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Abstract-In this paper, we study a versatile iterative 
framework for the correction of frequency response mismatch in 
time-interleaved ADCs. Based on a general time varying linear 
system model, we establish a flexible iterative framework, which 
enables the development of various efficient iterative correction 
algorithms. In particular, we study the Gauss-Seidel iteration in 

detail to illustrate how the correction problem can be solved 
iteratively, and show that the iterative structure can be efficiently 
implemented using Farrow-based variable digital filters with few 
general-purpose multipliers. Simulation results show that the 
proposed iterative structure performs better than conventional 
compensation structures. Moreover, a preliminary study on the 
BER performance of OFDM systems due to TI ADC mismatch is 
conducted. 

Index Terms-Farrow structures, Frequency response 
mismatch, Iterative methods, OFDM, Time-interleaved analog­
to-digital converters, Variable digital filters. 

I. INTRODUCTION 

I
n modem wireless communication systems such as software 
defined radios and wideband OFDM-related systems, the 

performance of analog-to-digital converters (ADCs) are of 
paramount important owing to the requirements of high 
sampling rate and low power consumption usually encountered 
in practical systems [1]. The overall performance of a 
communication system often hinges on these critical 
components. In general, the ADC performance is determined 
by various limitations in a given process technology, e.g. IC 
fabrication [2]. In order to stay with the current technology 
while meeting the increasing requirements of modem 
communication systems, new structures for improving the 
performance of current signal converters is an important 
problem in both research and industrial communities. One 
promising ADC scheme that is capable of offering high 
sampling rate is time-interleaved (TI) ADCs [3], in which an 
array of ADCs works in parallel at a low or median sampling 
rate. If the outputs of the ADC array are combined 
appropriately, much higher sampling rate can be achieved. 
However, any small channel mismatches between sub-ADCs 
cause a significant degradation in performance [4]. 

A particular type of mismatch in TI ADCs is the time-skew 
errors between different channel ADCs. Previously, there were 
numerous successful attempts in correcting the timing 
mismatch errors in TI ADCs [5] - [10]. More recently, some 
research works have focused on a more general problem of 
frequency response mismatch, for which each channel is 
assumed to have its own magnitude and phase characteristics 
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[11] - [15]. Among these works, the compensation structure 
studied in [11] and a similar one in [12] are especially attractive 
for real-time applications because of their relatively lower 
reconfigurable complexity. In particular, the authors in [11] 
developed a system model describing the general relationship 
between the input and output signals, analyzed the error signal 
due to frequency response mismatches in detail, and 
demonstrated how the cascade of compensation filters improve 
the accuracy of the compensated output stage-by-stage. Two 
major advantages of this approach are that its implementation 
complexity is independent of the number of channels, and its 
scalability enables one to obtain compensated outputs with 
different resolutions. 

In the paper, we investigate the problem in another direction 
by considering it as an inversion problem of a time varying 
linear system, and propose a versatile framework for the 
development of iterative methods and structures to correct the 
frequency response mismatches in TI ADCs. In order to 
facilitate the real-time implementation, we focus on the general 
iterative framework allowing the problem to be solved in a 
sample-by-sample manner. Under the proposed framework, it 
can be shown that the compensation structure in [11] indeed 
corresponds to a simplification of a classical iterative method 
called Richardson iteration (RI). Therefore, it is expected that 
the proposed framework should enjoy all the advantages of the 
compensation structure in [11]. On the other hand, to reduce the 
implementation complexity, it is possible to employ other 
iterative methods with faster convergence rate, such as 
Gauss-Seidel iteration (GSI) and successive over relaxation 
(SOR). As an illustration, the usefulness of the proposed 
framework is demonstrated by studying the GSI in detail. 
Simulation results show that the GSI is able to converge to the 
desired solution at a convergence rate two times faster than the 
RI. Moreover, thanks to rich theoretical analysis of iterative 
methods in mathematical communities [16], [17], lots of useful 
results, such as sufficient conditions for convergence, can be 
applied and further elaborated to analyze the performance of 
the proposed framework. 

