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Abstract

We consider the energy needed to separate two surfaces connected by molecular

bonds, whose formation and breakage can be described by the classical rate equation.

We find that this adhesion energy is strongly rate-dependent due to the chemical ki-

netics involved. Two cases where the separation between surfaces grows linearly, or

exponentially, with respect to time are studied in detail, scaling relations between the

adhesion energy and separation speed, or the exponential factor, are derived in each

case. As an example of application, the peel test of a membrane in adhesive contact

with a substrate is also studied. We will show that findings obtained here can be
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directly used to predict the relationship between the applied tension and the peeling

velocity, which is of central interest to this type of experiment.

1 Introduction

In biological adhesion, two bodies are usually brought together by bonds formed between

adhesion molecules on the two surfaces [1]. These adhesion molecules are proteins with

long chains [2], which make them compliant and deformable under load [3]. One important

feature about these bonds is that each of them will break eventually if one waits long enough.

On the other hand, any broken bond can reform if proximity is maintained. As a result, the

rupture force of a single bond, or multiple parallel bonds, strongly depends on the loading

rate [4, 5]. Similarly, for a vesicle adhering to a substrate, the maximum force that can

be achieved when pulling the vesicle away from the substrate is also rate-dependent [6]-[8].

Besides rupture force, sometimes we are more interested in the adhesion energy between

two surfaces, a key quantity in the analysis of crack propagation or peel test as will be

demonstrated later. In this study, our focus is on the influence of the chemical kinetics of

bond formation, as well as breakage, on the adhesion energy.

The amount of work needed for creating new surfaces is of special interest in fracture

and contact mechanics [9, 10]. This quantity is often referred to as the surface energy or

fracture energy. The rate-dependent fracture energy of materials has long been studied

both experimentally and theoretically by different researchers. The rate sensitivity may

originate from the bulk viscoelastic behavior of the material [11, 12], or from the plastic

flow near the crack tip [13, 14]. For surfaces connected by molecular bonds, Schallamach

[15] studied the influence of the chemical kinetics of bond association/dissociation on the

2
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dynamic friction of rubbers. Schallamach’s approach was adopted by Chaudhury [16] to

explain the rate-dependency of the fracture energy of polymer-glass interface. Here, we

conduct a systematic investigation on the variation of adhesion energy with respect to how

two surfaces connected by molecular bonds are separated. This issue is important in, for

example, studying cell locomotion where cell-substrate attachment needs to be released at

the rear end of a motile cell while nascent adhesions have to be formed continuously at the

front end [17], hence an accurate estimation of the adhesion energy is undoubtedly one of the

keys for us to evaluate the energy consumption associated with cell movement, a quantity

of great biological, as well as physical, significance.

2 Dynamic adhesion energy

Consider two flat surfaces in adhesive contact by forming molecular bonds between them,

as depicted in Figure 1. Let A be the areal density of the unbroken bonds, and denote A0

as the total adhesion molecule density which is a constant. The formation and breakage of

bonds can then be described by the first order rate equation as

dA

dt
= −k−A+ k+(A0 −A) (1)

where k+ and k− are the so-called association and dissociation rates. Let y be the separation

of two surfaces when subjected to a pulling force F , see Figure 1. If bonds are treated as

linear springs then the force acting on a single bond is

f = ksy (2)

3
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Figure 1: Diagram of two surfaces in adhesive contact by forming molecular bonds between
them.

where ks is the spring constant representing the deformability of the bond. Suppose that

we are conducting a displacement-controlled experiment, i.e. the separation y as a function

of time is controlled. If equilibrium is always enforced during separation, the pulling force

F then must take the form

F (t) = ksy(t)A(t). (3)

The adhesion energy Wad, which, by definition, equals to the work done by separating two

surfaces completely, can be expressed as

Wad =

∫ ∞

0

Fdy. (4)

To evaluate this quantity, the relationship between separation y and reaction rates must

first be prescribed. Following Bell [18], here the dissociation rate k− of a bond is assumed

to increase exponentially with the force acting on it, that is

4
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k− = k0
−e

fa/kBT . (5)

Here k0
− is the dissociation rate under vanishing force and kBT is the thermal energy. a is

a constant, in the order of 0.1-1 nm, representing the distance between the transition state

and the bonding state of the bond. The forward rate k+ may also depend on the separation

y as, for example, explored in [16] and [19]. However, in order to derive the essential results

in the simplest manner, k+ is taken to be a constant here, i.e.

