
Energy-Efficient Monitoring of Mobile Objects
with Uncertainty-Aware Tolerances

Tobias Farrell
Institute of Parallel

and Distributed Systems,
Universität Stuttgart, Germany

Reynold Cheng
Department of Computing,

Hong Kong Polytechnic
University, Hong Kong

Kurt Rothermel
Institute of Parallel

and Distributed Systems,
Universität Stuttgart, Germany

Abstract

In location-based services, continuous queries are
often employed to monitor the locations of mobile ob-
jects that are determined by sensing devices like GPS
receivers. Due to limited battery resources, it is impor-
tant for these objects to acquire and report location
data only if necessary. We study how these energy-
consuming operations can be reduced with a con-
trolled impact on query accuracy of continuous range
queries (CRQs). Specifically, we develop uncertainty-
aware tolerances, which are user-defined error bounds
that provide correctness guarantees, with considera-
tion of different sources of data uncertainty: sensing
uncertainty, sampling uncertainty, and communication
delay. Novel algorithms are developed to control care-
fully when an object should acquire and update a loca-
tion, while satisfying these tolerances. Extensive
simulations validate the effectiveness of our methods.

1. Introduction

Due to the rapid development of low-cost location-
sensing devices, like the Global Positioning System
(GPS), and wireless networking technologies, location-
based services have attracted tremendous research in-
terest lately [10], [12], [26]. In particular, long-standing,
continuous queries are used to monitor various activi-
ties of mobile objects for an extensive period of time.
A wide range of applications has been identified, in-
cluding intrusion detection over security-sensitive re-
gions, mobile advertisements for customers nearby,
and traffic monitoring.

In such systems, each mobile object is equipped
with a sensing device (e.g., a GPS receiver) to acquire
location data, and a wireless communication interface
(e.g., a GSM/GPRS transceiver) to report data to a lo-
cation server. The sensing and reporting operations
constitute the major fraction of energy consumed in a
mobile object [23]. Since the battery resources of many

mobile objects (like cellular phones and PDAs) are
precious, it is important to minimize the usage of these
operations, so that the lifetime can be maximized. This
issue is particularly critical for continuous queries,
which require location data to be constantly sensed and
reported to the server for further processing.

In order to reduce costs of continuous query proc-
essing, the idea of object-side processing has been util-
ized in various projects [3], [9], [17], [22]. These works
are based on the idea that a mobile object has some
processing capabilities to decide by itself whether to
report a data item to the location server. Specifically,
upon receiving a query request, the server sends some
query information to each mobile object. The object
then evaluates part of the query locally and transmits
the location to the server only if the query result is af-
fected. As an example, consider a Continuous Range
Query (CRQ), which returns the identities of mobile
objects located inside some query region with bound-
ary R. If this information is propagated to all mobile
objects, then an object only needs to send a position
update to the server if it crosses R. Since fewer items
are reported to the server, the number of messages, as
well as the energy costs incurred in reporting opera-
tions, can be reduced significantly.

Although object-side processing is a promising way
of reducing energy use, there are two open challenges.
The first is handling of data uncertainty, inherently
associated with a location item. For example, a loca-
tion value obtained by some GPS receiver is only cor-
rect within a few metres (called sensing uncertainty)
 [27]. Another source of uncertainty, known as sam-
pling uncertainty, is produced when the locations are
only sensed at discrete time instants. Then, the posi-
tions between adjacent samples are not precisely
known [21]. Moreover, communication delay causes
the location data to be received some time after sens-
ing. Data uncertainty affects the accuracy of query re-
sults. In a CRQ, for instance, an object may
temporarily leave the monitored region unnoticed,

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

since it acquires a location at discrete time instants
only. More importantly, the query result is usually up-
dated late – at some time after an object crossed R.
Thus, the query result cannot correctly reflect the real
world at all times.

The second challenge is that energy consumption
issues for sensing the location of a mobile object have
not been well studied. While most previous works fo-
cus on communication costs [1], [3], [4], [19], [20], [22],
very often the energy required for sensing at a mobile
device cannot be ignored [23]. Even in low power
mode, a common GPS receiver consumes no less than
75 mJoules for each position acquired [18]. The same
amount of energy is required by GPRS to transmit
120 bytes of data [9]. Consequently, the design of an
energy-efficient query protocol should consider the
energy consumed by position sensing, too. In Section 3
we show how this factor of energy consumption can be
reduced by carefully controlling the sensing rate. For
example, the positioning sensor may remain in low-
power mode for a longer time, if the object is located
far away from R. However, this reveals an important
trade-off between the frequency of sensing and accu-
racy of query results. A mobile object near the query
boundary has to sense its position with higher fre-
quency in order to provide better accuracy. As a result,
object-side processing of CRQ requires a significant
amount of energy to provide the best possible query
result – while absolute query correctness cannot be
guaranteed due to different sources of data uncertainty.

In this paper, we propose to overcome these two
shortcomings by relaxing the query accuracy require-
ments. This is motivated by the observation that many
location-aware applications do not require the highest
degree of query accuracy. Instead, they can relax the
correctness requirements by specifying a maximum
error bound in the query results. For example, consider
a CRQ used for distributing warning messages within a
spatial region. It is acceptable that some users receive
the notification early (before entering the queried re-
gion). In contrast, for distributing location-based ad-
vertisements to users located inside a supermarket,
some users could receive it late (after entering the
store). We introduce the notion of uncertainty-aware
tolerances for CRQ, which defines the maximal ac-
ceptable error along with the query. The allowed toler-
ances are then guaranteed to be met in consideration of
all sources of uncertainty. Furthermore, it can be util-
ized to reduce the energy consumption of mobile ob-
jects. We present efficient algorithms that satisfy the
tolerance constraints and also consider energy usage.

The basic idea of error-tolerant query processing
has recently been exploited by various researchers
 [19], [20], [4]. Based on the trade-off between the fre-
quency of reporting operations and query correctness,

they have developed intelligent algorithms to achieve
lower communication costs. However, reported sensor
values were assumed to be always correct. In contrast,
we propose a new notion of query tolerances that con-
sider different sources of data uncertainty. Moreover,
previous solutions have not considered the energy
costs of sensing new data. As we will show, there is an
important trade-off between the amount of energy
spent on either sensing or reporting operations. In our
paper this trade-off is controlled carefully in order to
reduce the overall energy consumption.

