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Pattern Synthesis of Narrowband Conformal Arrays
Using Iterative Second-Order Cone Programming

K. M. Tsui and S. C. Chan, Member, IEEE

Abstract—A new design method is proposed for the power or
shaped beam pattern synthesis problem of narrowband conformal
arrays, where only the magnitude response is specified. The pro-
posed method iteratively linearizes the non-convex power pattern
function to obtain a convex subproblem in the design variables,
which can be solved optimally using second-order cone program-
ming (SOCP). In addition, a wide variety of magnitude constraints
such as non-convex lower bound magnitude constraints can be in-
corporated. An efficient technique for determining a reasonably
good initial guess to the problem is also proposed to further im-
prove the reliability of the method. Computer simulations show
that the initial guesses so obtained converge to satisfactory solu-
tions while satisfying various prescribed magnitude constraints.
Design results show that the performance of the proposed method
is comparable to the optimal solution previously obtained for uni-
form linear arrays with isotropic elements. Moreover, we show by
means of examples that the proposed method is also applicable
to general non-convex power pattern synthesis problems involving
arbitrary array geometries, arbitrary polarization characteristics
and mutual coupling effect.

Index Terms—Conformal antenna arrays, mutual coupling,
narrowband design, polarization, power pattern synthesis,
second-order cone programming, shaped beam pattern synthesis.

I. INTRODUCTION

HE analysis and design of conformal arrays have re-
T ceived considerable attention because of their flexibility
in attaching to arbitrary surface of vehicles and aircrafts to save
space and capability of offering wide angular coverage and
avoiding boresight error, etc [1]. Unlike conventional arrays
with regular geometry, the element excitations or factors of con-
formal arrays have to be designed by optimization techniques.
In the general synthesis problem of narrowband conformal
arrays, the complex element excitations are optimized so that
the resulting radiation pattern satisfies a desired beam shape
possibly with a specified tolerance. Sometimes it is also neces-
sary to consider the polarization characteristics and directivity
of individual element, which depends on the orientation of the
elements. Fortunately, the radiation pattern is a linear function
of the complex element excitations. Hence if both magnitude
and phase responses of the desired beam shape are specified,
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the overall problem is convex and is closely related to conven-
tional filter design problems [2], [3]. This has attracted much
interest in using efficient convex optimization methods to solve
various beam pattern synthesis problems [4]-[6]. An impor-
tant advantage of convex programming is its ability to satisfy
multiple objectives expressed in terms of a set of linear and
convex quadratic constraints. Moreover, the optimality of the
solution, if it exists, is guaranteed. Efficient pattern synthesis
techniques are useful in predicting the radiation patterns and
configurations of the target array during initial design stage, or
further improving its performance when real measurements are
available.

On the other hand, the pattern specifications are very often
expressed in power (or decibels) and the pattern phase is
generally unimportant, say in applications such as radar and
communication systems. Beam shaping, as in cosecant squared
patterns, is a typical example where phase response is of no
concern. This kind of problem is known as power or shaped
beam pattern synthesis problem, where only magnitude re-
sponse is specified [7]-[13]. Although the resulting problem
is in general non-convex and more than one solution to the
synthesis problem may exist, additional design freedom is
available and hence the performance of the synthesized result is
usually better than the convex beam pattern synthesis problem
mentioned above [13]. It should be noted that the power pattern
synthesis of uniform linear arrays with isotropic elements is
the only exception that convex programming is applicable [7],
[8]. By using the autocorrelation sequence representation of
the excitations, it is possible to find an optimal power pattern
in this simple case. For practical implementation, spectral
factorization is further required to extract the corresponding
complex excitations from the optimal power pattern. How-
ever, these approaches are not suitable for the general array
geometry and directive elements. To cope with the general
non-convex power pattern synthesis problem, various optimiza-
tion methods have also been proposed [9]-[13]. The stochastic
optimization methods, including genetic algorithm [9], particle
swarm optimization [10] and simulated annealing [11], are
very general and flexible frameworks, but their computational
complexities are rather high because the searching methods
involved are random in nature. The semidefinite programming
(SDP) method in [12] focused only on nonuniform linear
arrays with isotropic elements, and it relaxed the non-convex
lower bound constraint and solved a series of subproblems
using SDP. Whereas the iterative least-squares method in [13]
employed a virtual phase response obtained from the previous
iteration and solved a least-squares pattern synthesis problem
successively to improve the synthesized result. However, it is
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somewhat difficult to precisely control the beam pattern and
incorporate inequality constraints, such as prescribed lower
bound constraints.

