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Abstract 
 
d'Albis (2007) considers a continuous-time general equilibrium overlapping-generations 
model with age-specific mortality rates. His proof of the existence and uniqueness of the 
steady-state equilibrium, which can be extended to other overlapping-generations models, 
relies on the shape of a function that appears in the equation defining the equilibrium. By 
focusing on the mean age as a function of the stable population growth rate instead of the 
function used in d'Albis (2007), we provide a simpler proof with more general conditions. 
We also obtain useful properties about the first and second derivatives of the mean age 
function that can be applied in future work. 
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1. INTRODUCTION

d’Albis (2007) considers an overlapping-generations (OLG) model with lifetime

uncertainty and purely life-cycle saving motive. He first obtains sufficient conditions

for the existence and uniqueness of the steady-state equilibrium. He then shows that

there exists a finite population growth rate maximizing long-run capital per worker,

and relates the results to several well-known OLG models, including the two-period

OLG model (Diamond, 1965) and the continuous-time OLG model with age-invariant

mortality (Blanchard, 1985; Weil, 1989).

The proof of the existence and uniqueness of the steady-state equilibrium in the

OLG model with a general survival function is important. It provides the foundation

for the analysis of further topics in d’Albis (2007). The proof can also be extended

to other general equilibrium OLG models with age-specific mortality, such as the

model incorporating technological progress and a retirement phase (Lau, 2009). In

this paper we focus on the existence and uniqueness proof in the d’Albis (2007)

model. First, we point out a missing condition in his proof, which relies heavily on

the convexity property of a function that appears in the equation defining the steady-

state equilibrium. Second, by focusing on the mean age as a function of the stable

population growth rate instead of the function used in d’Albis (2007), we show that

it is possible to provide a simpler proof with more general conditions.

The remaining sections are organized as follows. Section 2 describes briefly the

model and discusses the proof in d’Albis (2007), including a condition missing in his

proof. Section 3 presents an alternative proof, and obtains two conditions which are

more general than those in his paper. Furthermore, by using the first and second

derivatives of the mean age function, we show that in some special cases, a key

condition holds for all survival functions. Section 4 provides concluding remarks.
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2. THE MODEL AND STEADY-STATE EQUILIBRIUM

d’Albis (2007) analyzes a continuous-time OLG model with a general demographic

structure and age-specific discount rates. Since either the age-varying or age-invariant

discount rate assumption is usually not the major determinant of economic phenom-

ena (except perhaps on issues related to present-biased preferences), many authors

working with OLG models use the constant discount rate assumption, which simpli-

fies the notations without much loss of generality.1 We consider the d’Albis (2007)

model with constant discount rate in this paper.

In this section we provide a brief description of the model–first, the demographic

and labor supply features of the model economy, then individual cohort’s consumption

problem, and finally, the firms’ production technology. A more detailed description

of the model can be found in d’Albis (2007).

The demographic structure of the model is based on the stable population theory. It

is assumed that age-specific fertility rates and age-specific mortality rates of different

cohorts remain unchanged. On the mortality side, represent the probability that an

individual survives to at least age x by the survival function l (x), where x ∈ [0,Ω] ,
Ω is the maximum age, l (0) = 1 and l (Ω) = 0. The instantaneous mortality rate

at age x, μ (x), is related to l (x) according to μ (x) = − 1
l(x)

dl(x)
dx
. Based on the

stable population theory (Lotka, 1939; Coale, 1972; Keyfitz and Caswell, 2005), it

can be shown that eventually, the population growth rate is time-invariant. Since

labor supply decision is not the major focus in d’Albis (2007), he follows Blanchard

(1985) to model it exogenously. Specifically, each individual is assumed to supply one

unit of labor inelastically at every age. Therefore, the growth rate of labor supply is

the same as the population growth rate.
1Moreover, since there is no commonly-agreed choice of an age-specific discount rate schedule, a

constant discount rate assumption is usually adopted for simplicity in applied work using the OLG

model.
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Next, consider individual’s consumption decision in the presence of lifetime uncer-

tainty and an actuarially fair financial market (Yaari, 1965). To focus purely on the

saving-for-retirement motive, d’Albis (2007) assumes that individuals have no bequest

motive. At time t, an individual, who was born at time s (where s ≤ t ≤ s+Ω) and

whose current financial wealth is A (s, t), chooses {C (s, v)}s+Ωt to maximizeZ s+Ω

t

e−ρ(v−t)
l (v − s)
l (t− s)

"
C (s, v)1−

1
σ − 1

1− 1
σ

#
dv, (1)

subject to the flow budget constraint

∂A (s, v)

∂v
= [r (v) + μ (v − s)]A (s, v) + w (v)− C (s, v) , (2)

where ρ is the discount rate, σ is the intertemporal elasticity of substitution, C (s, v)

is consumption of a cohort s individual at time v, A (s, v) is the financial wealth of

a cohort s individual at time v, r (v) is the (real) interest rate at v, and w (v) is the

(real) wage rate at v. Individuals are born without financial assets or liabilities, and

face a terminal condition of non-negative financial wealth.