In summary, our contributions are:
• Propose uncertainty-aware tolerances semantics for

continuous range queries (CRQ);
• Show that uncertainty-aware tolerances provide

correctness guarantees under three major sources of
uncertainty: sensing uncertainty, sampling uncer-
tainty, and communication delay;

• Develop efficient algorithms for processing CRQ,
that satisfy uncertainty-aware tolerances and reduce
the total energy consumed by sensing and reporting
operations; and

• Verify the effectiveness of our approaches by ex-
tensive simulation using realistic mobility traces.

The rest of this paper is organized as follows. In

Section 2 we describe our system model and detail the
query model studied in this paper. Section 3 then ana-
lyzes a preliminary solution to disclose existing short-
comings of processing CRQ. Subsequently, we present
how to overcome these shortcomings by introducing
uncertainty-aware tolerances in Section 4. Section 5
presents our experimental results and Section 6 dis-
cusses related work. Finally, we conclude the paper in
Section 7.

2. Background

We now describe the system architecture, properties
of a mobile object and all basic assumptions. Then, we
present the underlying principle of object-side query
processing that is studied in this paper.

2.1 System Model

Our system model consists of mobile objects (MOs)
and a location manager (LM). The LM processes con-
tinuous queries on behalf of location-aware applica-
tions (LAs). We do not make any assumptions on the
internal organization of the LM. It might comprise
multiple LM nodes, to which the MOs are mapped (dy-
namically) [13]. Each MO communicates with a single
LM node over a wireless network, such as GPRS,
UMTS or WiFi meshes.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

An MO is a mobile device (e.g., cell phone, PDA)
equipped with a processor, a wireless network inter-
face and a positioning sensor to detect its geographic
position. Each MO is identified by a globally unique
identifier Oi, where i=1,…,n and n is the total number
of objects monitored by the system. To supply the LM
with current position information, an MO has to per-
form three different operations: processing, communi-
cation and position sensing. We focus on the last two
operations because they dominate energy consumption
 [8], [23].

(1) Communication: An MO is responsible to send
update messages to the LM according to some query
protocol. As all update messages will be similar in
size, we assume this transmission requires a constant
amount of energy WU per message. To cope with un-
bounded communication delays, we assume a statisti-
cal upper bound of cmax for the end-to-end delay
between an MO and the LM. This can be determined
empirically based on the networking environment and
holds with high probability [19]. Occasionally, mes-
sages may be delayed by more than cmax in practise.
This will result in temporary violations of precision
guarantees – an unavoidable effect in any distributed
environment with unbounded delays.

Note that we aim at satisfying the tolerances for
data stored on the LM in the following. If an LA runs
on a different node, the transfer of query results causes
an extra delay, which depends on the characteristics of
the communication channel between LA and LM. In
that case, only cmax must be adapted accordingly, to en-
sure that the tolerance constraints still hold when the
LA receives the data. The algorithms proposed in this
paper are not affected by that.

(2) Sensing: We adopt a generic model derived from
GPS technologies [16], which is applicable to a broad
class of positioning sensors. Specifically, position
sensing is not performed continuously to conserve pre-
cious energy. Instead, the positioning sensor deter-
mines its current location by performing a position fix.
Each position fix is explicitly invoked by the processor
and requires some amount of time Tsense before the po-
sition is obtained. For example, GPS needs about s 5.0
for pseudo-range measurements of satellite signals and
computing a valid position [16]. Hence, the maximum
sampling rate of a positioning sensor is 1/Tsense. Each
position fix also requires a constant amount of energy
WS. In between two fixes the positioning sensor can
operate in a low-power sleep mode to conserve energy.

Note that we do not consider any background en-
ergy that is not influenced by these two operations. Its
consumption is independent of the reporting protocol.
For instance, a GPS receiver might still wake up peri-
odically to keep a lock on the satellite signals.

The real position of an MO at any time t is denoted
loc(Oi). However, sensing uncertainty generally causes
the location data acquired by a positioning sensor to
deviate from the real position. We assume that there is
a maximum deviation Sacc from loc(t) [27]. Further-
more, we assume that each MO has knowledge about
its maximal velocity, denoted by vmax. This is a com-
mon assumption for tracking mobile objects and de-
termining reasonable values has been discussed
elsewhere, e.g., [21].

2.2 Query Model

In this paper we focus on Continuous Range Que-
ries (CRQ). Given a closed region with boundary R,
this query returns the identities of all mobile objects
located inside R. In contrast to one-time queries, a
CRQ resides in the system and is continuously evalu-
ated for an extensive period of time. This type of query
can be used to monitor objects moving into and out of
a spatial region (e.g., if any child leaves a playground),
which is an important building block of many location-
aware systems [3], [9], [22].

Location-aware applications can register a CRQ at
the LM. Then, the query remains active until it dereg-
istered again. Since the locations of MOs change fre-
quently, the result of an active query has to be
refreshed timely. To do this, the LM sends a result
message to the LA after registration and whenever the
result changes. The time to refresh a result depends on
the objects’ movements. Specifically, the result of a
CRQ must be updated whenever an MO enters or
leaves the query region. That is, whenever an object
crosses R, the query boundary.

For efficient query processing, we employ the con-
cept of object-side processing [3], [9], [17], [22]. That is,
the LM collaborates with the MOs to optimize query
processing. It conveys query information to them over
a wireless network, where it is then utilized to evaluate
part of the query locally over each location item ac-
quired. Specifically, the details of a query are first
propagated to all relevant MOs in an init message. All
MOs located inside the queried region will then re-
spond with an update message. Subsequently, each
MO monitors its own location and sends a new update
whenever it crosses the query boundary R. In the up-
date message, it reports its current relation to R (inside
or outside). For long-running continuous queries this
approach minimizes the energy spent on communica-
tion because the costs for receiving the query at the
beginning are easily amortized by saving update mes-
sages throughout the query’s lifetime.
In the following we focus on the local query evaluation
performed by each MO (i.e., the object-side processing
of CRQ). In particular, we investigate in detail when

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

an MO must perform a position fix or generate an up-
date message in order to meet the query requirements.
Minimizing these operations is essential to reduce en-
ergy consumption.