In this paper, we propose a general design method for
the power beam pattern synthesis problem using iterative
second-order cone programming (SOCP). It extends the iter-
ative methods proposed in [14] and [15] for the design of IIR
and IIR frequency-response masking digital filters to the array
pattern synthesis problem. Although these filter design prob-
lems are highly nonlinear, it is shown that the iterative SOCP
approach is capable of finding better solution than conventional
methods in digital filter design community. The basic idea of
the proposed approach is to linearize the power pattern function
(i.e., the magnitude square of the radiation pattern) of the
conformal array in a neighborhood of the complex excitations
in each iteration. By so doing, the original non-convex problem
is relaxed to a series of convex SOCP subproblems with respect
to the corresponding update vectors around the previous iter-
ates. Hence, the advantages of previously mentioned convex
programming can be utilized. For example, a wide variety
of magnitude constraints can be incorporated easily in the
problem formulation. To ensure the accuracy of the linear ap-
proximation, a norm constraint on the update vector is further
imposed under the SOCP framework. The idea is similar to the
conventional trust region method [16].

As the original problem is generally non-convex, a reason-
ably good initial guess is very important to achieve a good
solution. To this end, we propose a simple way to obtain an
initial guess, which satisfies all the constraints specified in the
original non-convex power beam pattern synthesis problem.
Since non-convex constraints are usually involved, it is not
straightforward to find such initial guess. Fortunately, as men-
tioned earlier, if a suitable phase response is known, the orig-
inal problem can be approximated as a convex programming
problem. Therefore, we propose to employ a virtual phase re-
sponse, which is the average phase of all the elements, so that
the initial guess satisfying all the constraints can be obtained
by solving a convex programming problem. In the simple case
of uniform linear array with isotropic elements, design result
of a cosecant squared pattern shows that the initial guess so
obtained converges to a solution which is comparable to the
optimal solution found using the convex optimization method
in [7]. This suggests that the proposed approach with the above
choice of the initial guess is reliable and efficient in obtaining a
near optimal result. A more complicated example of hemispher-
ical array with circular polarization is also given to demonstrate
the flexibility and effectiveness of the proposed approach in sat-
isfying various magnitude constraints for different polarization
components. Moreover, the proposed method can be readily
extended to solve pattern synthesis problems including the ef-
fect of mutual coupling.

The paper is organized as follows: Section Il is devoted to the
general radiation pattern of conformal arrays with polarization.
In Section III, the proposed iterative SOCP method and efficient
method for determining the initial guess are presented. Design
examples are given in Section IV. Finally, conclusion is drawn
in Section V.
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Fig. 1. Global and local coordinate systems.

II. RADIATION PATTERN OF CONFORMAL ARRAY

Consider a conformal array of N elements located arbitrarily
at a carrier surface. To determine the total far-field radiation
pattern produced by the conformal array at a far-field point
P(r,8,¢), it is more convenient to first consider the field of
individual elements in their own coordinate systems and then
transform the field back to the global coordinate system. Fig. 1
shows the local coordinate system (z!,,y.,z.) of the nth
element with origin at its position p,,, and the global coordinate
system (z,y, z). The element is pointed in the direction of the
2! -axis. The spherical coordinate of the common far-field point
P in the local coordinate system are 7/, 8/, and ¢,. Hence, the
field of the nth element with respect to its coordinate system is
given by

fu(0, ) = ey, fo, (0, ¢,) + day, for, (0, ¢,)  (2-1)
where @ier, = [cos(f!,) cos(¢!,),cos(f!,) sin(¢’,), — sin(’,)]¥
and g, = [—sin(¢,),cos(¢,),0]T are respectively the unit

vectors in the 6/, and ¢/ directions; and feor, (6, ¢! ) and
for (87,4 are respectively the element pattern functions of
the 0/, and ¢!, components. Note these element pattern func-
tions can either be described by a suitable model for simulation
purpose, or obtained from measurements or EM simulations so
as to take the actual radiation properties of real antenna systems
and their mutual coupling into account [24]. Other effects such
as measurement errors and deviation in radiation characteristics
due to the feeding and supporting structures etc are not consid-
ered in our formulation. Regarding real examples and physical
realizations of antenna elements, interested readers are referred
to [25]-[32] for more details.