Because of the time varying nature of the system model, we 
further realize the proposed iterative framework using variable 
digital filters (VDFs). Like the timing mismatch compensation 
in [8] - [10], the VDF can be designed to accommodate any 
possible frequency response mismatches which are described 
by a polynomial approximation. Therefore, the resulting 
structure usually consists of a number of fixed sub filters and a 
few tuning parameters. Major advantages of the proposed 
structure are that the VDF coefficients involved can be varied 
online to cope with possibly changing system, and more 
importantly it can be implemented as the well-known Farrow 



structure with a limited number of variable multipliers required 
to implement the tuning parameters [18]. 

Besides, we also carry out a preliminary study related to the 
effect of the limited TI ADC resolution due to the 
abovementioned mismatch errors on the performance of an 
OFDM receiver. Simulation results indicate that the ADC 
resolution improved by the proposed iterative corrector can be 
carefully selected to obtain a near optimal performance with 
minimum complexity. 

The paper is organized as follows: Section II describes the 
problem of frequency response mismatches occurred in TI 
ADCs. The equivalent time varying linear model, and two 
particular examples of the iterative framework, namely the aSI 
and RI, for signal reconstruction are then presented in Section 
III. Section IV is devoted to the realization of the linear model 
using VDFs. The efficient implementation of the aSI using 
Farrow structure is also discussed. In Section V, the 
convergence condition of the aSI is studied. After that, two 
detailed examples, including a preliminary study of the OFDM 
system performance related to the ADC resolution, are given in 
Section VI to illustrate the usefulness of the proposed approach. 
Finally, conclusion is drawn in Section VII. 

II. BACKGROUND 

In a M-channel TI ADC, M medium-speed (or low-speed) 
ADCs are operated in parallel, but the sampling instants 
between two adjacent ADCs differ by one system clock period. 
Ideally, if M ADCs are functionally identical and the channel 
outputs are combined appropriately, we obtain an equivalent 
ADC, which should have the same precision as the channel 
ADCs, but offering a speed M times faster. However, any small 
mismatches between M ADCs lead to degraded performance. 

Fig. I shows the M-channel TI ADC with frequency 
response mismatches, where sc(t) is the input continuous-time 

(CT) signal, Fn(jQ) , for n=O,I···,M -I , are frequency 

responses of the channel filters, and y[n] is the output 

sequence. Note that typical example of channel frequency 
response is a linear phase shift in timing mismatch problem 
[5] - [10]. Also, Fn(jQ) can be treated as an M-periodic 

time-varying filter, i.e. Fn(jQ) = Fn+M (jQ) for all n. 
The mismatches occur in the TI ADC when at least one 

channel frequency response is different form others. Usually, it 
is required that all channel frequency responses should be 
matched to a desired time-invariant frequency response 
F(jQ) such that Fn(jQ) = F(jQ) , for n = O,I···,M -I [11]. 
This results in an equivalent single channel ADC shown in Fig. 

I(b), where sc(t) is filtered by F(jQ) before sampling to 

obtain x[ n]. As suggested in [II], such frequency distortion 

can be compensated, say via equalization in communication 
systems, which is commonly encountered in the single channel 
ADC. Therefore, we will focus in this paper on how to find 
x[n] given y[n] . 

In what follows, we will establish a discrete-time (DT) 
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Fig_ I: (a) M-channel time-interleaved ADC with channel frequency response 
mismatches, (b) its equivalent circuit when all the channel responses are 

matched to FUQ), and (c) its equivalent discrete-time model. 

model between x[n] and y[n] . Suppose that sc(t) is a 

bandlimted CT signal with maximum frequency fmax ' and the 

sampling rate Is = 1/ T is greater than the Nyquist rate 2 fmax . 
Then, the equivalent DT relations of s [n] = sc(nT) , x[n] and 

y[n] in Figs. I(a) and I (b) can be expressed as 
� -

x[n] = LS[k]· f(n-k) , and 
k=_ 

y[n]= LX[k]·g n(n-k),'ltn , 
k-

(1) 

(2) 

where f(no) and g n(no) are respectively the DT impulse 

responses of the desired channel filter F(ej(Q) and the time 

varying filter 

Gn(ej(Q) = Fn(ej(Q)/ F(ej(Q), (3) 

with Fn(ej(Q) = Fn(jQ) and F(ej(Q) = F(jQ) , I� = IQTI:s; 1Z". 