k+ = k0
+. (6)

Notice that, from (5), a characteristic length y0 arises naturally as

y0 =
kBT

ksa
. (7)

By introducing dimensionless variables w = y/y0, τ = k0
+t and η = A/A0, (1) becomes

dη

dτ
= −(1 +Kew)η + 1 (8)

where K = k0
−/k

0
+. If the energy gained by forming a single bond is Ub then, from ther-

modynamics, we have K = e−Ub/kBT . An initial condition is needed for solving (8), here

chemical equilibrium is assumed to be reached at the beginning of the separation process,

that is

η(τ = 0) = 1/(1 +K). (9)

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Obviously, the adhesion energy defined in (4) depends on the separation history y(t), or

w(τ). At this point, it is informative to consider the equilibrium state solution, which can

be obtained by enforcing chemical equilibrium at any separation as

η0(w) =
1

1 +Kew
(10)

Notice that (10) represents the solution when the separation process is infinite slow, or, from

thermodynamics point of view, the system undergoes a reversible process. Substitute (10)

into (4), the adhesion energy for the reversible, or quasi-static, process is

W0 = −Li2(−1/K) (11)

where W0 is the dimensionless form of Wad, normalized by ksA0y
2
0 . Li2(z) is the standard

Polylogarithm function whose value is readily to be evaluated in most mathematics softwares.

To demonstrate the dynamic effect, two cases are examined in detail here. First, we consider

the case where two surfaces separate with a constant speed. After that, the separation is

assumed to grow exponentially with respect to time in the second scenario.

2.1 Separation increases linearly with time

In this case, w is a linear function of τ , i.e.

w(τ) = vτ. (12)

Here v is the dimensionless separation speed, normalized by y0k
0
+. Notice that similar

problem has been considered by Seifert [20] in the context of finding the velocity dependence

6
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of the strength of the bond. Basically, the adhesion energy discussed here corresponds to

the area under the force-separation curve obtained in [20]. The solution of (8) can be found

as

η(w) =
eK/v

1 +K
eG(w) +

eG(w)

v

∫ w

0

e−G(ξ)dξ (13)

where G(w) = −w/v − Kew/v. Notice that here η is expressed in terms of separation w.

Figure 2 shows how the solution deviates from η0(w) at different separation speeds. Clearly,

the difference grows as v increases . This is not surprising because as separation process

becomes faster the system has less time to reach chemical equilibrium and, consequently,

more bonds will remain unbroken at the same separation distance, see Figure 2. Recall that

bonds are treated as linear springs here, hence larger pulling force F must be applied to

sustain higher separation speed.

Figure 2: Bond densities as functions of separation distance under different separation
speeds. The parameter K is chosen to be 0.1.

The normalized adhesion energy W , W = Wad

ksA0y2
0

, can be determined through (4) and

7
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(13). Calculation results of W , divided by W0, as a function of v is illustrated in Figure 3 by

the solid line for K = 0.1. To investigate the scaling relations between W and v, we proceed

by considering two limiting scenarios where the separation speed is either very small or very

large.

Figure 3: Adhesion energy as a function of separation speed. The solid line represents
numerical results and the two dashed lines correspond to asymptotic relationships as v → 0
and v → ∞. The parameter K is chosen to be 0.1.

2.1.1 Adhesion energy under small separation speed

For v << 1, we expect the solution of (8) to be very close to η0(w), see Figure 2. Following

standard perturbation methods, the solution η(w) is expressed in terms of power series of v

as

η(w) = η0(w) + vη1(w) + v2η2(w) + ... (14)

Substituting (14) into (8) and matching of terms of the order of v leads to

8
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η1(w) =
Kew

(1 +Kew)3
. (15)

Hence the adhesion energy, defined in (4), takes the form

W

W0
≈ 1 + v

−1 + (1 +K)ln(1 + 1/K)

−2(1 +K)Li2(−1/K)
. (16)

Obviously, (16) shows that the adhesion energy increases linearly with respect to the sepa-

ration speed when it is small.