Since each element has its own position and orientation, coor-
dinate transformation is required so that all the elements’ com-
ponents can be superimposed at the far-field point P(r, 6, ¢) in
the global coordinate system (x, y, z) [17], [18]. More precisely,
we want to express 6, ¢}, 4o, and i, in terms of 6, ¢, 4o
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and w4, where the unit vectors %o and g are defined similarly
as ko, and g, except that §/, and ¢/, are respectively replaced
by 6 and ¢ in global coordinate system.

In general, the coordinate transformation from global coor-
dinate system (x,y, z) to local coordinate system (z.,, y/,, z.)
can be characterized by a rotation matrix M, and inversely by
M ' = MZL. Very often, three separate axis rotations are suf-
ficient to fully describe the position and orientation of the ele-
ment. Interested readers are referred to [17] and [18] for more
details. The relation of the former coordinate transformation is
given by

[0, 4, 20]" = My[z,y,2]". (2-2)

Using this result, ¢/, and ¢/, can be expressed as

Yr,

cos(#,) =z and tan(¢,) =
Lyt

(2-3)

where '&Rgz = [:Ergz s Yrt, s ZTIH]T = MnﬁR; and ﬁR =
[sin(f) cos(¢), sin(f) sin(¢), cos(f)]T is the unit vector in
radial direction.

Next, we consider the polarization components in (2-1) after
coordinate transformation. The basic idea is to first transform
the polarization components into the global coordinate system
and then project these rotated polarization components onto the
polarization components in the global coordinate system. Con-
sequently, the field of the nth element with respect to the global
coordinate system can be expressed as

fu(0,,,¢,)

= do{abM) £1,(0,, ¢} + do{ag M) f1,(6,,,4),)}.  (2-4)

Hence, according to (2-1) — (2-4), the total far-field radiation
pattern of the /V-element array can be written as

E(97 ()ZS) = ﬁ'@E@(a"/ d)) + ﬁ@E<D(07 ¢)
N

E@(av QS) = Z anejkOPZUR qn,@(ev 43)

n=1

(2-5)
(2-6)

and

N
Eo(0,¢) = Y ane/™Putrg, o(0.¢) (27
n=1

where g, 0(0,0) = deM, [, (60),,4,); ana(0,9) =
asMEf (6!, 4.); a, is the complex excitation amplitude
of the nth element; kg = 2m/) is the wave number with
wavelength \; and p,, = [7,,¥n,2,]T is the position vector
of the nth element. More generally, if we denote ., and
1., respectively as the co- and cross-polarization unit vectors
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and assume ., is orthogonal to .y, then the corresponding
polarization components can be expressed as:

Eeo(0,4) = al,E(6,¢) and E.,(0,¢) = a5 E(0,¢) (2-8)

which are also linear functions of a,,. On the other hand, if ei-
ther one of the polarization components is considered, the cor-
responding radiation pattern is given by:

N
Ey(0.6) =Y ane™Prlrg, o (0,4). (29
n=1

Here we assume the subscripts (2-6) — (2-8) are collectively rep-
resented by U for notation simplicity.

III. POWER PATTERN SYNTHESIS

A. General Problem Definition

In pattern synthesis of a conformal array, a commonly con-
sidered problem is to determine the element excitation a,, such
that the radiation pattern approximates a desired beam pattern:

E\I!<0, ¢) ~ M\I/(07 ¢)ejpw(9,¢)7 (07 §/)> € Q\If (3'1)
where My (6, ¢) and py (6, ¢) are respectively the desired mag-
nitude and phase responses of Fy (6, ¢), and Qy is the region
of interest. Note by definition My (6, ¢) > 0 for (6, ) € Qg.
Without loss of generality, subsequent discussions are based on
Eg(8,¢) in (2-9). Similar idea can be directly applied to all
kinds of polarization components defined in (2-6) — (2-8). A
typical pattern synthesis problem is to minimize the maximum
absolute complex approximation error between Ey (6, ¢) and
My (6, $)e?Pv(®:9) That is

min max

3-2
an (8,0)€ >-2)

Ey(8,¢) — My (8, $)ePv @9

Alternatively, the least squares (LS) error criterion [3] and
the maximization of the partial directivity measure [19] are
frequently considered. Since the desired phase response is
given, the error response is a linear function of the complex
excitations a,,. Consequently, all these optimization problems
can be readily formulated as convex programming problem
such as SOCP and SDP [4]-[6]. The main advantages of
these approaches are that additional constraints can be easily
incorporated, and the solution is guaranteed to be optimal if the
overall problem is convex. For example, one may impose the
magnitude constraint in the form of |Ey (6, ¢)| < Ug(6, ¢) to
shape the maximum value of the magnitude response according
to a given function Uy (¢, ¢).