Fig. I(c) shows an equivalent DT model of Fig. I(a). It is noted 
that the above model and the iterative framework proposed in 
Section III are very general, and they are valid for arbitrary M. 

To fmd x[n] given y[n] in Eqn. (2), we have to consider a 

practical realization of g n(no), which has an infinite impulse 

response. Moreover, it is usually accompanied by the 
assumption that sc(t) is slightly oversampled. More precisely, 

the discrete-time Fourier transform of s [n] is zero for 

a1Z" :s; I� :s; 1Z" , 0 < a <1 . 
Let hn [ no] be the corresponding approximation of the ideal 
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Fig. 2: Farrow structure for implementing a VDF. 

impulse response g n(no ) ' Assume that the frequency response 

of hJ no] is designed to approximate Gn(eJOJ) in the frequency 

band of interest (i.e. O:s; I� :s; a1l ), then Eqn. (2) can be 

approximated as 
n +Nhl 

y[n] '" L x[k]· hJ n-k], (4) k=n-Nh2 
where Nhl and Nh2 are positive integers. When both Nhl and 

N h2 are fmite, hJ no] can be realized as a FIR filter. On the 

other hand, if Nhl and/or Nh2 are infinite, hJno] may 

alternatively be realized as an IIR filter. For simplicity, in the 
rest of the paper, we will mainly focus on the FIR case. 

III. VERSATILE ITERATIVE FRAMEWORK 

Consider the matrix form of (4): 
y=Ax, (5) 

where y=[ y[-oo], ... , y[oo] f  , x=[ x[-oo], .. ·, x[oo] f and 

[ A 1 n,k = an,k = hJn-k] , n,k = "',-1,0,1,'" . The problem at 

hand is to recover the uniform sequence x , given its 
mismatched output y . In other words, we want to solve the 

system of linear equations in (5). For the sake of presentation, 
{ y[n] } and { x[n] } are assumed to be discrete signals with 

finite and sufficiently large number of samples N for 
n = 0,1,,,, , N -1. Thus, y and x now become (N x 1) vectors 

and A is a (NxN) matrix. Also, hn[no] is assumed to be 

noncausal. For practical implementation, it can be easily made 
causal by introducing appropriate delays. 

For high-speed applications, directly inverting A to fmd x 
is undesirable due to high arithmetic complexity. In this paper, 
we propose to solve the problem using iterative methods. For 
efficient implementation, we are interested in those which can 
be realized in a sample-by-sample manner. Most of them take 
the form of 

x(m+l ) = Gx(m) + f , (6) 

where G and f are derived from A and y , and x(m) 
denotes the solution in the m-th iteration. The next step is to 
determine the partitioning of A to form G . 

As an illustration, we particularly consider the Gauss-Seidel 
iteration (GSI) as follows 

x(m+l ) =(D-Lr1 Ux(m) +(D-Lr1 y, (7) 

where D, -L and -U are respectively the diagonal, negative 
strictly lower triangular and negative strictly upper triangular 
parts of the matrix A ,  and therefore A = D -L - U . The 
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Fig. 3: VDF-based correctors in the form of the moth Gauss-Seidel iteration. 

equivalent time domain representation of (7) can be written as 

x(m+l ) [n] = h�l [o(y[n]-
k=
%..� (m+l ) [k] ' hn[n-k] 

n+Nhl 
) 

- L x(m) [k]· hJ n-k] , n=O, .. ·,N -1. k=n+l 
(8) 

It should be noted that Eqn. (6) provides a general 
framework for solving the reconstruction problem using 
iterative methods, which greatly extends the previous works in 
[11] and [12]. For example, consider an alternative 
decomposition of A such that G = / - f.IA and f = I1Y for 

some scalar J.l . One then gets 

x(m+l ) = (/ - f.IA)x(m) + I1Y , (9) 

which is known as Richardson iteration (RI). After a careful 
examination, it is noticed that the RI reduces to the 
compensation structure in [11] when J.l = 1 . Of course, other 

similar iterative methods such as Jacobi iteration (11), 
successive over relaxation (SOR) and so on can also be used for 
the tradeoff between the implementation complexity and 
convergence rate. For simplicity, we only focus on the GSI, 
which converges significantly faster than the RI as illustrated in 
Section VI later. 

