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Abstract— An important problem in systems biology consists
of establishing whether an equilibrium point of a genetic reg-
ulatory network is stable. This paper investigates this problem
for genetic networks with SUM regulatory functions. It is shown
that a sufficient condition for global asymptotical stability of an
equilibrium point of these networks can be derived in terms of
convex optimizations with LMI constraints by exploiting poly-
nomial Lyapunov functions and SOS techniques. This condition
is interesting because does not introduce approximations of the
nonlinearities present in the genetic regulatory network, and
the conservatism can be decreased by increasing the degree of

the involved polynomials.

I. INTRODUCTION

A primary research area in systems biology is represented

by genetic regulatory networks. These networks explain the

interactions between genes and proteins to form complex sys-

tems that perform complicated biological functions. Genetic

regulatory networks are biochemically dynamical systems,

and it is natural to model them by using dynamical system

models which provide a powerful tool for studying gene

regulation processes in living organisms.

Basically, there are two classes of genetic regulatory

network models, i.e., the Boolean model (or discrete model)

and the differential equation model (or continuous model).

In the Boolean models, the activity of each gene is expressed

in one of two states, ON or OFF, and the state of a

gene is determined by a Boolean function of the states of

other related genes. In the differential equation models, the

variables describe the concentrations of gene products, such

as mRNAs and proteins, as continuous values of the gene

regulation systems. See for instance [1]–[3] and references

therein.

The class of differential equation models can be divided

into subgroups depending on how the concentration of the

protein affects the dynamics of the concentration of the

mRNA. Among these subgroups, one of interest that has

been considered in the literature is represented by genetic

networks with SUM regulatory functions. In these genetic

regulatory networks, each transcription factor acts additively

to regulate a gene, i.e. the regulatory function sums over all

the inputs. Consequently, the derivative of the concentration

of the mRNA is an affine combination of saturation functions

of the concentration of the protein. See for instance [4]–[10]

and references therein.
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An important problem in genetic regulatory networks

consists of establishing whether an equilibrium point is stable

or not. In fact, stability expresses the ability of the system to

remain in the neighborhood of a certain equilibrium in spite

of changes and events which tend to move the state away

from it. Unfortunately, establishing whether an equilibrium

point is stable or not is a difficult issue, see the references

mentioned above and also [11]–[13] which address this

problem. Indeed, genetic regulatory networks are nonlinear

systems, in particular characterized by combinations of sat-

uration functions, and to determine whether an equilibrium

point of such a system is globally asymptotically stable is

known to be a NP-hard problem.

This paper investigates stability of equilibrium points

of genetic networks with SUM regulatory functions. It is

shown that a sufficient condition for global asymptotical

stability of an equilibrium point of these networks can be

obtained in terms of linear matrix inequality (LMI) feasibility

tests, which are convex optimizations [14]. This condition is

derived, firstly, by equivalently re-writing these networks as

linear systems with static nonlinear constraints, and secondly,

by constructing a polynomial Lyapunov function for such a

transformed system through the use of techniques based on

sum of squares of polynomials (SOS). These techniques are

exploited through the Gram matrix method [15], also known

as square matricial representation (SMR) [16], which allows

one to establish whether a polynomial of arbitrary degree and

arbitrary number of variables is SOS via an LMI feasibility

test, see for instance [16], [17]. The interest for the proposed

stability condition relies on the fact that its conservatism can

be decreased by increasing the degree of the polynomials

involved in the construction of the optimization. Some nu-

merical examples are reported to illustrate the application

and usefulness of the proposed approach.

Before proceeding it is worth mentioning that conditions

for investigating stability of an equilibrium point of a genetic

regulatory network based on LMIs have been proposed in the

literature, in particular [8], [9], [18] (which consider stability

in the presence of time-delays, disturbance attenuation, and

stability in the presence of uncertainties). The contribution

of the proposed approach with respect to these conditions is

to provide a different strategy without introducing approxi-

mations of the nonlinearities.

The paper is organized as follows. Section II introduces

some preliminaries on genetic networks with SUM regula-

tory functions. Section III describes the proposed results.