The model is closed by assuming that competitive firms use a neoclassical produc-

tion technology with capital and labor inputs. Output at time t, Y (t), is determined

according to Y (t) = F (K (t) ,N (t)), where K (t) and N (t) represent, respectively,

capital input and labor input at time t. Define a variable per worker as the variable

divided by N , and denote it in lower case letter. With this transformation, the neo-

classical production function in intensive form is given by y (t) = Y (t)
N(t)

= F
³
K(t)
N(t)

, 1
´
≡

f (k (t)), with f 0 (k) > 0, f 00 (k) < 0, limk→0 f 0 (k) = ∞, and limk→∞ f 0 (k) = 0. Fi-
nally, it is assumed that capital depreciates at a constant rate δ (≥ 0), and

0 < δ + n <∞, (3)

where n is the constant growth rate of the stable population. The assumption of a

positive value of δ + n in (3) is empirically more relevant than a negative value of

4
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δ + n.2 The same assumption is used in d’Albis (2007), and a similar assumption

incorporating the rate of technological progress is used in Lau (2009).

It is useful to define

H (u) =

Z Ω

0

e−uxl (x) dx (4)

for u ∈ (−∞,∞). Also define

J (u) =
H (u)H (−σu+ n+ σρ)

H ((1− σ) u+ σρ)H (n)
. (5)

Note that H (u) is positive and decreasing in u, since l (x) is positive for x ∈ (0,Ω).
As a result, J (u) is also positive.

Denote a variable at the steady-state equilibrium with a *. As in Blanchard (1985)

and d’Albis (2007), the equilibrium condition is obtained by equating asset holdings

with capital stock.3 Using steps similar to those in d’Albis (2007) or Lau (2009), it

can be shown that the steady-state equilibrium of this economy is defined by

φ (k∗) = k∗, (6)

where k∗ is the steady-state value of capital per worker, and function φ (k) is defined
2Since δ is non-negative, (3) is always satisfied for a stable population with a positive growth

rate. If one takes δ to be positive (say, at the commonly used value of 0.05, as in Barro et al., 1995),

then (3) is satisfied even for an economy with a shrinking population, as long as the rate of decline

is relatively mild.
3This condition corresponds to the concept of “balanced” equilibrium according to the terminol-

ogy used in Gale (1973), who considers pure exchange economies, and in Willis (1988), who considers

productive economies.

5
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as4

φ (k) =
f (k)− kf 0 (k)
f 0 (k)− (δ + n) [J (f

0 (k)− δ)− 1] . (7)

d’Albis (2007) provides sufficient conditions for the existence and uniqueness of the

steady-state equilibrium in his Proposition 3, and the conditions are more general

than those in Bommier and Lee (2003). These results represent an improvement.

However, there is a missing condition in his proof of Lemma 8, which affects the

subsequent existence and uniqueness proof. The missing condition (for the constant

discount rate version of his model) is

d

du

∙
J 0 (u)
J (u)

¸
= −σ2h0 (−σu+ n+ σρ) + (1− σ)2 h0 ((1− σ)u+ σρ)− h0 (u) > 0 (8)

for all u ∈ (−δ,∞), where h0 (.) is the derivative of the mean age function h (.) defined
in (9) in the next section.5

The reason for the missing condition (8) is as follows. The proof of d’Albis (2007)

relies heavily on the shape of function J (u). Specifically, his existence proof is based

on the assumed convexity of J (u), and his uniqueness proof relies on the assump-

tion that J0(u)
J(u)

is increasing in u. According to the proof of Lemma 8 in d’Albis
4It is well known that the competitively determined interest rate and wage rate are given by

r = f 0 (k) − δ and w = f (k) − kf 0 (k), respectively. Thus, (7) can also be written as φ (k) =
w
r−n [J (r)− 1] or f (k) − wJ (r) = (δ + n) k, where r and w depend on k implicitly. From (17)

of d’Albis (2007) or (21) of Lau (2009), we know that wJ (r) is the steady-state consumption per

worker. Under assumption (3), aggregate saving is positive (i.e., f (k)−wJ (r) > 0) at the steady-
state equilibrium.