3. Problem Analysis

In this section, we first discuss a straightforward so-
lution to reduce the energy spent on sensing for object-
side processing of CRQ. This preliminary approach
will help to identify major shortcomings and motivate
our solutions.

Whenever a CRQ is active, all MOs must locally
monitor their position, to detect crossing the query
boundary in time. But due to high energy consumption,
position sensing is usually not performed continuously.
Instead, an MO can use a technique called selective
sensing to conserve more energy: After each position
fix the MO computes the time it can suspend sensing
without affecting the query result. This is the minimum
amount of time required to reach the query boundary
based on the MO’s maximal velocity. If the update
threshold is not yet reached after that time, the next fix
can be scheduled based on the remaining distance to
the query boundary.

The resulting algorithm for object-side processing is
depicted in Figure 1. For a query’s lifetime, the follow-
ing steps are repeatedly executed: First, a new position
is obtained from the positioning sensor. Subsequently,
the function mustUpdate checks if the object crossed the
query boundary since the last position fix. For that pur-
pose, the MO’s previous state is recorded using a boo-
lean variable isInside (line 1). Whenever this value
differs from the object’s new state (line 16) the query
result must be updated. Thus, a new update message is
sent to the LM. Finally, the minimum amount of time

to reach the query boundary is computed based on the
object’s maximum velocity (line 17 and 18). Since the
MO cannot affect the query result during this period of
time the next position fix can be deferred accordingly
(line 14). Waiting any longer might, however, violate
the query condition of CRQ, as the future velocity is
not yet known.

As a result, the algorithm in Figure 1 generates a
new update message as soon as crossing the query
boundary can be discovered. While doing so, it defers
each position fix as long as possible without compro-
mising timeliness of detection. Although simple, this
algorithm exhibits a number of shortcomings. First, we
observe that the algorithm cannot meet the defined
query semantics precisely. Ideally, the LM should al-
ways update the query result exactly at the time an MO
crosses the query boundary. However, this point in
time might be missed due to the limitations of current
sensor technologies and communication delay. In fact,
we can quantify three different sources of uncertainty
for location data:

(1) Sensing Uncertainty: Since the MO’s future
movement is not known in advance, the best time to
send an update is when the sensed position is located
just beyond the query boundary. Taking limited sens-
ing accuracy into account, however, the acquired posi-
tion can deviate from the MO’s real position by a
maximal distance of Sacc. That is, at the time an update
is generated, the MO could still be approaching the
query boundary. If it changed its direction of move-
ment right after the position fix, the algorithm would
generate an update even though the MO has never ac-
tually crossed the boundary. In the other extreme case,
the MO might be located at a distance of Sacc beyond
the boundary at that time. As a consequence, the algo-
rithm then generates an update late – at some time after
the MO affected the query result in reality. The effect
of sensing uncertainty is also illustrated in Figure 2. At
the time an update is generated, the MO might actually
be located anywhere inside the shaded region around
its assumed position p1.

(2) Sampling Uncertainty: Additionally, a new posi-
tion is not available at all times. This is because each
position fix requires some time of Tsense. That is, after
performing a position fix, the next position will not be
available until after Tsense. Consider a sensed position
that is very close to the query boundary, but does not
trigger an update yet. Although the MO might overstep
the query boundary right after, it can then travel a dis-
tance of Tsense ⋅ vmax before the next position fix com-
pletes (depicted by position p2 in Figure 2). In the
worst case, sensing uncertainty adds into the same di-
rection and the algorithm in Figure 1 thus generates an
update message at even greater distance to R.

Main:
(1) isInside := false;
(2)
(3) while (query is active) do {
(4) /* acquire new position */
(5) newPos := readSensor();
(6)
(7) /* check update */
(8) if (mustUpdate()) {
(9) isInside := NOT isInside;
(10) sendUpdate(Oi, isInside);
(11) }
(12) /* low-power mode */
(13) T_wait := T_max() – T_sense;
(14) if (T_wait > 0) { sleep(T_wait) };
(15) }

mustUpdate:
(16) return ((newPos ∈ R) != isInside);

T_max:
(17) d := dist(R, newPos);
(18) return d / v_max;

Figure 1. Object-side processing
of CRQ without tolerance.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

(3) Communication Delay in the network furthermore
causes update messages to arrive at the LM some time
after sensing. In the worst case, the MO moves away
from the reported position at maximal velocity while
the message is being transmitted. Recall that we as-
sume a statistical upper bound of cmax for the end-to-
end delay. That is, at the time the LM receives the in-
formation, the MO's real position is only known within
the following distance from the acquired position (see
Figure 2):

 errpos := Sacc+ cmax ⋅ vmax (1)

By considering all three sources of uncertainty, the
MO can have a maximum distance errnext from R at the
time the query result is updated at the LM (see
Figure 2), where

 errnext := Sacc+(Tsense+cmax)⋅ vmax (2)

As a consequence, the server-side result of a non-
tolerant CRQ is always outdated. At any time, it suf-
fers an error of ± errnext because the updates of both
objects entering and leaving the query region arrive
late. Note that this is not only a shortcoming of the
presented algorithm but a technical limitation caused
by limited capabilities of sensor systems and commu-
nication delay.

Next, let us examine the energy spent on position
sensing. The algorithm in Figure 1 has been designed
for minimizing the number of position fixes, without
compromising query accuracy. In between two fixes,
the positioning sensor remains in low-power sleep
mode until the MO might reach R (line 14). A larger
sleeping period would affect the provided accuracy,
because the MO might not detect that it has crossed the
query boundary on time. Consequently, the maximal
error in the query result would further increase.