Section IV presents some illustrative examples. Lastly, Sec-

tion V concludes the paper with some final remarks.
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II. PRELIMINARIES

A. Problem formulation

Let us start by introducing the notation adopted throughout

the paper:

- ℝ: real numbers set;

- ℝ+: positive real numbers set, i.e. {x ∈ ℝ : x ≥ 0};

- 0n: origin of ℝn;

- In: identity matrix n× n;

- X ′: transpose of matrix X ;

- ei: ith column of the identity matrix (of size defined by

the context);

- diag(x1, x2, . . .): diagonal matrix with entries

x1, x2, . . . on the diagonal (starting from the top-

left corner);

- TF: transcription factor.

In this paper we consider genetic networks with SUM reg-

ulatory functions. This class of genetic regulatory networks

is described by the model
⎧

⎨

⎩

ṁi(t) = −aimi(t) +
∑n

j=1 bi,j(pj(t))

ṗi(t) = −cipi(t) + dimi(t)
i = 1, . . . , n

(1)

where mi(t), pi(t) ∈ ℝ+ are the concentrations of mRNA

and protein of the ith node, and ai, ci, di ∈ ℝ+ are positive

coefficients. The function bi,j(pj(t), 0) is given by

bi,j(pj(t)) =

⎧













⎨













⎩

�i,jf(pj(t)) if TF j is an

activator of gene i

�i,j(1− f(pj(t))) if TF j is a

repressor of gene i

0 otherwise
(2)

where �i,j ∈ ℝ+ are positive coefficients and f(⋅) is a

saturation function, i.e. a function which satisfies

f : ℝ+ → [0, 1], f(0) = 0, f(∞) = 1, f monotonic. (3)

This function f(⋅) is typically selected in the class of the

Hill’s functions, and is hence given by

f(pi(t)) =
pi(t)

H

�H + pi(t)H
(4)

where � ∈ ℝ+ and H is a positive integer. Let us define the

vectors

m(t) =

⎛

⎜

⎝

m1(t)
...

mn(t)

⎞

⎟

⎠
, p(t) =

⎛

⎜

⎝

p1(t)
...

pn(t)

⎞

⎟

⎠
. (5)

Then, the model (1) can be rewritten in matricial form as

(see e.g. [8], [9] for details)
{

ṁ(t) = −Am(t) + r +Rg(p(t))
ṗ(t) = −Cp(t) +Dm(t)

(6)

where A,C,D ∈ ℝ
n×n
+ are diagonal matrices with positive

components, R ∈ ℝ
n×n and r ∈ ℝ

n
+ are defined as

Ri,j =

⎧

⎨

⎩

�i,j if TF j is an activator of gene i

−�i,j if TF j is a repressor of gene i

0 otherwise

(7)

ri = −
∑

j: Ri,j<0

Ri,j , (8)

and

g(p(t)) = (f(p1(t)), . . . , f(pn(t)))
′. (9)

In this paper we address the following problem. Let

(m∗, p∗) ∈ ℝ
2n
+ be an equilibrium point of the genetic regu-

latory network (6). Then, the problem consists of establishing

whether (m∗, p∗) is globally asymptotically stable, i.e.

lim
t→∞

(

m(t, m̄)
p(t, p̄)

)

=

(

m∗

p∗

)

∀

(

m̄

p̄

)

∈ ℝ
2n
+ (10)

where m(t, m̄) and p(t, p̄) denote the solutions at time t

of m(t) and p(t) with initial conditions m(0) = m̄ and

p(0) = p̄.

Let us observe that, by solving this problem, we also es-

tablish that the equilibrium point is unique since uniqueness

is a necessary condition for global asymptotical stability.

In the sequel the dependence on the time t of the con-

sidered signals will be omitted for ease of notation unless

indicated otherwise.

B. Positive polynomials via SOS Techniques

Positivity of a polynomial can be investigated via SOS

techniques. Specifically, let p(x) be a polynomial of degree

2m in x ∈ ℝ
n, and let b(x) ∈ ℝ

�(n,m) be a vector containing

all monomials of degree less than or equal to m in x, being

�(n,m) given by

�(n,m) =
(n+m)!

n!m!
. (11)

Then, p(x) can be written as

p(x) = b(x)′P (�)b(x) (12)

where P (�) ∈ ℝ
�(n,m)×�(n,m) is a symmetric affine linear

matrix function expressed as

P (�) = P + L(�) (13)

where P ∈ ℝ
�(n,m)×�(n,m) is any symmetric matrix such

that

p(x) = b(x)′Pb(x), (14)