5Since we assume a constant discount rate while d’Albis (2007) allows for age-specific dis-

count rates, our definition of function H (u), as in (4), is slightly different from that in (6) of

his paper. As a result, the term (1− σ)2 h0 ((1− σ)u) in (61) of d’Albis (2007) is modified to

(1− σ)2 h0 ((1− σ)u+ σρ) in (8) of this paper, and so on. Note that if we assume age-specific

discount rates, (8) should be replaced by:

−σ2h0 (n− σu) + (1− σ)2 h0 ((1− σ)u)− g0 (u) > 0, (8a)

where g (u) and h (u) are defined in (59) and (60), respectively, of d’Albis (2007).

6
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(2007), a positive value of ∂
∂σ

£
(1− σ)2 h0 ((1− σ)u+ σρ)

¤
for all σ ∈ (0, 1] and

limσ→1 (1− σ)2 h0 ((1− σ)u+ σρ) = 0 lead to d
du

h
J0(u)
J(u)

i
> 0 and thus also the convex-

ity of J (u).6 However, these two properties about (1− σ)2 h0 ((1− σ) u+ σρ) imply

that this term is negative unless σ = 1. Thus, even though the other two terms in

the middle expression of (8) are positive because of (12), d
du

h
J 0(u)
J(u)

i
is not necessarily

positive. We conclude that, contrary to the claim in d’Albis (2007), condition (8) is

not always satisfied for σ ∈ (0, 1). In order to ensure that J 0(u)
J(u)

is increasing in u and

J 00 (u) > 0 for all u ∈ (−δ,∞), Proposition 3 of d’Albis (2007) requires condition (8)
explicitly.

3. A SIMPLER PROOF WITH MORE GENERAL CONDITIONS

In the previous section, we point out that the correct proof of the existence and

uniqueness of the steady-state equilibrium in d’Albis (2007) requires condition (8)

when the discount rate is constant. In this section, we provide an alternative proof

which relaxes this condition and another condition in d’Albis (2007). Moreover, the

proof covers the model with σ > 1, which is not considered in d’Albis (2007).7

6Note that (11) implies that

J 00 (u) =
h
−σ2h0 (−σu+ n+ σρ) + (1− σ)2 h0 ((1− σ)u+ σρ)− h0 (u)

i
J (u)

+ [σh (−σu+ n+ σρ) + (1− σ)h ((1− σ)u+ σρ)− h (u)]2 J (u) .

Comparing this equation with (8), it can be concluded that the condition “ d
du

h
J0(u)
J(u)

i
> 0”, which

is required for the proof of uniqueness of the steady-state equilibrium in d’Albis (2007), is stronger

than the condition “J 00 (u) > 0”, which is required for his proof of existence of the steady-state

equilibrium.
7Even though σ is specified to be smaller than or equal to 1 in most applied studies (as in

Barro et al., 1995), we also consider the σ > 1 case for the sake of completeness. In particular,

our analysis suggests that the properties about the first and second derivatives of h (u) affect the

sufficient conditions for the OLG models with σ ≤ 1 and those with σ > 1 differently, as elaborated

7
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Our analysis makes use of the property of a function which expresses the mean

age of the stable population when the population growth rate u changes, with the

age-specific mortality rates given by l (x). This mean age function is given by

h (u) =
−H 0 (u)
H (u)

=

R Ω

0
xe−uxl (x) dxR Ω

0
e−uxl (x) dx

=

Z Ω

0

xq (x, u) dx, (9)

where

q (x, u) =
e−uxl (x)R Ω

0
e−uxl (x) dx

(10)

is the density function of individuals aged x in the stable population with survival

function l (x) and population growth rate u.8 The mean age function is related to the

first derivative of J (.) according to

J 0 (u) = [σh (−σu+ n+ σρ) + (1− σ)h ((1− σ)u+ σρ)− h (u)] J (u) . (11)

It can be shown that the first derivative of h (u) is the negative of the variance

of individual’s age of the population (when population size grows at a constant rate

u), and the second derivative of h (u) is equal to the third central moment of age.

These properties, which will be used in subsequent analysis, are summarized in the

following lemma.

Lemma 1 The first and second derivatives of function h (u) are given by

h0 (u) = −
Z Ω

0

[x− h (u)]2 q (x, u) dx < 0, (12)

and

h00 (u) =
Z Ω

0

[x− h (u)]3 q (x, u) dx. (13)

In particular, h00 (u) > 0 for u ≥ 0.
in the paragraph following Proposition 3.

8See, for example, (2.1) and (2.3) in Coale (1972), or Keyfitz and Caswell (2005, p. 104).

8
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Proof. See Appendix A.9

The negative slope of h (u) and its convexity for positive values of u are illustrated

in Figure 1, using the life table information for the USA (men and women combined)

in 2005.10

We now state, in the following proposition, an alternative set of sufficient conditions

under which the steady-state equilibrium exists and is unique.