2.1.2 Adhesion energy under large separation speed

When v >> 1, it can be shown that the second term appeared on the right hand side of

(13) becomes negligible, so the adhesion energy can be evaluated as

W =
eK/v

1 +K

(

2F2(a;b;−K/v)v2 + v(K/v)1/vΓ(1 − 1/v)[ln(K/v) − ψ(−1/v)]
)

(17)

where a = [−1/v,−1/v] and b = [1 − 1/v, 1 − 1/v]. 2F2(a;b; z) is the Hypergeometric

function, Γ(z) is the Gamma function, and ψ(z) is the PolyGamma function. As 1/v → 0,

or equivalently K/v → 0, the asymptotic form of (17) becomes

W ≈
[ln(K/v)]2/2 + γln(K/v)

1 +K
(18)

in which γ = 0.577216 is the Euler number. (18) suggests that, under large separation speed,

the scaling relation between W and v takes the form

9
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W 1/2 ∼ ln(v). (19)

The asymptotic expressions of W , as shown in (16) and (18), are illustrated in Figure 3 by

the dashed lines, which clearly agree well with numerical results.

2.2 Separation increases exponentially with time

In some practical cases, like the peel test to be discussed later, it’s more appropriate to

assume the separation increases exponentially with time, i.e.

w(τ) = ebτ − 1 (20)

where b is called the exponential factor. Under such circumstance (8) can be rewritten as

dη

dw
= −

(1 +Kew)

b(1 + w)
η +

1

b(1 + w)
(21)

The solution of (21), satisfying the initial condition (9), can be found as

η(w) =
eKEi(1)/be

1 +K
eG(w) +

eG(w)

b

∫ w

0

e−G(ξ)

1 + ξ
dξ (22)

where Ei(z) is the so-called Exponential integral function and

G(w) = −[KEi(1 + w)/e+ ln(1 + w)]/b. (23)

It’s unlikely that any closed form expression, similar to (16) or (18), of the adhesion energy

W can be obtained in this case. However, notice that when b is large the second term on

10
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the right hand side of (22) becomes negligible. In addition, recall the function Ei(z) has the

following asymptotic expression

Ei(z) ∼
ez

z
as z → ∞. (24)

In light of (24), as b→ ∞, a critical length wc can be identified by enforcing G(wc) = −1 as

wc ∼ ln(b/K). (25)

Physically, the exponential decay of the bond density is so significant when w >> wc, see

(22), we can basically assume all bonds are broken in this range. On the other hand, for

w << wc, the decay in η is very small and hence it can be treated as a constant, equal to

1
1+K , here. Based on these observations, the adhesion energy W can be roughly estimated

as

W ∼
∫ wc

0

w

1 +K
dw =

[ln(b/K)]2

2(1 +K)
(26)

Numerical results of W as a function of b for different K values are shown in Figure 4,

which clearly demonstrates that
√
W is indeed proportional to ln(b) as predicted by (26).

In addition, the slopes of the curves in Figure 4 also agree with (26). Hence, the validity

of (26) is verified by direct numerical simulations. Next we will show how findings obtained

here can be used in applications like the standard peel test.

11
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Figure 4: Adhesion energy as a function of exponential factor b for different K values.

3 Application to peel test

Analyses in the previous section have demonstrated that the adhesion energy between two

surfaces, connected by molecular bonds, strongly depends on how we separate them. In

this section, we shift our attention to the peel test which is widely used to investigate the

interface properties between dissimilar materials. Specifically, we want to examine whether

the scaling laws obtained before can be used to predict the relationship between the applied

tension and the peeling velocity which is of central interest to this kind of experiment.

The standard peel test configuration is illustrated in Figure 5, where a membrane

adhering to a substrate is peeled off by applying a remote tension. Evans examined this

problem by treating the adhesion between membrane and substrate as either continuous

across the interface or localized at discrete points [21, 22]. Dembo and co-workers [19]

extended the study by considering the formation and breakage of molecular bonds that are

12
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responsible for adhesion. Here we revisit this problem from an energy balance perspective.

Like before, assume the adhesion between membrane and substrate is caused by molec-

ular bonds formed between them and denote A0 as the areal density of adhesion molecules.