A more challenging pattern synthesis problem is to approxi-
mate only a desired magnitude response, while keeping the de-
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sired phase unspecified. More precisely, one wishes to obtain
the desired magnitude response as

|Ew(0,8)] ~ My(8,¢), (6,¢) € Qu (3-3)
or equivalently, after squaring both sides of (3-3),
|Ba (0,9)]° ~ My (0,9), (6,9) €00 (3-4)

which is a commonly encountered problem in applications such
as radar and communication systems. In fact, this problem is
equivalent to conventional shaped beam or power pattern syn-
thesis problem. The concept is intuitively simple, but the design
problem is unfortunately non-convex in general due to the lack
of the desired phase response.

In this paper, we shall focus on the following problem of
power pattern synthesis based on minimax criterion

|Eg(0,4)] — M3(0, )

min max

3-5
an (0,0)EQw ( )

subject to the following constraint specifying only the bound of
the desired magnitude response:

where Ly (6, ¢) and Uy (0, ¢) are respectively the lower and
upper bound functions of the desired magnitude response and
Ly (0,¢) > 0. Obviously, neither the approximation problem
in (3-5) nor the magnitude constraint in (3-6) is convex in na-
ture due to the lower bound of |Eqg (6, ¢)|”. Hence, the convex
programming methods are not directly applicable.

It should be noted that there are previous attempts in solving
a similar problem in (3-5) possibly with the constraint in (3-6)
using convex programming [7], [8]. However, these approaches
are only suitable for uniform linear array with isotropic elements
(i-e., gn,w (0, $) = 1). For more general cases considered in this
paper, the synthesis problem is usually more difficult, and very
often has to be solved by means of certain forms of problem ap-
proximation through relaxations and iterative methods such as
the approaches in [12] and [13]. In [13], an iterative weighted
least squares method was proposed to iteratively minimize the
sum of squares of the approximation error, while the desired
phase response is varied and updated according to previous it-
erates. It was found that if the desired phase response is appro-
priately chosen in each iteration, the final synthesized result is
usually much better than the case where the desired phase re-
sponse is fixed (i.e., the problem in (3-1)). A disadvantage of
this method is that it is not straightforward to incorporate addi-
tional inequality constraints in the formulation.

B. Problem Formulation

In the subsequent subsections, we shall describe a general de-
sign method for solving the non-convex power pattern synthesis
problem. The proposed method can be viewed as a variant of the
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iterative SOCP filter design methods proposed in [14] and [15],
because we extend these methods to deal with real-valued power
pattern function with complex variables. The main advantage of
the proposed approach is that a wide variety of constraints can
be incorporated because the subproblem in each iteration can be
solved optimally using SOCP.

As an example, we consider the following constrained opti-
mization problem

min max
an (6,0)€Qw 1

subject to
L3(9.4) <|Ew(9,9)]> <UL(0.4), (0.4) € Qu,2(3-Tb)
|Eg(0,9)” >VE(0,¢), (0,0) € Qu3 (3-7¢)

|Ey (0, )" — M3(6, ) (3-7a)

where Q¢ 1, 232 and Qg 3 represent three different regions
of interest, and Vg(#,¢$) > 0 is an additional lower bound
function. Due to the lower bound constraints of |Ee (0, $)|°,
the problem in (3-7) is in general a non-convex optimization
problem. Moreover, it is a very general problem, which covers
the most common types of non-convex objective function and
constraints related to the magnitude-only specification in the
power pattern synthesis problem. For simplicity, we do not con-
sider convex objective function and constraints because they can
similarly be handled without much difficulty. Now we introduce
a slack variable € and reformulate (3-7) as

min €
an,&

subject to |[Ew (6, $)]* — M3 (6, ¢)
Ssv (H,QS) € Q\I/,l
L3 (0,9) <|Bw(0.$)* < U3(8,9). (6,0) € Q2
|Bu (0, $)* 2 Vi (8,9), (6,9) € Qs (3-8)
For notation simplicity, the argument variables (6, ¢) are

dropped in subsequent derivations. First of all, we rewrite (2-9)
more compactly in matrix form as

Ey =a'qy (3-9)
wl'lereyrh a = T[ql, ..ayn]T and  qq =
[e7RoP1 Yrg g ... el*oPNUrgy o]T. Leta = ag + jar, and

¢y and sy be respectively real and imaginary parts of qy.
Then E'y can be rewritten as