Proposition 2 For the continuous-time overlapping-generations model with age-specific

mortality rates, a constant discount rate and assumption (3), the steady-state equilib-

rium (with k∗ > 0) exists and is unique, if

f (k)− kf 0 (k) + k2f 00 (k) ≥ 0 (14)

for all k ∈ (0,∞),
lim
k→0

[−kf 00 (k)] > 0, (15)

9Some of the results in Lemma 1 are similar to those in the literature. For example, as in

d’Albis (2007), one can apply the Cauchy-Schwarz inequality to show that [H 0 (u)]2 < H (u)H 00 (u).

Therefore, h0 (u) = [H0(u)]2−H(u)H00(u)
[H(u)]2

< 0. However, we think that it is useful to summarize the

first two derivatives of h (u) in a separate lemma. In particular, our proof of (12) has the additional

benefit of relating h0 (u) to the variance of age. As a result, we can relate h00 (u) to the third central

moment of age, and obtain the convexity property of h (u) when u ≥ 0. Note also that according
to the infinite series for the mean age in (5.3.3) of Keyfitz and Caswell (2005), which is based on

(48) in Lotka (1939), the derivatives of h (u) are related to the various moments of age. However,

the moments used in Lotka (1939) and Keyfitz and Caswell (2005) refer to those of the stationary

population (with u = 0), whereas the results in Lemma 1 are more general as the moments refer to

the those of the stable population (with an arbitrary u).
10Since most OLG models assume that the adult stage starts at age 20, we calculate the

survival probability based on adult age, which is defined as actual age minus 20, according to

l (x) = lactual(x+20)
lactual(20)

, where lactual (.) is the survival probability based on actual age. Similar shape

of h (u) is obtained if l (x) is the survival function based on actual age.

9
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and

J 0 (u)
J (u)

− J
0 (n)
J (n)

≡ [σh (−σu+ n+ σρ) + (1− σ)h ((1− σ) u+ σρ)− h (u)]

− [h ((1− σ)n+ σρ)− h (n)] (16)

≤ 0 for all u ∈ (−δ, n) but ≥ 0 for all u ∈ (n,∞).

Proof.

We only consider positive k (capital per worker), since it must be positive for a

meaningful economy. It is helpful to establish three preliminary results. First, given

the concavity of the production function f (k) for all k > 0, we have

f (k)− kf 0 (k) > 0. (17)

That is, real wage is positive for all k > 0. Second, under assumption (3) and

f 00 (k) < 0, it is easy to see that f 0 (k) − (δ + n) is positive when k is close to zero,
and it changes sign (to negative) only once after k reaches the golden rule level

(k = kgr), which is defined by

f 0 (kgr) = δ + n. (18)

Note that kgr in (18) is well-defined under assumption (3). Third, we conclude from

(6), (7) and (17) that if k∗ exists, it will satisfy11

J (f 0 (k∗)− δ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 1 if k∗ < kgr

= 1 if k∗ = kgr

< 1 if k∗ > kgr

. (19)

(A) Existence
11Using steps similar to those in footnote 14, it can further be shown that J (f 0 (k∗)− δ) = 1 if

k∗ = kgr = lim
k→kgr

φ (k) = [f (kgr)− kgr (δ + n)] [h ((1− σ)n+ σρ)− h (n)] . (19a)

10
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It is easy to see from (7) and (17) that φ (k∗) = k∗ is equivalent to λ (k∗) = 0,

where

λ (k) =
J (f 0 (k)− δ)− 1
f 0 (k)− (δ + n) −

k

f (k)− kf 0 (k) . (20)

When k tends to 0, we have f 0 (k) tends to ∞, f (k) − kf 0 (k) tends to 0, and
J (f 0 (k)− δ) tends to ∞.12 Using the l’Hôpital’s rule and the results in footnote

12, it is shown that limk→0
J(f 0(k)−δ)−1
f 0(k)−(δ+n) = limk→0 J 0 (f 0 (k)− δ) = +∞. Using the

l’Hôpital’s rule and (15), we show that limk→0 k
f(k)−kf 0(k) = limk→0

h
1

−kf 00(k)
i
is finite.

Combining these results leads to

lim
k→0

λ (k) = +∞. (21)

When k tends to ∞, we have f (k) tends to ∞, and f 0 (k) tends to 0. Therefore,
J(f 0(k)−δ)−1
f 0(k)−(δ+n) tends to

J(−δ)−1
−(δ+n) , which is finite. On the other hand, it can be shown that

limk→∞ k
f(k)−kf 0(k) = +∞.13 Therefore,

lim
k→∞

λ (k) =
J (−δ)− 1
− (δ + n) − lim

k→∞
k

f (k)− kf 0 (k) = −∞. (22)

Since λ (k) is continuous for 0 < k < ∞,14 one concludes from (21) and (22) that

λ (k∗) = 0 exists for 0 < k∗ <∞. Equivalently, φ (k∗) = k∗ exists for 0 < k∗ <∞.
12It is easy to show from (9) that limu→∞ h (u) = 0 and limu→−∞ h (u) = Ω. (See Figure 1 also.)

