Automatic System Architecture Synthesis for
FPGA-based Reconfigurable Computers

Colin Yu Lin, Ngai Wong, Hayden Kwok-Hay So

Department of Electrical and Electronic Engineering, University of Hong Kong
Pok Fu Lam Road, Hong Kong
{linyu, nwong, hso}@eee.hku.hk

I. INTRODUCTION AND MOTIVATION

As reconfigurable computing and Field Programmable Gate
Array (FGPA) technology advance, high-performance appli-
cations are choosing FPGA-based reconfigurable computers
to accelerate their computations. Reconfigurable hardware has
demonstrated remarkable speedups on computation-intensive
applications [1]. However, the performance of reconfigurable
hardware is very sensitive to the quality of the application im-
plementation. Significant challenges remain in development of
systematic scheduling and mapping techniques for computing
architectures [2].

In [2], a computing model and mapping algorithms are
developed to exploit features of reconfigurable hardware for
computer vision applications. This model may not be appli-
cable to general applications. In some implementations, for
example in [3], carefully hand-optimized architecture design
for the target computation is developed to achieve high system
performance. But it is difficult to apply such technique gener-
ally to all applications. In [4], Herbordt et al. present design
techniques to achieve significant speedups on reconfigurable
architecture without expending exorbitant developement effort.
However, as pointed out by the authors, neither low-level
methods related to logic design and synthesis in electronic
design automation nor high-level methods such as scheduling
are covered in their research.

In this research work, we are going to develop an au-
tomatic method of system architecture synthesis on FPGA-
based reconfigurable computers for general high performance
applications. This architecture synthesis problem is a hard-
ware/software codesign problem, which makes balancing de-
cisions carefully in implementation of high-performance ap-
plications on FPGA-based reconfigurable computers, both in
tools and in architecture.

Currently we have addressed the application operation
scheduling problem on a target reconfigurable architecture
using a time-indexed integer linear programming (ILP) formu-
lation based on the well-studied resource-constrained project
scheduling problem. Although the time-indexed ILP formula-
tion captures all aspects of our scheduling problem, solving
such ILP is, in general, computationally intractable for even
moderately sized problems. As a result, we have developed a
variation of the Graham’s list scheduling algorithm that gives
approximation to the optimal solution. Using this scheduling

978-1-4244-4377-2/09/$25.00 © 2009 IEEE

475

model and list scheduling algorithm, we are progressing
to implement system architecture in physical computational
medium.

II. PREVIOUS ACHIEVEMENTS

In order to limit our scope, we make certain assumptions
about the target reconfigurable system. In our scheduling
model, only one FPGA and two off-chip memory devices are
considered. One off-chip memory is used for input data while
the other one used for output. At any one point in time, the
maximum number of words that the FPGA can read from
memory and/or write to memory is the bandwidth B. All data
in the input matrices have the size of a word. We assume P
processing elements (PEs) are implemented. The PEs may be
reconfigured to perform add, multiply or multiply-accumulate
in each step. There are M words of on-chip memory that act as
local buffers. A PE may access any memory location and all
PEs may access the memory at the same time. Furthermore,
we assume that I/O operations and the PEs may operate in
parallel.

The operation scheduling problem can be formulated as
minimizing system latency and and I/O operations, subject
to the a) input data, b) operation, c) input-operation data
dependency, d) operation-operation data dependency, and e)
on-chip memory constrains.

In order to obtain a feasible and near-optimal approximation
to our scheduling problem, a list scheduling algorithm is used.
The main procedure is fairly straightforward. For each control
step, p < P operations and b < B data input with highest
priorities in the ready queues are scheduled to take place.
Once the operations are scheduled, priorities of nodes with the
same successor of this node are updated. The effectiveness of
our algorithm therefore lies with the way data and compute
operations are selected in each step. This selection process
depends on three factors: (i) the state of an operation; (ii) the
priority of an operation; and (iii) the available system resource.

In theory, multiplying two n-by-n matrices requires n?
multiply accumulate operations. In [3], the hand-optimized
systolic array architecture achieved a near-optimal latency
of n® + n when the available on-chip memory capacity
M > n? + 2n. Multiplications are scheduled automatically
using our list scheduling and the results are shown in Table I.