Figure 1 also reveals that the frequency of position
fixes increases whenever the MO approaches the query
boundary. This is because the sleeping time between
two position fixes depends on the remaining distance
to R (see line 17). The smaller this distance, the less
time the sensor can remain in low-power mode. Once

the object moves close to R, position fixes have to be
performed at the highest frequency in order to generate
the next update message in time. Furthermore, a short
sleeping time does not allow the MO to cover a large
distance before the next position fix is performed.
Thus, the MO is still located relatively close to the
boundary after that fix. As a consequence, the power
consumption may increase substantially while the MO
approaches the query boundary.

This reveals a critical problem of object-side query
processing: although the defined semantics cannot be
met completely, an MO has to invest a lot of energy in
performing frequent position sensing in order to pro-
vide the best possible accuracy. In the next section we
discuss how to overcome these two shortcomings by
relaxing the query semantics.

4. Distance-tolerant CRQ

The major problem of evaluating a non-tolerant
CRQ is that the MO cannot deduce precisely when it
reaches the query boundary. As discussed, this requires
a lot of energy for position sensing, and yet uncertainty
is still introduced. Let us study how these shortcom-
ings can be overcome by introducing uncertainty-
aware tolerances.

4.1 Definition and Semantics

Our main idea is to define the maximum allowed er-
ror related to updates along with each query. This al-
lows applications to specify their requirements more
precisely. In exchange the allowed tolerances are guar-
anteed to be met in consideration of all sources of un-
certainty, and valuable energy of MOs can also be
conserved. To achieve these goals, the boundary of R
is “blurred”. That is, we introduce two distinct bounda-
ries R1 and R2 such that R is sandwiched between them.
The query result can then be updated while an MO
crosses the region between R1 and R2, which we call
the tolerance region. Let us first look at the following
definition of distance-tolerant CRQ:
Definition 1: Distance-tolerant CRQ (d-CRQ)
Given two closed regions with boundaries R1, R2
(R1∈ R2, dist(R1,R2) > 2⋅ errnext), a d-CRQ returns a set
of ids that contains all MOs located in R1 but no MO
located outside R2. That is, it returns the set S ∪ T, with
S := {Oi | loc(Oi)∈ R1} and T ⊆ {Oi | loc(Oi)∈ R2}
(1 ≤ i ≤ n).

In this definition, the query result must contain all
objects that are located inside of R1 (the set S). How-
ever, objects located inside the tolerance region might
also be contained in the result set. These objects be-
long to the set T, which is any subset of mobile objects
located inside R2 – including those that are located out-

Figure 2. Error in sending an update with CRQ.

Tsense⋅ vmax

p1

Sacc

R

p2

Sacc cmax⋅ vmax
errpos
errnext

Send update msg.

Tsense⋅ vmax

p1

Sacc

R

p2

Sacc cmax⋅ vmax
errpos
errnext

Send update msg.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

side R1. However, no MO located outside R2 is con-
tained in the query result. This is illustrated in
Figure 3a, where the tolerance region is lightly shaded.
Black points depict MOs included in the result set, and
the MOs not included are represented as white points.

Furthermore, note that Definition 1 is independent
of the original query region R. An application can
choose how to derive R1 and R2 thereof, depending on
its requirements. For example, it can query all MOs
located inside R1 while accepting some false positives.
The set of MOs falsely included in the result set is then
bounded to MOs still located inside the larger bound-
ary R2. Alternatively, all MOs located inside R2 can be
queried if some false negatives are acceptable. Then,
the smaller boundary R1 in turn limits the set of objects
missing in the query result. Balancing between these
two extremes is also possible.

More importantly, Definition 1 offers well-defined
bounds that can be detected in practice. The tolerance
constraints are guaranteed with respect to the objects’
real positions at the time a result update is received.
That is, the query result contains the specified objects
at all times – in spite of sampling uncertainty, sensing
uncertainty and communication delay. To guarantee
this, an update must be received while the MO is lo-
cated inside the tolerance region. Consider an object
initially located outside the larger region R2 (Figure 3).
The object must send an update after entering R2, so
that the update is received before it enters R1. This en-
sures that the MO has already been included in the re-
sult set by the time it enters R1. After sending an
update message, the MO is free to move anywhere in-
side R2 without violating the query constraint. How-
ever, it must ensure that another update is received by
the LM before it leaves R2 again. At that time it is in
line with the query definition to remove the object
from the result set, which must be accomplished before
it actually leaves R2.

To ensure an update can always be received in time,
with consideration of uncertainty, Definition 1 requires
the shortest distance between both boundaries

dist(R1,R2) to be no less than 2⋅ errnext (Equation 2). Let
us understand this requirement by examining the ob-
ject-side processing of d-CRQ.

4.2 Object-side processing of d-CRQ

For d-CRQ, the MO initially receives both query
boundaries R1 and R2 within the query init message. In
the following, we describe how to generate position
fixes and updates that conform to the tolerance con-
straints. Let us start with the following definition:

Definition 2: Update region is the region where an
update message can be generated without violating the
tolerance constraints.

As shown in Figure 3b the update region is located
inside the tolerance region with a distance of errpos
(Equation 1) to each query boundary. Recall that errpos
is the maximal error between a sensed position and the
MO’s position at the time the update is received, when
taking sensing uncertainty and communication delay
into account. Thus, only updates generated at a larger
distance to both boundaries are definitely received
within the defined tolerance bounds.

To generate update messages accordingly, the main
algorithm described in the previous section (Figure 1)
is extended as shown in Figure 41. Consider an MO
located outside R2. As discussed before, the object
must make sure that it sends an update before it enters
R1. Accordingly, the function T_max computes the
shortest time to reach R1 from the current position of
the object (line 21). This value must be reduced by
errpos in order to determine the maximum distance be-
fore an update must be sent. A later update could not
be guaranteed to arrive before the object enters R1 in
reality. Subsequently, the shortest time to cross that

1 Let signedDist(R,p) be a function that returns the shortest dis-

tance to enter the region defined by R from the position p. If p is
already located inside R the shortest distance to its boundary will
be returned with a negative leading sign instead.

tolerance region

R1

R1

R2
R2

errposerrpos

>2⋅ errnext

up
da

te
 re

gi
on

tolerance region

R1

R1

R2
R2

errposerrpos

>2⋅ errnext

up
da

te
 re

gi
on

(a) (b)

Figure 3. Definition of distance-tolerant CRQ with (a) tolerance region and (b) update region.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

distance is computed based on the object’s maximal
velocity (line 23). This results in the longest time the
next position fix can be deferred without violating the
tolerance constraints. However, an update must be sent
immediately if the subsequent position fix is not
known to complete within the remaining time
(Tmax < Tsense, line 2). On that account, the defined tol-
erance of the query allows updating earlier – at any
time the object is located inside the update region.