Substituting these results into (11) leads to limu→∞
J0(u)
J(u) = σΩ if σ < 1 or = Ω if σ ≥ 1. As a

result, limu→∞
J0(u)
J(u) is strictly positive, and thus, limu→∞ J (u) = +∞ and limu→∞ J 0 (u) = +∞.

13Since f(k)−kf 0(k)
k = f(k)

k − f 0 (k) and limk→∞
f(k)
k = limk→∞ f 0 (k) = 0, we obtain

limk→∞
f(k)−kf 0(k)

k = 0. Because f (k) − kf 0 (k) is positive when k is positive, we conclude that
limk→∞ k

f(k)−kf 0(k) = +∞, instead of −∞.
14Since J (f 0 (k)− δ) − 1 and f 0 (k) − (δ + n) are continuous in 0 < k < ∞, discontinuity of

J(f 0(k)−δ)−1
f 0(k)−(δ+n) could only occur at k = kgr, as f

0 (kgr)−(δ + n) = 0. However, it can be shown that this
ratio is finite at k = kgr, as follows. First, it is easy to show from (5) that J (f 0 (kgr)− δ) = J (n) = 1.

Second, we apply the l’Hôpital’s rule and use (11) to conclude that

lim
k→kgr

J (f 0 (k)− δ)− 1
f 0 (k)− (δ + n) = lim

k→kgr
J 0 (f 0 (k)− δ) = J 0 (n) = h ((1− σ)n+ σρ)− h (n) .

Thus, limk→kgr λ (k) = [h ((1− σ)n+ σρ)− h (n)]− kgr
f(kgr)−kgr(δ+n) , which is finite.

11
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(B) Uniqueness

From (7), we have

φ0 (k) = −f 00 (k)φ (k)
∙

1

f 0 (k)− (δ + n) +
k

f (k)− kf 0 (k) −
J 0 (f 0 (k)− δ)

J (f 0 (k)− δ)− 1
¸
.

Computing φ0 (k) at the steady-state equilibrium (with φ (k∗) = k∗) and simplifying

yields

φ0 (k∗) = −f 00 (k∗) k∗ J (f 0 (k∗)− δ)

[J (f 0 (k∗)− δ)− 1]
∙

k∗

f (k∗)− k∗f 0 (k∗) −
J 0 (f 0 (k∗)− δ)

J (f 0 (k∗)− δ)

¸
.

(23)

We prove uniqueness of the steady-state equilibrium k∗ by showing that φ0 (k∗) ≤ 0.
Our proof proceeds as follows. First, (14) implies that

d

dk

∙
k

f (k)− kf 0 (k)
¸
=
f (k)− kf 0 (k) + k2f 00 (k)

[f (k)− kf 0 (k)]2 ≥ 0. (24)

Second, we show that kgr
f(kgr)−kgrf 0(kgr) −

J 0(f 0(kgr)−δ)
J(f 0(kgr)−δ) = 0, and obtain limk∗→kgr φ

0 (k∗) ≤
0. Third, we show that when k∗ < kgr, k∗

f(k∗)−k∗f 0(k∗) − J0(f 0(k∗)−δ)
J(f 0(k∗)−δ) ≤ 0. Fourth, we

show that when k∗ > kgr, k∗
f(k∗)−k∗f 0(k∗) − J 0(f 0(k∗)−δ)

J(f 0(k∗)−δ) ≥ 0. Combining these results

with (19), we conclude that φ0 (k∗) ≤ 0 for all 0 < k∗ <∞.
When k∗ = kgr, we use (11), (18) and (19a) to obtain

kgr
f (kgr)− kgrf 0 (kgr) −

J 0 (f 0 (kgr)− δ)

J (f 0 (kgr)− δ)
= [h ((1− σ)n+ σρ)− h (n)]− J 0 (n) = 0.

(25)

However, the term J (f 0 (kgr)− δ) − 1 in the denominator of the right-hand side of
(23) is also zero. We can use (6), (7) and (23) to obtain

lim
k∗→kgr

φ0 (k∗) = −f 00 (kgr) lim
k∗→kgr

k∗

[J (f 0 (k∗)− δ)− 1]
∙

k∗

f (k∗)− k∗f 0 (k∗) −
J 0 (f 0 (k∗)− δ)

J (f 0 (k∗)− δ)

¸

= −f 00 (kgr) [f (kgr)− kgrf 0 (kgr)] lim
k∗→kgr

h
k∗

f(k∗)−k∗f 0(k∗) − J0(f 0(k∗)−δ)
J(f 0(k∗)−δ)

i
f 0 (k∗)− (δ + n) .