For large n, our list scheduling algorithm can successfully
schedule operations with latency and memory requirements

FPT 2009

TABLE I
MATRIX-MATRIX MULTIPLICATIONS USING OUR LIST SCHEDULING
ALGORITHM (L), THE SYSTOLIC ARRAY IMPLEMENTATION (S) [3], AND
THEORETICAL VALUES (T). THE OVERHEADS OF OUR SOLUTION WHEN
COMPARED TO THE SYSTOLIC ARRAY ARE LISTED UNDER THE COLUMN
0(%). P =40,B = 2,M = 50000.

ranks latency

L S T O(%)
40 1904 1640 1600 16.10
60 5854 5460 5400 7.22
80 13404 12880 12800 4.07
100 25754 25100 25000 2.61
120 44104 43320 43200 1.81
140 69654 68740 68600 1.33
160 103604 102560 102400 1.02
180 147154 145980 145800 0.80
200 201504 200200 200000 0.65

ranks memory required

L S O(%)

40 1681 1680 0.06

60 3721 3720 0.03

80 6561 6560 0.02

100 10200 10200 0.00

120 14640 14640 0.00

140 19880 19880 0.00

160 25920 25920 0.00

180 32760 32760 0.00

200 40400 40400 0.00

close to the hand-optimized systolic array implementation.
Although it doesn’t work well for small n, the result is
encouraging as no manual intervention was needed to obtain
such near-optimal result.

Detail explanation and more results of the scheduling model
and list scheduling algorithm can be found in [5].

III. CURRENT WORK

Although the list scheduling algorithm worked well in
theory, second-order effects, such as the extra latency associted
with the on-chip communication network, will inevitably offset
the performance of the implemented design. As a result, we
are currecntly working on an extended scheduling algorithms
that takes into accout low-level implementation constraints,
such as the exact organization of PEs with respect to the
on-chip memory. Begining with a study of the use of a
systolic on-chip architecture, we are progressively extending
the work towards a flexible and fully automated architectural
compilation framework.

As shown in Fig. 1, we proposed a systolic alike on-chip
architecture. PEs are lined in a column and only connected to
their neighbor(s) by two data-paths, one from up to down and
the other from bottom to top. Only the PE on the top can access
off-chip memory for I/O operation. In the implementation
of each PE, a dedicated DSP block is used, and it can

%

7]

XBAR

RO

MEMORY

Fig. 1. Proposed Architecture

perform add, multiply or multiply-accumulate in each step.
Also, private memory is implemented in each PE. Finally, a
crossbar block is used to select data from data-paths to DSP
block and private memory, and to determin data to pass to its
neighbor from DSP block, memory or data-path.

IV. CONCLUSION

The goal of this PhD project is to develop an automatic
method of system architecture synthesis for general high-
performance applications on FPGA-based reconfigurable com-
puters. Through our previous research, we have built a the-
oretical model targeting the scheduling problem with first-
order hardware constraints. And a list scheduling algorithm
is developed to achieve near-optimal performances. Currently,
we are working on the low-level implementation. A systolic
architecture is used, and the list scheduling algorithm will be
extended to take into account constraints deriving from exact
hardware architecture.

REFERENCES

[1] T.J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk,
and P. Y. K. Cheung, “Reconfigurable computing: architectures and design
methods,” in IEE Proceedings - Computers and Digital Techniques, 2005,
pp. 193-207.

[2] K. Bondalapati and V. K. Prasanna, “Reconfigurable computing systems,”
Proc. IEEE, vol. 90, no. 7, pp. 1201-1217, 2002.

[3] J.-W. Jang, S. B. Choi, and V. K. Prasanna, “Energy- and time-efficient
matrix multiplication on fpgas,” IEEE Trans. VLSI Syst., vol. 13, no. 11,
pp. 1305-1319, 2005.

[4] M. C. Herbordt, T. V. Court, Y. Gu, B. Sukhwani, A. Conti, J. Model,
and D. DiSabello, “Achieving high performance with FPGA-based com-
puting,” IEEE Computer, vol. 40, no. 3, pp. 50-57, 2007.

[5] C.Y. Lin, N. Wong, and H. K.-H. So, “Operation scheduling for FPGA-
based reconfigurable computers,” in Proc. 19th International Conference
on Field Programmable Logic and Applications (FPL), Prague, Czech
Republic, Aug. 2009, pp. 481-484.

476