L(�) is a linear parametrization of the set

ℒ =
{

L = L′ ∈ ℝ
�(n,m)×�(n,m) : b(x)′Lb(x) = 0

}

,

(15)

and � ∈ ℝ
�(n,m) is a vector of free parameters, being

�(n,m) the dimension of ℒ which is given by

�(n,m) =
1

2
�(n,m)(�(n,m) + 1)− �(n, 2m). (16)

The representation of p(x) as in (12)–(13) is known as Gram

matrix method [15] and SMR [16]. See also [19], [20] where

algorithms for the computation of the matrices P and L(�)
are reported.

This representation allows one to investigate positivity of

polynomials via convex optimizations. Indeed, the condition

p(x) is positive, i.e.

p(x) ≥ 0 ∀x ∈ ℝ
n, (17)
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can be ensured by p(x) is SOS, i.e. there exist polynomials

p1(x), . . . , pk(x) such that

p(x) =

k
∑

i=1

pi(x)
2, (18)

and this latter condition holds if and only if

∃� : P (�) ≥ 0, (19)

see for instance [16], [17]. The above condition is an

LMI feasibility test, which can be solved through a convex

optimization, see [14] about LMI feasibility tests. SOS

techniques allow one to search for Lyapunov functions, see

for instance [17], [21]–[25].

III. MAIN RESULTS

In this section we describe the proposed approach, in

particular Section III-A derives the sought stability condition

and Section III-B investigates its properties.

A. Stability condition

In this section we describe the proposed approach for

investigating global asymptotical stability of an equilibrium

point of the genetic regulatory network (6). This approach is

derived, firstly, by equivalently re-writing this network as a

linear system with static nonlinear constraints, and secondly,

by constructing a polynomial Lyapunov function for such a

transformed system through the use of the SMR.

Specifically, let us introduce the new variables x, y ∈ ℝ
n

x = m−m∗

y = p− p∗.
(20)

By using these new variables, the system (6) can be rewritten

as
{

ẋ = −Ax+R (g(y + p∗)− g(p∗))
ẏ = −Cy +Dx

(21)

The original equilibrium point (m∗, p∗) is hence shifted in

the origin. The next step consists of rewriting (21) as a linear

system with static nonlinear constraints. To this end, let us

define the auxiliary variable z ∈ ℝ
n as

z = g(y + p∗)− g(p∗). (22)

It follows that the system (21) can be equivalently described

by (22) and
{

ẋ = −Ax+Rz

ẏ = −Cy +Dx
(23)

From now on, we will focus on the construction of a

Lyapunov function candidate proving global asymptotical

stability of the origin for the system (22)–(23). Let us in-

dicate with v(x, y) such a Lyapunov function candidate. We

select this function in the class of the polynomial functions.

Hence, v(x, y) can be written as

v(x, y) =
∑

i1+...i2n=2�v
i1,...,i2n≥0

vi1,...,i2nx
i1
1 ⋅ ⋅ ⋅xin

n y
in+1

1 ⋅ ⋅ ⋅ yi2nn

(24)

where i1, . . . , i2n are positive integers, 2�v is the degree of

v(x, y) for some integer �v, and the quantities vi1,...,i2n ∈ ℝ

are the coefficients of v(x, y).

Now, let us consider the temporal derivative v̇(x, y) of the

Lyapunov function v(x, y) along the trajectory of the system

(22)–(23). To this end, let us define the function

w0(x, y, z) = ∇v(x, y)

(

−Ax+Rz

−Cy +Dx

)

. (25)

We have that

v̇(x, y) = w0(x, y, z) ∀z : (22) holds. (26)

For each i = 1, . . . , n let us define the function

ℎi(y, z) = (zi + f(p∗i ))
(

�H + (yi + p∗i )
H
)

− (yi + p∗i )
H .

(27)

We observe that

(22) holds

⇕
ℎ1(y, z) = . . . = ℎn(y, z) = 0.