In addition, assume bonds have the same extension-force relationship as shown in (2), the

same association rate as given in (6), and a dissociation rate similar to (5) as

Figure 5: Diagram of standard peel test.

k− = k0
−e

|f |a/kBT . (27)

Notice that the absolute value of f is used in (27) because, as will be demonstrated later,

bonds may undergo compression here. It’s usually helpful to nondimensionlize the problem,

so we proceed by normalizing any length variable by y0 as defined in (7); time variable

by 1/k0
+; bond density by A0; energy density, as well as membrane tension, by ksA0y

2
0 .

Now back to the peel test configuration as shown in Figure 5, the position of any point

13
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in membrane is identified by its arch length coordinate s whereas its horizon position is

described by x. Assume a steady-state peeling velocity v was reached, then the coordinate s̄

in a frame moving with the same speed, relates to s, the coordinate in the stationary frame,

as

s̄ = s+ vτ (28)

where, like before, τ is the normalized time. Since steady-state is achieved, all physical

quantities become invariant with respect to time in the moving frame. Following [19, 21],

if bonds are assumed to align themselves in the vertical direction then static equilibrium of

membrane requires

d2C

ds̄2
− αTC + αwη

dx

ds̄
= 0 (29)

and

α
dT

ds̄
+ C

dC

ds̄
− αwη

dw

ds̄
= 0 (30)

where w is the local membrane deflection, α = ksA0y
4
0/B is a dimensionless parameter, B

is the bending rigidity of the membrane, η is again the bond density, T is the membrane

tension, and C is the normalized membrane curvature defined as

C = (dx/ds̄)(d2w/ds̄2) − (d2x/ds̄2)(dw/ds̄) = (d2w/ds̄2)/(dx/ds̄). (31)

If membrane is assumed to be inextensible, which is reasonable since bending deformation

is much easier than stretching for membranes, then simple geometry tells us

14
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(dx/ds̄)2 + (dw/ds̄)2 = 1 (32)

In the moving frame, conservation of bonds leads to

−v
∂η

∂s̄
− (1 +Ke|w|)η + 1 = 0 (33)

where again K = k0
−/k

0
+. At the free extremity of membrane, that is s̄→ ∞, the following

asymptotic boundary conditions must be satisfied

T (s̄) → T∞, dw(s̄)/ds̄→ sinθ as s̄→ ∞. (34)

Here T∞ is the applied peeling tension and θ is the peeling angle, see Figure 5. Similarly,

at the attached extremity of membrane, i.e. s̄→ −∞, the boundary conditions are

w(s̄) → 0, η(s̄) → 1/(1 +K) as s̄→ −∞. (35)

Notice that (35) means that membrane deflection dies out when moving away form the

adhesion edge and going deep into the attached part. Obviously, this also implies the

derivatives of w, with respect to s̄, must vanish when s̄ → −∞, which, as will be shown

later, provides us additional conditions that can be used in solving the problem numerically.

Now the key question is that, for given values of remote tension T∞ and peeling angle θ,

how can we find out the steady-state peeling velocity v?

It is unlikely that v can be determined without recourse to numerical methods. How-

ever, before doing that, it is instructive to examine the problem based on energy balance

arguments. Since no other dissipation mechanism, like the fluid flow induced by mem-

15
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brane movement, is considered here, the work done by the remote tension, in advancing

the adhesion front with an infinitesimal distance, must entirely be spent to separate the

membrane-substrate interface, that is

T∞(1 − cos θ) = W (36)

where W is exactly the adhesion energy discussed earlier. For simplicity, let’s assume the

origin of the moving coordinates, i.e. s̄ = 0, locates well inside the adhesion part so ap-

proximately we have w(s̄ = 0) = 0. Notice that, once the deflection profile w(s̄) is known,

then, in a stationary reference frame, the separation history w̄(τ) between the point initially

located at s̄ = 0 and the substrate is simply given by

w̄(τ) = w(vτ). (37)

Hence, W can be interpreted as the work needed to detach two surfaces with a separation

history given in (37). Following this argument, the minimum tension Tcr necessary for

peeling to take place can immediately be identified by letting v → 0. In that case, W is

identical to W0 as defined in (11), and (36) reduces to the well-known Young’s formula

Tcr =
W0

1 − cos θ
=

−Li2(−1/K)

1 − cos θ
(38)

which basically is the equilibrium condition for a stationary front, i.e. v = 0. When