IV. IMPLEMENTATION USING VARIABLE DIGITAL FILTER 

The time varying nature of hJ no] naturally prompts us to 

consider the use of variable digital filters (VDFs), which are 
able to vary their characteristics online by adjusting a tuning 
parameter t/J. The basic idea to realize hn [no] using the VDF is 

to represent its impulse response as a polynomial in t/J: 
L-l h[no,t/J]= Lcl[no]·t/JI, no =-Nh p .. ·,0, .. ·,Nh2, (10) 
1=0 

where h[no,t/J] is a general representation of hJ no], in which 

t/J can be adjusted to be t/J n to accommodate the time varying 

nature of hJ no] , L is the number of subfilter and CI [no] is the 

impulse response of the /-th subfilter. Furthermore, the 
z-transform of the VDF can be expressed as: 

H(z,t/J) = �C/(Z)t/J1 = �[no%.�: [ no]z- n}1 (11) 

where C/(z) is the z-transform of the /-th subfilters. This gives 

rise to the Farrow structure as shown in Fig. 2. It can be seen 
that the Farrow structure consists of digital subfilters with fixed 



coefficients and a limited number of multipliers to implement 
the tuning parameter t/J .  

We now consider the efficient implementation of the GSI 
using the Farrow structure mentioned above. First of all, with 
(10), we rewrite (8) as 

x (m+I ) [n] = h;I[O](y[n] - st ) [n] - s�m) [n]) , (12) 

It is seen that s:m) [n] can be obtained by feeding x(m+l ) [n] into 

a VDF V;(z,t/J) = L 2A [no]z -n 1 with appropriate values of 
L-I[� } 
1=0 no=1 

t/Jn . As for s�m) [n] , we similarly define another VDF 

V2(z,t/J) = �
[

no
t

N
�: [n O]z -n}1 . Fig. 3 shows the resulting 

VDF-based structure for implementing the m-th iteration of the 
GSI reconstruction algorithm. 

V. CONVERGENCE ANALYSIS 

An important aspect of iterative methods is the conditions for 
convergence. It is well known that the iteration in (6) converges 

for any f and x(O) iff the spectral radius of G, p( G) , is less 

than one. However, due to large N and time-varying 
parameter t/Jn (and hence A )  in general, it is difficult to derive 

a necessary and sufficient condition based on the spectral radius 
of G . Therefore, sufficient conditions that guarantee 
convergence will be considered below. 

For the GSI, it is convenient to use a simpler sufficient 
condition which states that the iterations converge for any f 
and x(O) iff A is a diagonally dominant matrix [16]. That is 

l an,n l > Lm'k l an,k I ' for all n , which is equivalent to 

Ih[O,t/Jn]l > L Ih[no ,t/Jn]l , for all t/Jn ' (13) no .. O 

Therefore, the condition can be readily checked, since the 
subfilter coefficients of a given VDF are pre-determined. 

It is remarked that the choice of F(ejOJ) plays an important 

role on the performance of iterative methods. A simple way is 

to choose F(ejOJ) such that Gn(ejOJ) is close to one. This 

serves two main purposes. First, A becomes more diagonally 
dominance and hence the abovementioned convergence 
condition can be easily guaranteed. Second, it is known that the 
diagonal dominant matrix A enhance the convergence rate of 
the iterative framework in (5). Therefore, the implementation 
complexity can be reduced with less number of iterations. This 

also agrees with the suggestion in [11], wherein F(ejOJ) is 

chosen as the average response of Fn(ejOJ) through the analysis 

in frequency domain. However, it should be noted that the 
resulting spectrum after iterative correction would be close to 

F(ejOJ)X(ejOJ) instead of X(ejOJ). Consequently, an additional 
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compensation filter may be needed to compensate for F(ejOJ), 
if this distortion cannot be tolerated. In this regard, one may 

choose F(ejOJ) = 1 to achieve perfect reconstruction in 

exchange for increased number of iterations and hence 
implementation complexity. Fortunately, under the proposed 
iterative framework, we are able to examine the problem more 
flexibly and efficiently from the view point of iterative methods 
for solving linear system. For instance, we may use instead 
other efficient iterative methods with faster convergence rate 
(e.g. successive over relation) to solve the problem. Due to page 
limitation, we will report the above issue in a future work. 