(28)

Therefore, one has that the temporal derivative v̇(x, y) in

(26) can be rewritten as

v̇(x, y) = w0(x, y, z) ∀z : ℎ1(y, z) = . . . = ℎn(y, z) = 0.
(29)

In order to study v̇(x, y), let us define the function

w1(x, y, z) = w0(x, y, z) +
n
∑

i=1

ui(x, y, z)ℎi(y, z) (30)

where ui(x, y, z), 1 ≤ i ≤ n, are auxiliary polynomials

of some degree �u. We observe that, for any choice of the

polynomials u1(x, y, z), . . . , un(x, y, z), one has that

v̇(x, y) = w1(x, y, z) ∀z : ℎ1(y, z) = . . . = ℎn(y, z) = 0.
(31)

The next step consists of introducing an appropriate rep-

resentation of the Lyapunov function candidate v(x, y) and

the function w1(x, y, z). By using the SMR introduced in

Section II-B, we can express v(x, y) as

v(x, y) = bv(x, y)
′V bv(x, y) (32)

where bv(x, y) is a vector containing a base for the polyno-

mials in x and y of degree �v, and V = V ′ is a symmetric

matrix containing the coefficients of v(x, y) with respect to

bv(x, y). The vector bv(x, y) is chosen under the condition

that bv(x, y) vanishes if and only if the pair (x, y) represents

the origin, i.e.

∥bv(x, y)∥ = 0
⇕

(x, y) = (0n, 0n).
(33)

Similarly we express the function w1(x, y, z). Indeed, let us

write the polynomials u1(x, y, z), . . . , un(x, y, z) as

ui(x, y, z) = u′
ibu(x, y, z) ∀i = 1, . . . , n (34)
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where bu(x, y, z) is a vector containing a base for the

polynomials in x, y and z of degree �u, and ui is the

corresponding vector of coefficients. Let us define the matrix

U = (u1, . . . , un). (35)

Then, we can rewrite w1(x, y, z) as

w1(x, y, z) = bw(x, y, z)
′ (W (U, V ) + L(�)) bw(x, y, z)

(36)

where bw(x, y, z) is a vector containing a base for the

polynomials in x, y and z of degree �w given by

�w =

⌈

max{2�v, H + 1 + �u}

2

⌉

. (37)

The vector bw(x, y, z) is chosen under the condition that

bw(x, y, z) vanishes if and only if the triplet (x, y, z) repre-

sents the origin, i.e.

∥bw(x, y, z)∥ = 0
⇕

(x, y, z) = (0n, 0n, 0n).
(38)

The matrix W (U, V ) contains the coefficients of w1(x, y, z)
with respect to the chosen bw(x, y, z), and is a symmetric

matrix function depending affine linearly on U and V . Lastly,

L(�) is a linear parametrization of the linear space

ℒ = {L = L′ : bw(x, y, z)
′Lbw(x, y, z) = 0 ∀x, y, z}

(39)

being � a free vector of dimension equal to the dimension

of ℒ.

The following theorem shows how the representations

(32) and (36) can be exploited to obtain the sought stability

condition via convex programming.

Theorem 1: Let (m∗, p∗) ∈ ℝ
2n
+ be an equilibrium point

of the system (6). Let us suppose that there exist integers

�v and �u, matrices V and U , and a vector � satisfying the

system of LMIs
{

0 < V

0 > W (U, V ) + L(�)
(40)

Then, (m∗, p∗) is globally asymptotically stable.

Proof. Let us suppose that there exist matrices V and U and

a vector � such that the system of LMIs (40) holds for some

integers �v and �u. From the first inequality of (40) and (32)

one has that

v(x, y) > 0 ∀(x, y) ∕= 02n
v(0n, 0n) = 0.

(41)

Then, from the second inequality of (40) and (36) one has

that
w1(x, y, z) < 0 ∀(x, y, z) ∕= 03n
w1(0n, 0n, 0n) = 0.

(42)

Let z be any value for which (22) holds. Then, from (28)

one has

ℎ1(y, z) = . . . = ℎn(y, z) = 0, (43)

and hence from (31) it follows that

0 > w1(x, y, z)
= v̇(x, y)

(44)

for all (x, y, z) ∕= 03n with z satisfying (22). This implies

that

v̇(x, y) < 0 ∀(x, y) ∕= (0n, 0n). (45)

Therefore, we have that the function v(x, y) is radially

unbounded and positive outside the origin, moreover v(x, y)
vanishes in the origin, and hence the origin represents the

global minimum of v(x, y). In addition, from (45) we have

that the temporal derivative v̇(x, y) is negative outside the

origin, hence implying that v(x, y) is decreasing along the

trajectories of the system (22)–(23), or equivalently the

system (6). Therefore, the theorem holds. □

Theorem 1 provides a sufficient condition for establishing

whether an equilibrium point (m∗, p∗) of (6) is globally

asymptotically stable in the positive octant. This condition

amounts to finding matrices U and V and a vector � such that

the inequalities (40) are fulfilled for some integers �v and �u.