T∞ > Tcr, the steady-state peeling speed can be directly calculated from (36) and (37) once

w(s̄) is determined. Unfortunately, here the membrane deflection profile is unknown and

must be solved as part of the solution. Numerically, Dembo and co-workers used a relaxation
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scheme to solve the same problem [19], here we developed an alternative shooting scheme

to obtain the solution. First, notice that the membrane deflection and its derivatives will

all approach zero when s̄→ −∞, which implies

ds̄ ≈ dx, C ≈ d2w/ds̄2. (39)

Recall that bonds are assumed to behave like linear springs and align themselves in the

vertical direction, hence global force equilibrium requires

T (−∞) → T∞ cos θ. (40)

Consequently, as s̄→ −∞, (29) reduces to

d4w

ds̄4
− αT∞ cos θ

d2w

ds̄2
+ αwη = 0. (41)

The value of ks is estimated to be around 1-5 pN/nm [3], so y0, as defined in (7), is expected

to be in the order of 2-10 nm. It is reasonable to believe that A0 is in the range of 100-1000

µm−2 since the diameter of typical adhesion molecule, such as integrin, is about 10 nm [23].

We expect B to vary from ∼35kBT for pure lipid bilayer membrane [1] to about 300kBT , a

rough estimate by taking into account the cytoskeleton beneath the membrane. Hence the

dimensionless parameter α is usually less than 10−2, recall that α = ksA0y
4
0/B. From (41),

the membrane deflection w(s̄) must take the asymptotic form

w(s̄) ≈ eλ1 s̄[C1 cos (λ2s̄) + C2 sin (λ2s̄)] (42)

as s̄→ −∞. Where λ1 =
√

√

α/(4(1 +K)) + αT∞ cos θ/4 and λ2 =
√

√

α/(4(1 +K)) − αT∞ cos θ/4.
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C1 and C2 are two constants need to be determined. Notice that (42) is valid as long as α

is small so that the parameter λ2 defined above is a real number. Similarly, the asymptotic

expressions of bond density and membrane tension can be found as

η(s̄) ≈
1

1 +K
+ eλ1 s̄[D1 cos (λ2s̄) +D2 sin (λ2s̄)] (43)

and

T (s̄) ≈ T∞ cos θ (44)

where D1 = K
1+K

−(1+K+vλ1)C1+vλ2C2

(1+K+vλ1)2+(vλ2)2 and D2 = K
1+K

−vλ2C1−(1+K+vλ1)C2

(1+K+vλ1)2+(vλ2)2 . We must point

out that higher order terms, compared to eλ1s̄ as s̄ → −∞, are neglected in (39) and

(42)-(44).

Based on these asymptotic results, a shooting scheme is developed here as follows.

First, we choose a starting left boundary, say s̄ = s̄0, and set the membrane deflection at

this point to be w(s̄0) = w0. Hence for arbitrarily chosen values of C1 and v, (42)-(44)

provide us all the necessary initial conditions at s̄0 which allow us to integrate (29)-(33)

along the coordinate s̄. Notice that the other constant C2 can be determined from w0, s̄0

and C1. Next, Newton’s method [24] is employed to find the correct combinations of C1 and

v such that the asymptotic conditions (34) are satisfied at the right computational boundary

s̄ = s̄∞. During computation, w0 is taken to be small whereas s̄∞ is chosen to be large. To

make sure the numerical results are accurate, we keep decreasing w0, while increasing s̄∞,

until the solution becomes insensitive to them.

Choosing α = 10−4, K = 0.1, θ = π/3 and T∞/Tcr = 2, the membrane deflection

profile is shown in Figure 6 by the solid line. The normalized peeling velocity v in this
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Figure 6: Membrane deflection profile. Parameters chosen here are α = 10−4, K = 0.1,
θ = π/3 and T∞/Tcr = 2.

case is found to be around 20.5. Distributions of bond density and membrane tension are

shown in Figure 7. Similar to what have been reported in [21] and [19], when moving from

s̄ → −∞ to s̄ → ∞, membrane actually undergoes negative deflections near the adhesion

edge before it curves away from the substrate exponentially which causes the breakage of

all bonds. The scheme introduced above provides us a robust tool to evaluate the peeling

velocity for a given set of parameters. Nevertheless, it is still very helpful if some kind of

simple formula can be derived to predict the relationship between the applied tension T∞

and the peeling speed v, which is of central interest to the peel test. Actually, based on a

large set of numerical simulations, a purely empirical formula was proposed in [19] to serve

this purpose. Here, on the basis of the scaling relations obtained in the previous section, we

try to derive similar formulas from energy arguments.

