & Canup 2006).

- Stable transport of Nix and Hydra in 4:1 and 6:1 as a_c increases by a factor of ~ 4 is difficult:
 - Ward & Canup (2006): Nix and Hydra trapped in corotation resonance only, which does not excite eccentricity.
 - Charon's eccentricity e_c must be maintained during most of the orbital expansion to maintain stability of resonance.
 - Lithwick & Wu (2007):

To transport Nix, $e_c < \sim 0.024$

To transport Hydra, $e_c > \sim 0.8 R_p/a_c$

Both cannot be satisfied at the same time.

Tidal Evolution of Pluto-Charon

- Need evolution of Charon's orbit (in particular e_c) for resonant migration problem.
- Previous study of tidal evolution of Charon's orbit assumed circular orbit (Dobrovolskis et al. 1997).
- · Tidal Models:
 - Constant time lag Δt : closed expressions valid for large e (Mignard 1980; Hut 1981).

- Constant dissipation function Q
 (Goldreich & Soter 1966)
- Tides on both Pluto and Charon
- Non-zero $C_{22} = (B-A)/(4MR^2)$: Permanent non-axisymmetric deformation

$$\begin{split} &\frac{1}{n} \left\langle \frac{d\dot{\psi}_{i}}{dt} \right\rangle = \frac{3G}{C_{i}a^{6}} k_{2i} \Delta t_{i} M_{j}^{2} R_{i}^{5} \left[f_{1}(e^{2}) - f_{2}(e^{2}) \frac{\dot{\psi}_{i}}{n} \right], \\ &\frac{1}{a} \left\langle \frac{da}{dt} \right\rangle = \frac{6G}{\mu a^{8}} k_{2P} \Delta t_{P} M_{C}^{2} R_{P}^{5} \left\{ \left[\frac{\dot{\psi}_{P}}{n} f_{1}(e^{2}) - f_{3}(e^{2}) \right] + A \left[\frac{\dot{\psi}_{C}}{n} f_{1}(e^{2}) - f_{3}(e^{2}) \right] \right\}, \\ &\frac{1}{e} \left\langle \frac{de}{dt} \right\rangle = \frac{27G}{\mu a^{8}} k_{2P} \Delta t_{P} M_{C}^{2} R_{P}^{5} \left\{ \left[\frac{11}{18} \frac{\dot{\psi}_{P}}{n} f_{4}(e^{2}) - f_{5}(e^{2}) \right] + A \left[\frac{11}{18} \frac{\dot{\psi}_{C}}{n} f_{4}(e^{2}) - f_{5}(e^{2}) \right] \right\}; \end{split}$$

where

$$A = \frac{k_{2C}}{k_{2P}} \frac{\Delta t_C}{\Delta t_P} \left(\frac{M_P}{M_C}\right)^2 \left(\frac{R_C}{R_P}\right)^5$$

• $A \approx (\mu_p \Delta t_c R_c)/(\mu_c \Delta t_p R_p)$ is a measure of relative rates of tidal dissipation.

k_{2p} =0.058, $\Delta t_{\rm p}$ = 10 mins

$$k_{2p} = 0.058$$
, Q = 100

k_{2p} =0.058, $\Delta t_{\rm p}$ = 10 mins, A = 10

$$k_{2p}$$
 =0.058, $\Delta t_{\rm p}$ = 10 mins, A = 9

Summary (I)

- We have developed criteria for estimating the size of the dead zone from chemical network calculations.
- Minimum Mass Subnebula models of the circumjovian disk are magnetically dead everywhere, except very high in the upper layers.
- Gas-starved Subnebula models are similar to solar nebula models:
 - No dead zone in the outer regions
 - Dead zone plus active upper layers in the inner regions.

Summary (II)

- Tidal evolution of Pluto-Charon shows complex behaviors: pseudo-synchronous rotation, 3:2 spinorbit resonance, semimajor axis overshooting
- Can a consistent history of the Pluto satellite system be constructed based on intact capture of Charon and resonant migration of Nix and Hydra?