These inequalities are LMIs, and hence establishing whether

(40) holds or not amount to solving an LMI feasibility test,

which is a convex optimization as explained, for instance, in

[14].

The construction of the matrices W (U, V ) and L(�) can

be performed by using simple algorithms as those mentioned

in Section II-B. The LMI feasibility test (40) can be readily

solved by using dedicated software, such as the LMI toolbox

[26] or SeDuMi [27].

B. Properties

First of all, let us observe that the stability condition

provided in Theorem 1 differs from existing LMI stability

conditions for genetic regulatory networks. In fact, these

conditions are based on the approximation of the nonlinear-

ities present in these networks, which are represented by the

saturation function g(p) is (6), via sector inclusions as done

for instance in [8], [9], [18]. Instead, the condition provided

in Theorem 1 does not introduce any approximation of the

nonlinearities, and takes into account their exact structure

through the polynomials ℎ1(y, z), . . . , ℎn(y, z).
Second, let us observe that the conservatism of the

stability condition provided in Theorem 1 does not in-

crease as one increases the degrees of the Lyapunov

function candidate v(x, y) and auxiliary polynomials

u1(x, y, z), . . . , un(x, y, z), i.e. the integers �v and �u. In-

deed, let us suppose there exist matrices V and U and a

vector � satisfying the system of LMIs (40) for some �v and

�u. Then, let us define the polynomial

v̄(x, y) = bv(x, y)
′V bv(x, y) + v̂(x, y) (46)

where v̂(x, y) ∈ ℝ is a polynomial composed by monomials

of degree greater than or equal to 2�v, and for i = 1, . . . , n
the polynomials

ūi(x, y, z) = e′iU
′bu(x, y, z) + ûi(x, y, z) (47)
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where ûi(x, y, z) is a polynomial of degree greater than or

equal to �u (ei is the ith column of the n×n identity matrix).

Let us observe that v̂(x, y) can be chosen such that v̄(x, y)
admits a representation analogous to (32) with a positive

definite matrix V̄ since V > 0 for assumption. In particular,

this can be done by selecting v̂(x, y) of the form

v̂(x, y) = bv̂(x, y)
′V̂ bv̂(x, y) (48)

where bv̂(x, y) is a vector containing a base for the poly-

nomials in x and y with monomials of degree greater than

or equal to �v , and V̂ is a positive definite matrix. One has

hence:

v̄(x, y) =

(

bv(x, y)
bv̂(x, y)

)′

V̄

(

bv(x, y)
bv̂(x, y)

)

(49)

where

V̄ =

(

V

V̂

)

. (50)

Moreover, v̂(x, y) can be chosen such that its temporal

derivative along the trajectory of the system (23) is a SOS

polynomial changed in sign. Let us observe, in fact, that

(23) depends linearly on the state, and hence v̂(x, y) can be

selected as a power of a quadratic function proving stability

of (23). This implies that, by simply selecting null polyno-

mials û1(x, y, z), . . . , ûn(x, y, z), the polynomial w̄1(x, y, z)
analogous to w1(x, y, z) admits a representation analogous

to (36) with a negative definite matrix W̄ (Ū , V̄ ) + L̄(�̄),
where Ū and L̄(�̄) are defined analogously to (35) and (39)

respectively. In conclusion, one has hence the property

(40) is feasible for some �v, �u
⇕

(40) is feasible for �v + i, �u + j for all i, j ≥ 0.
(51)

Lastly, let us consider the necessity of the stability con-

dition provided in Theorem 1. Clearly, since a Lyapunov

function proving global asymptotical stability of (m∗, p∗)
may be non-polynomial in general, it immediately follows

that this condition is in general conservative for finite integers

�v and �u. Nevertheless, it is interesting to observe that this

conservatism can be arbitrary decreased by selecting �v and

�u sufficiently large, since in this way one can approximate

non-polynomials to a desired accuracy and cope with the gap

existing between positive polynomials and SOS polynomials.