To assure this constraint, the function T_min calcu-
lates the time until an update might be sent at the earli-
est. Taking sensing uncertainty into account, the query
definition would actually allow sending an update as
soon as the sensed position is located inside of R2 with
a distance larger than Sacc. However, we also have to
consider the object’s situation after sending an update.
Then, it has to monitor when it leaves the region R2
again. Once the object is considered part of the query
result, it must ensure another update message is re-
ceived before it leaves R2 again. Thus, we must ensure
that the MO has sufficient time to execute at least one
more position fix before this constraint is violated.
Consequently, the first update message must be de-
ferred until the distance to R2 exceeds errnext (line 7).
This observation also requires the minimum distance
between both regions to be guaranteed. If an object
was located at a distance any smaller than errnext to

both regions at the same time, it would be unable to
fulfil the query semantics. For that reason Definition 1
required dist(R1,R2) to exceed 2⋅ errnext at first hand.

Finally, if none of the conditions was fulfilled yet,
the object must be located somewhere in the update
region with a distance larger that errnext to both query
boundaries (line 12). In this case no update message
has to be sent yet, but it is already allowed. The func-
tion updatePolicy (line 13) then decides whether the
MO should send an update immediately or wait for the
next position fix to complete. Regarding the energy
consumption, this is an important part of the algorithm.
Here, the energy costs of sensing and reporting must
be balanced to reduce the total amount of energy con-
sumed. We discuss suitable strategies to balance be-
tween these two factors of energy consumption in the
next subsection.

4.3 Update Policy

The algorithm in Figure 4 always defers a position
fix such that the MO could cross the update region
completely before acquiring the next position. How-
ever, the MO often does not actually move at maxi-
mum velocity. Then, it is located somewhere inside the
update region at the time the next position fix is per-
formed. This situation offers an important possibility
to further optimize energy use. The larger the distance
tolerance defined by the query, the more room for op-
timization can be utilized by the update policy.

An effective update policy must balance both fac-
tors driving the energy consumption. On the one hand,
a high frequency of position fixes should be avoided.
Accordingly, an update should be sent whenever this
extends the forthcoming sleeping time of the sensor.
On the other hand, sending an update message con-
sumes a significant amount of energy as well. To re-
duce this factor, a message should only be sent if
absolutely required for query correctness. For example,
consider an object that changes its direction of move-
ment at some time after entering the update region and
moves back to where it came from. Then, no update
message is required at all. In addition, deferring an up-
date also causes fewer changes to the query result. This
can avoid an oscillating result set when an MO moves
back and forth around the query boundary and applica-
tions will be relieved from rapid result updates caused
by such a movement.

Often, the right time to generate an update depends
on the future movement – which is usually not known
in advance. For that reason, we propose two alternative
policies to balance between sensing and reporting op-
erations. Their performance is then evaluated and com-
pared against each other in Section 5.

mustUpdate:
(1) /* check upper bound */
(2) if (T_max() < T_sense) {
(3) return true;
(4) } // else:
(5)
(6) /* check lower bound */
(7) if (T_min() > 0) {
(8) // must not update yet
(9) return false;
(10) } // else:
(11)
(12) /* between the bounds */
(13) return updatePolicy();
(14) }

T_max:
(15) /* shortest time to reach upper bound */
(16) if (isInside){
(17) // remaining distance to leave R2
(18) d := - signedDist(R2, newPos);
(19) } else {
(20) // remaining distance to enter R1
(21) d := signedDist(R1, newPos);
(22) }
(23) return (d – err_pos) / v_max;

T_min:
(24) /* shortest time to reach lower bound */
(25) if (isInside){
(26) // remaining distance to leave R1
(27) d := - signedDist(R1, newPos);
(28) } else {
(29) // remaining distance to enter R2
(30) d := signedDist(R2, newPos)
(31) }
(32) return (d + err_next) / v_max;

Figure 4. Object-side processing
of CRQ with distance-tolerance.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

(1) Fraction-Delay FD(f): This policy decides to send
an update message only when a certain fraction f of the
update region is crossed (f ∈ [0,1]). This condition de-
pends on the boundary from which the MO entered the
update region. If the distance to this boundary exceeds
the fraction f of the distance between both boundaries,
an update message is generated. The reason is that no
update is required if the MO leaves the update region
at the same boundary, it came from. To evaluate this
condition, we can reuse the computed time spans to
reach both bounds (Tmin, Tmax). Recall that Tmin be-
comes negative inside of the update region while Tmax
is still positive. Thus, an update is sent, iff:

 – Tmin > f ⋅ (Tmax – Tmin) (3)

With a larger update fraction, an update message is
generated at a later point in time. In extreme (f = 1) an
update is never generated in updatePolicy. Instead, it is
only triggered by mustUpdate (Figure 4) when required
to guarantee the tolerance constraints. Thus, less up-
date messages are generated on average. However, a
close distance to the query boundary in turn requires
more position fixes.

(2) Predicted-Direction PD(f, a): The FD policy, al-
though simple to implement, may not be suitable for all
situations. As discussed, the best time to send an up-
date depends on the future movement of the object. For
that reason, the next policy extends FD by predicting
the future direction of movement based on past posi-
tion fixes in order to make a better decision. Specifi-
cally, it reports the location only if a certain fraction f
of the update region is crossed and the movement is
furthermore predicted to require an update message in
the near future. This is determined by first computing
the direction of reaching the respective boundary in the
shortest time (outmr). An object is considered to ap-
proach this boundary only if its predicted movement
direction (predmr) deviates from outmr by an angle
within ± a (where 0° ≤ a ≤ 180°).