12
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Using the l’Hôpital’s rule, we obtain

lim
k∗→kgr

h
k∗

f(k∗)−k∗f 0(k∗) − J 0(f 0(k∗)−δ)
J(f 0(k∗)−δ)

i
f 0 (k∗)− (δ + n)

=
limk∗→kgr

d
dk∗

h
k∗

f(k∗)−k∗f 0(k∗)
i
− limk∗→kgr d

dk∗

h
J 0(f 0(k∗)−δ)
J(f 0(k∗)−δ)

i
f 00 (kgr)

. (26)

We know that limk∗→kgr
d
dk∗

h
k∗

f(k∗)−k∗f 0(k∗)
i
≥ 0, because of (24). Condition (16)

implies that limu→n d
du

h
J 0(u)
J(u)

i
≥ 0,15 which, through f 00 (k) < 0, further implies that

limk∗→kgr
d
dk∗

h
J 0(f 0(k∗)−δ)
J(f 0(k∗)−δ)

i
≤ 0. As a result, the limit in (26) is non-positive, and

limk∗→kgr φ
0 (k∗) ≤ 0.

When k∗ < kgr (i.e., r∗ > n), (24) implies that k∗
f(k∗)−k∗f 0(k∗) ≤ kgr

f(kgr)−kgrf 0(kgr) .

From (16), we obtain J 0(f 0(k∗)−δ)
J(f 0(k∗)−δ) ≥ J 0(f 0(kgr)−δ)

J(f 0(kgr)−δ) . Therefore, together with (25), we

have k∗
f(k∗)−k∗f 0(k∗) − J0(f 0(k∗)−δ)

J(f 0(k∗)−δ) ≤ kgr
f(kgr)−kgrf 0(kgr) −

J 0(f 0(kgr)−δ)
J(f 0(kgr)−δ) = 0. Combining with

(19) and (23), we obtain φ0 (k∗) ≤ 0 for all k∗ < kgr.
Similarly, when k∗ > kgr (i.e., r∗ < n), we use (16), (24) and (25) to obtain

k∗
f(k∗)−k∗f 0(k∗) − J 0(f 0(k∗)−δ)

J(f 0(k∗)−δ) ≥ kgr
f(kgr)−kgrf 0(kgr) −

J 0(f 0(kgr)−δ)
J(f 0(kgr)−δ) = 0. Combining with (19)

and (23), we obtain φ0 (k∗) ≤ 0 for all k∗ > kgr.
The difference in our proof of Proposition 2 and that of Proposition 3 in d’Albis

(2007) is as follows. For the existence proof, we use only the boundary conditions of

J (u), and do not require any assumption regarding the convexity of J (u). In this

process, we relax condition (20) of d’Albis (2007) to (15) of this paper.16 For the

uniqueness proof, we only compare the values of J
0(u)
J(u)

with J 0(n)
J(n)

, instead of relying

15There are two ways to see that (16) is more general than (8). The first way to see is that J
0(u)
J(u)

≤ J0(n)
J(n) for all u ∈ (−δ, n) and J0(u)

J(u) ≥ J0(n)
J(n) for all u ∈ (n,∞) according to (16), but J 0(u)

J(u) is

increasing in u for all u ∈ (−δ,∞) according to (8). Another way to see, which is useful for the
proof here, is that d

du

h
J 0(u)
J(u)

i
≥ 0 holds for u = n according to (16), but it holds for all u ∈ (−δ,∞)

according to (8). Note also that we have performed computational check, which confirms that

condition (8) is violated but (16) is satisfied under some situations.
16With the help of (70) of d’Albis (2007), it can be shown that condition (20) of his paper is based

13
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on the stronger assumption that J
0(u)
J(u)

is upward sloping. As a result, it is possible to

relax condition (8) to (16).

Another advantage of the approach used in this paper is that we are able to extend

the proof to cover the case when σ > 1. In this case, we further show that condition

(16) is always satisfied for σ ≥ 1, and thus only (14) and (15) are required in the

proof.17 This is given in the following Proposition.

Proposition 3 For the continuous-time overlapping-generations model with age-specific

mortality rates, a constant discount rate and assumption (3), the steady-state equilib-

rium (with k∗ > 0) exists and is unique when σ ≥ 1, if (14) and (15) are satisfied.

Proof. See Appendix B.