Regarding this gap, the reader is referred to [28], [29], [17],

[30] and references therein.

IV. ILLUSTRATIVE EXAMPLES

This section illustrates the proposed approach with some

numerical examples. The computational time of the stability

condition provided in Theorem 1 is less than 5 seconds

for all examples (computational time relative to a Matlab

implementation of the proposed condition via SeDuMi [27]

on a standard personal computer).

A. Example 1

Let us consider as first example the repressilator investi-

gated in Escherichia coli [31], which is a genetic network

with SUM regulatory functions described by
⎧

⎨

⎩

ṁi = −mi +

i

1 + p2j

ṗi = −(pi −mi)
(52)

where the indexes i and j represents the following genes:

(i, j) = (lacl, cl), (tetR, lacl), (cl, tetR). (53)

This genetic regulatory network can be expressed as in (6)

with n = 3, H = 2, � = 1 and

A = −I3

C = −I3

D = I3

R =

⎛

⎝

0 0 −
1
−
2 0 0
0 −
3 0

⎞

⎠

r = (
1, 
2, 
3)
′
.

(54)

We select the plausible values


1 = 1, 
2 = 2, 
3 = 5. (55)

It follows that this system has an equilibrium point in

(m∗, p∗) = (0.27, 1.34, 1.29, 0.27, 1.34, 1.29)′. (56)

The problem consists of establishing whether (m∗, p∗) is

globally asymptotically stable. To this end, let us use the

stability condition provided in Theorem 1. We hence build

the system of LMIs (40) for the simple choice �v = �u = 1,

and we find out that there exist matrices U and V and a

vector � fulfilling these LMIs. Therefore, we conclude that

(m∗, p∗) is globally asymptotically stable.

For comparison purpose, we attempt to solve the same

problem by using existing stability conditions. We find that

the conditions proposed in [11] (which is based on the spec-

tral radius of suitable matrices) and [18] (which is based on

LMIs via nonlinearities approximation) are not satisfied and

do not allow one to conclude global asymptotical stability.

B. Example 2

As second example let us consider the genetic regulatory

network
⎧





























⎨





























⎩

ṁ1(t) = −m1(t) +
1

1 + p22
+

p23
1 + p23

ṁ2(t) = −2m2(t) +
p21

1 + p21
+

1

1 + p23

ṁ3(t) = −3m3(t) +
1

1 + p21
ṗ1(t) = −p1(t) + 2m1(t)

ṗ2(t) = −0.5p2(t) + 2m2(t)

ṗ3(t) = −p3(t) +m3(t)

(57)
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This genetic regulatory network is characterized by the fact

that TF 1 is a repressor of gene 3 and an activator of gene

2, TF 2 is a repressor of gene 1, and TF 3 is repressor of

gene 2 and an activator of gene 1.

This genetic regulatory network can be expressed as in (6)

with n = 3, H = 2, � = 1 and

A = diag(−1,−2,−3)

C = diag(−1,−0.5,−1)

D = diag(2, 2, 1)

R =

⎛

⎝

0 −1 1
1 0 −1
−1 0 0

⎞

⎠

r = (1, 1, 1)
′
.

(58)

We have that this genetic regulatory network has an equilib-

rium point in

(m∗, p∗) = (0.24, 0.56, 0.27, 0.47, 2.23, 0.27)′. (59)

The problem consists of establishing whether (m∗, p∗) is

globally asymptotically stable. We hence use the stability

condition provided in Theorem 1, finding that the system of

LMIs (40) is feasible for �v = �u = 1. This implies that

(m∗, p∗) is globally asymptotically stable.

V. CONCLUSION

A sufficient condition for global asymptotical stability

of an equilibrium point of genetic networks with SUM

regulatory functions has been proposed in terms of an LMI

feasibility test, which is a convex optimization.

Contrary to existing stability conditions either based on

spectral radius or LMI techniques, this stability condition

is obtained without introducing approximations of the non-

linearities present in the genetic regulatory network, whose

exact structure is taken into account in the optimization.

Moreover, the conservatism can be decreased by increasing

the degree of the Lyapunov function and other polynomials

involved in the optimization.

Future work will investigate the possibility of establishing

upper bounds of the degrees of the polynomials required to

achieve necessity in the proposed condition.
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