Given the MO’s current location loc(Oi), outm
r

can
be determined as follows: let Xi denote the closest
point to loc(Oi), which is located on the upcoming
query boundary – R2 (R1) if the object is currently (not)
element of the result set. Then, outm

r is the vector
(Xi - loc(Oi)). Likewise, we compute the future direc-
tion of movement based on preceding (Pi) position
fixes: predmr then corresponds to the vector
(loc(Oi) - Pi). However, more sophisticated prediction
algorithms [5], [14] could be used in practice as well.

To summarize, the introduction of tolerances offers
three advantages for the processing of continuous
range queries. First, it guarantees query results that are
always correct within well-defined, application-
specific bounds. As shown in Section 3, such guaran-

tees could not be provided for non-tolerant range que-
ries. Second, the energy spent on position sensing is
reduced because the average waiting time between po-
sition fixes is increased and short sleeping times can be
avoided. Finally, the amount of sensing and reporting
operations can be balanced inside the update region,
which can further reduce energy use. In order to iden-
tify the most effective balance, we evaluate the per-
formance of the proposed update policies next.

5. Evaluation

In order to evaluate the performance of our ap-
proach, we have conducted various experiments based
on a realistic mobility model. We will explain the ex-
perimental setup, followed by the detailed results.

5.1 Simulation Setup

We used the CanuMobiSim simulator [25] to gener-
ate movement traces of pedestrians following trip se-
quences through the inner city of Stuttgart. This
comprises a simulation area of 2.0 x 2.0 km². Move-
ments through the streets follow a smooth motion pat-
tern [2]. This model uses stochastic principles to
control the change of speed and direction in order to
obtain a realistic movement behaviour. The target
speed is chosen randomly from 0-3 m/s every 30 sec-
onds. The sensing uncertainty is obtained from a statis-
tical error model of GPS receivers [24] based on
Gauss-Markow processes with an imprecision ≤ 6.3 m
in 95 %. For each experiment we used 100 different
movement traces along with five different measure-
ment errors. Each result thus depicts the average of
500 runs. A single query is evaluated at a time with a
lifetime of 3 hrs. For each object, the number of posi-
tion fixes and updates is accumulated over the whole
lifetime of a query. Then, we use these values to derive
the overall energy consumption (of one object).

The algorithms assume a maximal sensing uncer-
tainty of Sacc = 10 m, a maximal communication delay
of cmax = 1 s and maximal velocity of vmax = 5 m/s,
which reflects a pessimistic bound on actual speeds.
Concerning energy costs, we assume that sending an
update message consumes WU = 150 mJoules. Accord-
ing to [9], this amount suffices to transmit about 240
bytes over GSM/GPRS. Each position fix is assumed
to cost WS = 75 mJoules and to take Tsense = 0.5 s. These
are typical values of a low-power GPS receiver [18].

5.2 Energy consumption

To evaluate the energy consumption of d-CRQ for
different sizes of the tolerance region, we varied both
query boundaries (i.e., R1 and R2). Assume a rectangu-

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

lar region R with a size of 600 x 600 m² placed in the
middle of the simulation area. Then, the inner region
R1 is obtained by shrinking R in each direction by dr.
Enlarging R in each direction by dr likewise establishes
the outer region R2. The resulting width of the toler-
ance area is 2⋅dr. The minimal size to guarantee correct
query results is 2⋅ errnext = 35m in this setup.

Figure 5 presents the evaluation of FD(f) policy for
different values of dr. It depicts the aggregated number
of (a) position fixes, (b) updates and (c) the resulting
energy consumption of each object in relation to the
update fraction f. Most of all, we can observe a very
different performance for update fractions smaller and
larger than 0.5. If f is reduced below 0.5, the number of
both, position fixes and updates increases. This can be
explained as follows: First, recall that lower update
fractions cause updates to be sent at smaller distances
to the boundary the MO crossed already. Now, con-
sider an object is moving into the outer region R2 and
sends an update message before its distance to R2 ex-
ceeds the remaining distance to the upcoming bound-
ary R1 (i.e., f < 0.5). After the update is performed, the
waiting time Twait has to be computed based on R2 in-
stead of R1. As the object is still located closer to R2
than to R1, this reduces the waiting time till the next
position fix. In consequence, the total number of posi-
tion fixes increases with smaller update fractions. Ad-
ditionally, the object also has to re-evaluate the update
decision after that position fix based on R2. The
smaller the preceding waiting time, the higher is the
chance that the object is still located close to R2 at that
time. Thus, the update policy will trigger another up-
date message immediately. The bottom line is that a
low update fraction generates a series of frequent up-
date messages (one after each position fix) while an
object traverses the update region. This causes the
number of updates to increase rapidly if f is reduced
below 0.5. Notice that for such low values of f even
more messages are sent for higher values of dr because
an MO must cross a larger distance before this series
of rapid updates ends.

For f > 0.5, the number of position fixes also in-
creases again (Figure 5a). This is due to shorter wait-
ing times at locations close to the upcoming boundary.
If an update is deferred beyond f = 0.5, this boundary
becomes closer than the boundary that was crossed al-
ready. Yet, this can sometimes prevent an update mes-
sage from being sent, if the object changes its direction
of movement before reaching the respective boundary.
For that reason, the number of update messages simul-
taneously drops slightly (Figure 5b).

As a result, we can see from Figure 5c that FD(0.5)
permanently performs best for all depicted values of dr.
For smaller update fractions, too many updates are
generated. For larger update fractions the increase in

position fixes requires too much energy and dominates
the savings in update messages.

Next, we added a movement prediction to FD(0.5)
to further delay updates (as described in Section 4.3).
Instead of using a large update fraction, an MO should
not delay an update if it has a high chance of entering
R1 soon. The resulting performance of PD(0.5, a) with
varying angles of tolerated deviation a is depicted in
Figure 6. Smaller values of a successfully reduce the
number of updates, as shown in Figure 6b. However,
the simultaneous increase in position fixes (Figure 6a)
is still too high and does not outweigh the reduction of
update messages. Thus, the lowest energy is consumed

 150

 250

 350

N
o.

 p
os

iti
on

 fi
xe

s

 0

 25

 50

 75

 100

N
o.

 p
os

iti
on

 u
pd

at
es

 0

 10

 20

 30

 40

 0 0.25 0.5 0.75 1

En
er

gy
 c

on
su

m
pt

io
n

[J
ou

le
]

update fraction f

6

 8

10

12

dr = 150
dr = 200

dr = 250dr = 50
dr = 100

Figure 5. Evaluation of d-CRQ
with FD(f) policy.