In the proof of Proposition 3, it is observed that the property h0 (.) < 0 in (12) is

used to show that (16) is always satisfied when σ ≥ 1. However, the negative slope of
the mean age function is not enough to deliver further results when σ < 1. We have

tried various ways to analyze the model with σ < 1, and found that condition (16)

is required in general. Whether condition (16) holds or not depends on the survival

function l (x), among other factors. On some occasions, it will be useful to obtain the

conditions which hold for all survival functions. We have found some special cases

that the property about the second derivative of h (.) helps to obtain such results. As

the method may also be relevant for other OLG models in future work, we present

this result in the following proposition.

on a comparison of limk→0 k
f(k)−kf 0(k) and limk→0

J 0(f 0(k)−δ)
J(f 0(k)−δ) . We are able to relax that condition

to (15) of this paper because in our existence proof, we only need to consider limk→0 k
f(k)−kf0(k) but

not the other limit.
17Note that the remaining conditions–(14) and (15)–are related to the production function only,

and they are satisfied for a Cobb-Douglas production function. Note also that condition (14) is the

same as s (k) ≤ ε (k) in (21) of d’Albis (2007), where s (k) = kf 0 (k) /f (k) is the share of capital in

output, and ε (k) = −f 0 (k) [1− s (k)] / [kf 00 (k)] is the elasticity of substitution between capital and
labor.

14
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Proposition 4 For the continuous-time overlapping-generations model with age-specific

mortality rates, a constant discount rate and assumption (3), the steady-state equilib-

rium (with k∗ > 0) exists and is unique when 0 < σ < 1, if

0 ≤ n ≤ ρ, (27)

0 ≤ δ ≤
µ

σ

1− σ

¶
n, (28)

and (14) and (15) are satisfied.

Proof. See Appendix C.

4. CONCLUDING REMARKS

d’Albis (2007) provides sufficient conditions for the existence and uniqueness of

the steady-state equilibrium in an OLG model with lifetime uncertainty, and the

conditions are more general than those in Bommier and Lee (2003). His proof relies

heavily on the convexity property of function J (.), which appears in the equation

defining the equilibrium. In this paper we first point out a missing condition in

his proof. We then provide a simpler proof which does not rely on any convexity

assumption about J (.), and obtain sufficient conditions which are more general than

those in d’Albis (2007). Comparing our method with that used by d’Albis (2007), it is

observed that he focuses on function J (.) whereas we focus on the mean age function

h (.), which is simpler than J (.). Moreover, we are able to relate the first and second

derivatives of h (.) to the various moments of individual’s age in the population, and

thus to sign these derivatives. On the other hand, the property of J (.), which is a

convoluted function of H (.) according to (5), is harder to obtain. Focusing on the

property of the mean age function h (.), rather than J (.), is likely to be more fruitful

in the analysis of continuous-time OLG models with age-specific mortality rates.

To facilitate comparison with d’Albis (2007), we use the same model in this paper,

except that we simplify the discount rates to be age-invariant. The proof is, however,

15
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not only applicable in this model, but also in an OLG model with technological

progress (Lau, 2009). One of us is currently working on an OLG model consisting of

more realistic demographic features of childhood, adulthood and retirement years, and

preliminary analysis suggests that the results in this paper can further be extended

to that model.18 The various analyses lead us to believe that the proof in d’Albis

(2007), and the additional results reported in this paper, will be useful for other

OLG models (such as those with richer demographic and labor supply features, with

policy elements such as social security, with other growth-generating elements such

as human capital, and so on) as well.

APPENDIX A: PROOF OF LEMMA 1

Partially differentiating (10) with respect to u and simplifying, we obtain

∂q (x, u)

∂u
= − [x− h (u)] q (x, u) . (A1)

Differentiating h (u) =
R Ω

0
xq (x, u) dx and using (A1), we have

h0 (u) =
Z Ω

0

x
∂q (x, u)

∂u
dx = −

Z Ω

0

x [x− h (u)] q (x, u) dx. (A2)

Since h (u) is the mean of x when the population growth rate is u, we haveZ Ω

0

[x− h (u)] q (x, u) dx = 0. (A3)

18Many OLG models–including discrete-time models such as Diamond (1965) and Abel (2003),

and continuous-time models such as Blanchard (1985), d’Albis (2007), and Lau (2009)–only assume

one stage (working) or two stages (working and retirement) of the life cycle. As mentioned in

Bommier and Lee (2003, p. 136), “Two age group models are not capable of representing the most

basic feature of the human economic life cycle: that it begins and ends with periods of dependency,

separated by a long intermediate period of consuming less than is produced.” In studying the

consequences of fertility and mortality changes, an OLG model consisting of childhood, working and

retirement stages is likely to be better than a two-stage model.

16
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Therefore, we obtain
R Ω

0
x [x− h (u)] q (x, u) dx = R Ω

0
[x− h (u)]2 q (x, u) dx. We con-

clude that h0 (u) in (A2) can be expressed as (12) and is negative.