VI. DESIGN EXAMPLES 

A. Ban dwidth Mismatches ofT! ADC 
In this subsection, we will investigate the performance of the 

proposed iterative structure by means of computer simulations. 
For comparison purpose, we will also consider the promising 
compensation structure proposed in [11]. As we mentioned in 
Section III, this structure can be regarded as the RI with /1 = 1 . 

As an illustration, we will consider bandwidth mismatches in 
an M-channel TI ADC. The corresponding channel frequency 
response is given by 

1 l_e-(n�+jnT) 
F (  'Q)-n J -

1 . A -(�T+jMOT) , +Jn� l- e 
(14) 

where Q� is a time varying cutoff frequency. Interested 

readers are referred to [11] and [14] for more details. In the 
simulation below, we will choose M = 4 and 

Q� = [1,0.95,0.93,0.9]K / T . Fig. 4{a) shows the uncorrected 

output spectrum for a multi-cosine input signal. It can be seen 
that the largest aliasing component is about -39.37 dB. 

To determine h[no ,t/Jn ] in (3), the desired frequency 

response is chosen as 

F{ 'Q)= 
1 

J 
l ' ----'L- ' + J O.951fIT 

(15) 

which approximates the average response of Fn{ejOJ) as 

discussed in Section V. In discrete time domain, the desired 
response of the VDF can be written as 

F{ ejOJ t/J) 1 + j ----"L- 1- e- (�1f +jOJ ) H (OJ AI) = ' = O.951f (16) 
d 

,
,(, F{ejOJ) 1+ jfr l_e-(�1f+jMOJ) ' 

where t/J is the tuning parameter defined as t/J = QeT / K . The 

VDF design method in [19] is employed to solve the following 
problem: 

min max IH(ejOJ,t/J)-HAOJ,t/J)I, (17) (OJ,a)e'!' 
where 'P collectively denotes the frequency and tuning range 

of interest. According to the maximum input frequency and Q� 
defined earlier, 'P is chosen as aJe [-O.9K,0.9K] and 

t/Je [0.9,1] . A VDF has been designed with the following 

specifications: Nhl = Nh2 = Nh = 23 and number of subfilters 

L = 5 .  Fig. 4(b) and 4{c) show respectively the compensated 
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GSI, 1st iter: (Nh, L) = (12, 3), 2nd iter: (Nh, L) = (23, 5) 
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Fig. 4: (a) Uncorrected output spectrum. (b) Output spectrum obtained using 
the RI after 4 iterations. (c) Output spectrum obtained using the GSI after 2 
iterations. (d) Output spectrum obtained using the GSI after 2 iterations, and a 
VDF of lower filter order and fewer subfilters is used in the first iteration. 

spectra obtained using the RI with J1 = 1 (i.e. the structure in 

[11]) after 4 iterations and the OSI after 2 iterations. It can be 
seen that the largest spurs are reduced to -109.79 dB and 
-109.31 dB for the RI and OSI, respectively. This suggests that 
the convergence rate of OSI is about two times faster than that 
ofRI, and hence illustrates the generality and usefulness of the 
proposed iterative framework. 

Throughout the discussions earlier, the VDFs used in all 
iterations are assumed to be identical, which is merely a 
particular configuration of the iterative framework for the sake 
of presentation. In fact, it is possible to use VDFs with lower 
filter order and/or fewer subfilters in the first few iterations, so 
as to further reduce the overall implementation complexity. We 
notice that similar observation can be found in [10], but we are 
able to extend this idea to various iterative methods, including 
the RI, in a more general framework considered in this paper. 
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Fig. 5: (a) OFDM transmitter. (b) OFDM receiver. 

Fig. 4( d) shows the compensated spectrum obtained using the 
OSI with two different VDFs, for which the VDF parameters 
used in the first iteration are (Nh, L) = (12,3) and those in the 

second iteration are kept as (Nh, L) =(23,5) . It can be seen 

that the performance in such configuration is slightly degraded 
as compared with the result in Fig. 4( c). Furthermore, it can be 
shown that the ultimate performance of the iterative method is 
governed by the VDF used in the last iteration to a large extent. 
However, the underlying principles of such observation are 
omitted due to page limitation, and will be reported elsewhere. 