(a)

(b)

(c)

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

with the largest angle a = 90° (Figure 6c), which in fact
resembles the FD(0.5) policy. However, if sending an
update is more costly – either in terms of energy or be-
cause a small number of update messages is compul-
sory – the direction prediction PD(0.5, a) with a small
value of a offers an interesting alternative. It achieves
to minimize the required communication while con-
suming less energy than a high update fraction.

After all, FD(0.5) is found to be the best policy for
minimizing the amount of energy consumed for
d-CRQ. Furthermore, Figure 5c and Figure 6c show
that tolerances do help in reducing energy consump-
tion. Increasing the update region (in terms of dr) sig-

nificantly reduces the amount of energy consumed. For
comparison, we also evaluated the preliminary algo-
rithm from Section 3, using the initial query region R
(without tolerances) and obtained an energy consump-
tion of about 50.5 Joules. In contrast, FD(0.5) with a
minimal tolerance of dr = 17.5 m guarantees correct
query results and requires only 42.4 Joule. This consti-
tutes a saving of 16%. With dr = 50 m another 37% of
energy is saved. In fact, we can even save up to 80% in
total by further increasing the tolerance to dr = 250 m.
In short, this evaluation approves that increasing the
distance tolerances can reduce the energy consumption
significantly.

6. Related Work

The approach discussed in this paper can be classi-
fied as a data stream filtering technique. The objective
of filtering is to facilitate the efficient evaluation of
continuous queries over constantly-changing data
streams (e.g., locations of mobile objects, tempera-
ture). Specifically, each stream source is installed with
some constraints (called filter conditions) derived from
query requirements. A data item generated at the
source is sent to the central server only if its value sat-
isfies the conditions defined in these filters. In our ap-
proach, the MO decides when to report an update, and
so it acts as a "filter". It was shown in [1], [3], [22] that
significant communication effort can be saved by as-
signing filter conditions appropriately.

To improve the performance of filters, the concept
of tolerance has been proposed [20]. This assumes that
users can tolerate some degree of imprecision (called
tolerance) in query results. This tolerance is incorpo-
rated into filter conditions. A well-studied tolerance is
the value-based tolerance, which is basically a numeri-
cal value for specifying the maximum error allowed.
For example, filters are developed in [19] to answer
tolerant average and minimum queries. In [1], filters
are designed for top-k queries. In [11] a Kalman Filter
is installed at every stream. The extension of filter
methods in a sensor network is studied in [7]. Filters
for non-value tolerances are developed in [4].

In these works, items generated by streams are as-
sumed to be always correct. However, this assumption
is not always valid. As we have explained in Section 3,
the data acquired by a sensing device is contaminated
with different kinds of errors. If these uncertainties are
not considered, stream filters can miss important
events, and introduce incorrectness into query results.
In fact, the tolerance definitions described in the previ-
ous work are not "uncertainty-aware". Our work, on
the other hand, specifies necessary conditions in toler-
ance definitions to ensure that they can be enforced
with consideration of data uncertainty.

dr = 150
dr = 200

dr = 250dr = 50
dr = 100

 150

 250

 350

N
o.

 p
os

iti
on

 fi
xe

s

 6

 8

 10

 12

N
o.

 p
os

iti
on

 u
pd

at
es

 0

 10

 20

 30

 40

 0 30 60 90

En
er

gy
 c

on
su

m
pt

io
n

[J
ou

le
]

tolerated angle a
 90

(a)

(b)

(c)

Figure 6. Evaluation of d-CRQ
with PD(0.5, a) policy.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

Moreover, to the best of our knowledge, none of
these stream filters considers the impact of sensing.
They assume that communication is the only relevant
factor of energy consumption and thus focus on mini-
mizing the number of update messages. However, the
energy costs of acquiring new sensor data can also
have a significant impact on energy use – at least for
the prominent sensing technology GPS. Our results in
Section 5 confirm that there is an important trade-off
between the amount of sensing and reporting opera-
tions required. Deferring an update as long as possible
can increase the sensing costs significantly. In our pa-
per, we carefully control this trade-off in order to re-
duce the overall energy consumption.

Recently, the issues of energy consumed for sensing
have been considered in sensor networks. A good
overview of approaches is given in [23]. Commonly,
these solutions exploit correlations between values of
multiple sensors – either on the same node [8], [15], or
on multiple nodes in spatial proximity [6]. The con-
sumed energy is reduced by acquiring data from a sub-
set of sensors only and predicting the expected value
of others with some level of confidence. This differs
from the problem considered in this paper.

7. Conclusion

We studied how the energy of MOs can be saved
when their locations are monitored by continuous
range queries. We developed object-side processing
algorithms that consider both energy use and the de-
gree of correctness (or tolerance) in query results.
These tolerance definitions are "uncertainty-aware",
which consider various sources of data uncertainty.
Our algorithms control the sensing and reporting op-
erations carefully so that these tolerance definitions are
satisfied. Moreover, our experiments show that the al-
gorithms developed save energy significantly. In the
future, we will extend this technique to other continu-
ous queries (e.g., nearest-neighbour queries). We will
also extend our algorithms to support concurrent exe-
cution of multiple queries and consider how other
kinds of tolerances can improve energy savings.

Acknowledgments

The work described in this paper was partially sup-
ported by the German Research Foundation (DFG)
within the Collaborative Research Center (SFB) 627,
by the HKSAR Research Grants Council (RGC)
CERG grant (PolyU 5138/06E), and by the Ger-
many/Hong Kong Joint Research Scheme (DAAD PPP
D/06/00383; G_HK013/06). We would also like to
thank the anonymous reviewers for their insightful
comments and suggestions.