Differentiating (12) and applying (A1), we obtain

h00 (u) = 2h0 (u)
Z Ω

0

[x− h (u)] q (x, u) dx+
Z Ω

0

[x− h (u)]3 q (x, u) dx.

Using (A3), we have (13).

The numerator on the right-hand side of (10) is decreasing in x when u ≥ 0, since
e−ux is non-increasing in x when u ≥ 0 and l (x) is decreasing in x. The term in

the denominator,
R Ω

0
e−uxl (x) dx, is independent of x. Therefore, ∂q(x,u)

∂x
< 0. It can

be shown that a random variable x with density function monotonically decreasing

in x is positively skewed. Therefore, when u ≥ 0, the third central moment of x is
positive, and

h00 (u) > 0 (A4)

according to (13).

APPENDIX B: PROOF OF PROPOSITION 3

When u < n, we use h0 (.) < 0 in (12) to obtain h (−σu+ n+ σρ) < h (−σu+ u+ σρ).

Thus, when σ ≥ 1, we have
J 0 (u)
J (u)

< h ((1− σ) u+ σρ)− h (u) < h ((1− σ)n+ σρ)− h (n) = J 0 (n)
J (n)

.

Similar, when u > n, we use h0 (.) < 0 and σ ≥ 1 to obtain
J 0 (u)
J (u)

> h ((1− σ) u+ σρ)− h (u) > h ((1− σ)n+ σρ)− h (n) = J 0 (n)
J (n)

.

Thus, (16) is always satisfied when σ ≥ 1. Applying Proposition 2, we prove Propo-
sition 3.

17
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APPENDIX C: PROOF OF PROPOSITION 4

In the following analysis, 0 < σ < 1. Conditions (27) and (28) imply that −δ ≤
0 ≤ n ≤ ρ. Since u ∈ (−δ,∞), there are only four distinct cases to consider. They
are: u > ρ (case 1), n < u ≤ ρ (case 2), 0 < u ≤ n (case 3) and −δ < u ≤ 0 (case 4).
For case 1 (with −δ ≤ 0 ≤ n ≤ ρ < u), we first use (11), (12), u > n and u > ρ to

obtain
J 0 (u)
J (u)

> h ((1− σ)u+ σρ)− h (u) > 0.

Second, we use (12) and ρ ≥ n to obtain h ((1− σ)n+ σρ) ≤ h (n) and thus, J 0(n)
J(n)
≤

0. Combining these results, we have J 0(u)
J(u)

> J 0(n)
J(n)

.

For case 2 (with −δ ≤ 0 ≤ n < u ≤ ρ), we first use (11), (12) and u > n to obtain

J 0 (u)
J (u)

> h ((1− σ) u+ σρ)− h (u) > h (u− σn+ σρ)− h (u) .

Second, since u− σn+ σρ, u, n− σn+ σρ, and n are all non-negative in case 2, we

can use the convexity result (h00 (u) > 0 for u ≥ 0) in (A4) and u > n to conclude

that

h (u− σn+ σρ)− h (u) > h (n− σn+ σρ)− h (n) .
Combining these results, we have J 0(u)

J(u)
> J 0(n)

J(n)
.

The proof for case 3 (with −δ ≤ 0 < u ≤ n ≤ ρ) is similar to that for case 2, except

that the various inequalities are reversed since 0 < u ≤ n.
For case 4 (with −δ < u ≤ 0 ≤ n ≤ ρ), we first use (12) to obtain

h (u) ≥ h (0) . (A5)

Second, since u ≤ 0 ≤ n, we have

σh (−σu+ n+ σρ) + (1− σ)h ((1− σ) u+ σρ) ≤ h ((1− σ)u+ σρ) . (A6)

Third, (28) implies that

n− 0 ≥ [(1− σ)n+ σρ]− [(1− σ)u+ σρ]

18
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for u ∈ (−δ, 0]. Using (A4), we obtain19

h (0)− h (n) ≥ h ((1− σ)u+ σρ)− h ((1− σ)n+ σρ) . (A7)

Combining (A5) to (A7), we obtain that for u ∈ (−δ, 0],

h (u)− h (n) ≥ σh (−σu+ n+ σρ) + (1− σ) h ((1− σ) u+ σρ)− h ((1− σ)n+ σρ) ,

or equivalently, J
0(u)
J(u)
− J0(n)

J(n)
≤ 0. This completes the proof of case 4.

Condition (16) is always satisfied, because J0(u)
J(u)

> J 0(n)
J(n)

in cases 1 and 2, and
J 0(u)
J(u)
≤ J0(n)

J(n)
in cases 3 and 4. Applying Proposition 2, we prove Proposition 4.
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