B. Timing Mismatches ofT! ADC in OFDM system 
In this subsection, we will study the effect of timing 

mismatch errors in an OFDM system. As an illustration, we 
will employ the OFDM system model in [20], which is depicted 
in Fig. 5. At the transmitter side, the size of IFFT block is 2048. 
The IFFT input consists of 1800 16-QAM symbols R[ k] and 

the IFFT output is denoted as r[n] . After cyclic prefix addition 

and digital-to-analog conversion, the baseband signal is 
transmitted through an A WON channel. At the receiver side, 
we assume that the received signal sc(t) is sampled using a 

non-ideal five-channel TI ADC to obtain y[n] (c.r. Fig. 1 (a)). 

With reverse operations as in transmitter, the final bit stream is 
obtained. 

In order to focus only on the effect of the TI ADC mismatch 
error, we assume that all the necessary channel statistics are 
known. Also, we assume that the five sub-converters in the TI 
ADC exhibit time offsets -¢>.T , n = 0,1,2,3,4 , with respect to 

the ideal sampling time t=n T, wherein ¢>n=[0,O.l5,-O.15, 

-0.15,0.15] . Similar to the discussions in [11], the 

corresponding time varying filter Fn un) can be expressed as 

FnUn)=e-}flT¢n. (18) 

Further, if we set F(ejW)=l, then the desired response of the 

VDF in DT domain is given by 

HAm,¢» = e-jw¢ . (19) 
This leads to a subclass of VDF, called variable fractional delay 
digital filter (VFDDF) which finds important application of 
sampling rate converters in software radio receivers [21]. To 
fulfill the specifications of the OFDM system mentioned above, 
the parameters of the VDF used for the proposed iterative 
corrector are as follows: me [-0.9Ji,0.9Ji] , ¢>e [-0.15,0.15] , 

Nhl = Nh2 = Nh = 10 , L = 2 in the first iteration and L = 3 in 
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Fig. 6: BER performance before and after correction. 

the second iteration. 
As shown in Fig. 6, the simulation results evaluate the bit 

error rate (BER) against the signal-to-noise ratio (SNR) of the 
A WGN channel. We can see that the TI ADC mismatch errors 
lead to a significant noise floor, when comparing with the 
desired curve without mismatch, because the mismatch errors 
are dominated. On the other hand, after applying the proposed 
iterative corrector, the BER curve becomes closer to the desired 
one as the number of iteration increases. This suggests the 
usefulness of the proposed approach in correcting the 
mismatches of TI ADC iteratively. Moreover, the above 
experiment brings out an interesting issue on how the ADC 
resolution affects the BER performance of the 16-QAM OFDM 
system. A rough estimation of the ADC bit resolutions 
(approximated as 1 bit per 6 dB SNR for a sinusoidal input due 
to quantization noise [2]) gives respectively 2, 6 and 8 bits for 
the first three BER curves in Fig. 6. We can see that an ADC 
with 6 to 8 bits resolution is sufficient for a good BER 
performance. In practice, since there may exist other error 
sources, say coming from channel equalization, a higher bit 
resolution may be required. On the other hand, for larger SNR, 
additional iterations (and hence ADC resolutions) may be 
needed to achieve a better BER. Nevertheless, it is clear the 
quantization errors due to limited ADC resolutions are 
eventually masked by the noise floor of the A WGN channel. 

VII. CONCLUSION 

A versatile iterative framework for the correction of 
frequency response mismatches in TI ADCs has been proposed. 
While extension to other iterative methods of similar form such 
as successive over relaxation is possible, the Gauss-Seidel 
iteration has been studied in detail to illustrate how the problem 
can be efficiently solved iteratively based on a general time 
varying linear system model. Moreover, since the proposed 
iterative method can be efficiently realized using Farrow-based 
variable digital filters, the entire iterative procedure can be 
implemented without any multiplications, apart from the 
limited number of multipliers in the Farrow structure. 
Simulation result showed that the proposed method has better 
performance than conventional compensation structures. Also, 
the effect of ADC resolution on the BER performance of the 
16-QAM OFDM system has been investigated. 
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