References

[1] B. Babcock and C. Olston: "Distributed Top-K
Monitoring". In: Proc. ACM Int’l Conf. Mgmt. of Data
(SIGMOD'03), San Diego, USA, June 2003.

[2] C. Bettstetter: "Smooth is Better than Sharp: A Random
Mobility Model for Simulation of Wireless Networks".
In: Proc. 4th Int’l Work. Modeling, Analysis, and
Simulation of Wireless and Mobile Syst. (MSWiM'01),
Rome, Italy, July 2001.

[3] Y. Cai, K. Hua, G. Cao, and T. Xu: "Real-Time
Processing of Range-Monitoring Queries in Hetero-
geneous Mobile Databases". In: IEEE Trans. Mobile
Comp. 5(7), July 2006.

[4] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu:
"Adaptive Stream Filters for Entity-based Queries with
Non-Value Tolerance". In: Proc. 31st Int’l Conf. Very
Large Data Bases (VLDB'05), Trondheim, Norway,
Sep. 2005.

[5] A. Civilis, C. Jensen, and S. Pakalnis: "Techniques for
Efficient Road-Network-Based Tracking of Moving
Objects". In: IEEE Trans. Know. Data Eng. 17(5),
May 2005.

[6] Y. Kotidis: "Snapshot Queries: Towards Data-Centric
Sensor Networks". In: Proc. 21st Int’l Conf. Data
Engineering (ICDE'05), Apr. 2005.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos:
"Processing Approximate Aggregate Queries in
Wireless Sensor Networks". In: Inf. Syst. Jour. 31(8),
Dec. 2006.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong: "Model-driven data acquisition in sensor
networks". In: Proc. 30th Int’l Conf. Very Large Data
Bases (VLDB'04), Toronto, Canada, Sep. 2004.

[9] B. Gedik and L. Liu: "MobiEyes: A Distributed
Location Monitoring Service Using Moving Location
Queries". In: IEEE Trans. Mobile Comp. 5(10),
Oct. 2006.

[10] M. Gruteser and D. Grunwald: "Anonymous Usage of
Location-Based Services through Spatial and Temporal
Cloaking". In: Proc. 1st Int’l Conf. Mobile Systems,
Applications, and Services (MobiSys'03), San
Francisco, USA, May 2003.

[11] A. Jain, E. Chang, and Y. Wang: "Adaptive stream
resource management using Kalman Filters". In: Proc.
ACM Int’l Conf. Mgmt. Data (SIGMOD'04), Paris,
France, June 2004.

[12] C. Jensen, A. Friis-Christensen, T. Pedersen, D. Pfoser,
S. Saltenis, and N. Tryfona: “Location-based services –
A database perspective”. In: Proc. 8th Scand. Conf.
Geo. Inf. Science (ScanGIS'01), Ås, Norway, 2001.

[13] A. Leonhardi and K. Rothermel: "Architecture of a
Large-scale Location Service". In: Proc. 22nd Int’l
Conf. Distr. Comp. Syst. (ICDCS'02), Vienna, Austria,
July 2002.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

[14] A. Leonhardi, C. Nicu, and K. Rothermel: "A Map-
based Dead-reckoning Protocol for Updating Location
Information". In: Proc. Int’l Parallel and Distr. Pro-
cessing Symp. (IPDPS'02), Ft. Lauderdale, USA, 2002.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
"The design of an acquisitional query processor for
sensor networks". In: Proc. ACM Int’l Conf. Mgmt.
Data (SIGMOD'03), San Diego, USA, June 2003.

[16] P. Misra and P. Enge: "Global Positioning System:
Signals, Measurements and Performance", 2nd Ed.,
Ganga-Jumuna Press, 2006.

[17] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao:
"A Threshold-Based Algorithm for Continuous
Monitoring of k Nearest Neighbors". In: IEEE Trans.
Know. Data Eng. 17(11), Nov. 2005.

[18] Navman: Jupiter 30 Data sheet, http://www.nav-
man.com/Documents/OEM_docs/Jupiter 30/LA000576-
C_Jupiter30_DataSheet.pdf, May 2007.

[19] C. Olston, J. Jiang, and J. Widom: "Adaptive Filters for
Continuous Queries over Distributed Data Streams".
In: Proc. ACM Int’l Conf. Mgmt. Data (SIGMOD'03),
San Diego, USA, June 2003.

[20] C. Olston and J. Widom: "Efficient Monitoring and
Querying of Distributed, Dynamic Data via
Approximate Replication". In: IEEE Data Eng. Bull.
28(1), Mar. 2005.

[21] D. Pfoser and C. Jensen: "Capturing the Uncertainty of
Moving-Object Representations". In: Proc. 6th Int’l
Symp. Spatial Databases (SSD'99), Hong Kong, 1999.

[22] S.Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and
S. Hambrusch: "Query Indexing and Velocity Con-
strained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects". In: IEEE Trans. Comp.
51(10), Oct. 2002.

[23] V. Raghunathan, S. Ganeriwal, and M. Srivastava:
"Emerging techniques for long lived wireless sensor
networks". In: IEEE Comm. Mag. 44(4), Apr. 2006.

[24] J. Rankin: "GPS and Differential GPS: An Error Model
for Sensor Simulation". In: IEEE Position Location and
Navigation Symp. (PLANS'94), Las Vegas, USA,
Apr. 1994.

[25] I. Stepanov, P. Marron, and K. Rothermel: "Mobility
Modeling of Outdoor Scenarios for MANETs". In: Proc.
38th An. Simulation Symp. (ANSS'05), San Diego,
USA, Apr. 2005.

[26] U. Varshney: "Location management for mobile
commerce applications in wireless internet environ-
ment". In: ACM Trans. Internet Tech. 3(3), Aug. 2003.

[27] O. Wolfson, A. Sistla, S. Chamberlain, and Y. Yesha:
"Updating and Querying Databases that Track Mobile
Units". In: Distributed and Parallel Databases, 7(3),
July 1999.

11th International Database Engineering and Applications Symposium (IDEAS 2007)
0-7695-2947-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