Notice that a characteristic length ∆ in the problem can be identified as
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Figure 7: Bond density and membrane tension distributions. Parameters chosen here are
identical to those in Figure 6.

∆ =
1

√

√

α/(4(1 +K)) + αT∞cosθ/4
(45)

which roughly sets the length scale with which all physical quantities vary along the arch

coordinate s̄. As pointed out earlier, numerical results show that the membrane curves away

from the substrate exponentially with respect to s̄, see Figure 6. Here, we try to approximate

the membrane deflection profile as

w(s̄) ≈











es̄/∆ − 1 if s̄ ≥ 0;

0 if s̄ < 0.

(46)

In which, obviously, the negative deflection part is neglected. The deflection profile predicted

by (46), for w > 0 only, is shown in Figure 6 by the dashed line. Notice that the point
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corresponding to s̄ = 0 in (46) can be chosen arbitrarily, here its position in Figure 6 is picked

in such a way that the best fit between (46) and the computed deflection profile is achieved.

Clearly, (46) has captured the main features of the real deflection profile. Comparisons

between (46) and simulation results for other parameter values have been conducted and

good agreements have also been achieved (data not shown here). In light of (37), the peeling

velocity can be estimated by (36) where the adhesion energy W is calculated by taking the

separation history as

w̄(τ) = evτ/∆ − 1 (47)

which is almost identical to that in (20). The only difference is the parameter b appeared

in (20) is replaced by v/∆ in (47). In addition, notice that ∆, defined in (45), is insensitive

to the applied tension T∞ when α is small which is usually the case as discussed before. In

light of these observations, (26) and (36) tell us that

ln(v/K) ∼ [2(1 +K)T∞(1 − cos θ)]1/2 (48)

Clearly, (48) means that, for a fixed peeling angle θ, the logarithm of the peeling velocity

v is proportional to the square-root of the applied tension T∞. Choosing α = 10−4 and

θ = π/3, peeling velocity as a function of the applied tension is shown in Figure 8. Indeed,

the scaling relationship indicated by (48) was observed for different K values, ranging from

10−3 to 1. Similarly, results corresponding to α = 10−3 and α = 10−5 also agree with (48)

(data not shown here).

It’s interesting to point out that experimental observations suggested that the square-

root of the fracture energy of polymer-glass interface is indeed proportional to the logarithm
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of the crack propagation velocity [16], exactly following (48). However, we must also point

out the problem of crack propagation is different from the peel test considered here, so that

experiment did not directly corroborate our findings. Theoretical analyses, similar to that

presented here, have also been conducted to explain the rate-dependency in the fracture

energy of polymer materials [16, 25].

Figure 8: Peeling velocity as a function of the applied tension. Parameters chosen here are
α = 10−4 and θ = π/3.

4 Concluding remarks

In this paper, the adhesion energy between surfaces connected by molecular bonds is con-

sidered. We showed that the adhesion energy strongly depends on how the surfaces are

separated due to the chemical kinetics involved in bond formation and breakage. Two cases

where separation increases linearly, or exponentially, with respect to time are examined in

detail. Scaling relations between the adhesion energy and the separation speed, or the ex-

ponential factor, are derived for each case. As an application, the standard peel test of a
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membrane adhering to a substrate is studied. Based on energy balance arguments, a scaling

relationship between the applied tension and the steady-state peeling velocity is obtained

which agrees well with numerical results.

We hope that findings obtained here can be used to guide the design of future exper-

iments, as well as being tested by them. In addition, we believe this work might be useful

in studying other important problems like the locomotion of biological cells or the rolling

of leukocytes along the vascular wall during inflammation. In cell locomotion, for example,

membrane needs to be peeled away from the extracellular matrix (ECM) continuously at the

trailing edge of motile cells, hence knowing the relationship between the adhesion energy and

peeling velocity, identical to the cell speed in this case, should be important in evaluating

the total energy consumption associated with cell movement, a quantity of great physical,

as well as biological, interest.
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