Ey = h' {cy + jsu} (3-10)
where h = [a} af]T, ¢ = [& —55]7 and
sy = [5% &u]T. Further, we define the squared magni-
tude response as

Hy(h) = |Ey|” = EyEY = KT Agh (3-11)
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where Ay = cycl, + sysl and E}, denote the complex conju-
gate of Fy. Hence, the problem in (3-8) can be reformulated as

min €

sE

subject to |Hq/(h)—M\%| <e, (0,¢) € Qua
Ly < Hy(h) <UG, (6,¢) € Q2

Hy(h)>VE, (0,¢)€Qu 3. (3-12)

C. Design Methodology

The proposed iterative optimization procedure starts with a
reasonably good initial guess hg. Suppose that after k itera-
tions, we arrive at a point hy. For a smooth function Hg (h) in
a vicinity of hy, we consider a linear approximation of Hg (hy,)
as follows

Hy (hy, + 8) ~ Hy (i) + g3 (hi)6 (3-13)
where gy (hi) = 2Aghy, is the gradient of Hg (h) with respect
to h, evaluated at h = hy, and 6 is the linear update vector such
that hy1 = hy + 6. Substituting h = hj, + § into the problem
in (3-12) and using the linear approximation in (3-13), the new
solution hj1 can be obtained by solving 8. This process is re-
peated until the relative change of two successive solutions is
insignificant or the maximum number of iteration is reached.
Consequently, the problem in (3-12) can be approximated as

min €
6,c

subject to —e < Hy (h)+ g& (hy)6 — M3
§E7 (97¢) € Q\Il,l

Ly < Hy(hi) + 95 (hi)6 <UZ, (6,4) € Qu,»

Hy(hi) + g5 (h)6 >V, (0,0) € Qu 3

[18]] < Srnax- (3-14)

where 0,5 1S a prescribed positive step size bound to ensure

that the linear approximation in (3-13) is sufficiently accurate.

This can also be viewed as a trust region method by restricting

the norm of 8. Note, to ensure that Hy (h) is always positive

by definition, an extra constraint Hy (hi,) + g% (hi)6 > 0 for

(0, ) € Qg1 isimposed, yetitis active only when M\% —e<0.

Since the first three constraints in (3-14) are linear inequali-

ties and the last constraint is a convex quadratic constraint, the

overall problem is convex, which can be solved using either

SOCP with discretization of ¢ and ¢ [7], or SDP without dis-

cretization of 6 and ¢ [8]. In this paper, we only focus on the

former approach. Interested readers are referred to [7] for the
pros and cons of these two approaches.

By defining the set Sy

Sd = S@yd X Sq;.’d (3-15)
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where So.g = {fu,u = 1,...,No} and So g = {dv,v =
1,...,Ng} are respectively two sets containing Ngo and Ng
uniformly sampled points of 6§ and ¢ on the whole range of
interest, the above problem can be casted as the following SOCP

min €
b,c

subject to — e < Hy(hy) + g% (hy)6— M2
Sg? (‘9117¢u) € Q<I>,1 N Sd
Hy(hi) + g5 (hi)8 >0, (8..6.) € Qo010 Sy
s (Ou,d0) € Q2N Sa
s (Ous ) € Qg 3N Sq
[16]] < bimax- (3-16)

Consequently, § can be solved optimally in each iteration.
Moreover, additional linear equality and convex inequality
constraints can be easily incorporated in the above formulation.

It should be noted that the algorithm presented above con-
verges to a local solution due to the linear approximation in
(3-13). Therefore, the determination of a reasonably good ini-
tial guess, which governs the quality of the solution, is impor-
tant. In Section III-D, we shall introduce an efficient technique
to find such an initial guess. As illustrated subsequently in a
representative example to be presented in Section IV-A for the
synthesis of a uniform linear array, the proposed algorithm with
the initial guess so obtained is capable of finding a solution that
is close to the optimal solution obtained using the method in [7].
The good convergence performance of the proposed algorithm
is largely attributed to the global convergence of individual sub-
problem and the sufficiently small norm bound of the update
vector, as suggested in [14] and [15]. The proposed algorithm
might also be viewed as a SOCP-based trust region method with
simplified update steps [16]. A clear advantage of the proposed
method is that the step size and step direction characterized by
the norm bound constraint in each convex subproblem would
be efficiently and optimally handled by well developed inte-
rior-point methods, see [17], [18] and references therein.

Also, a possible way to speed up the convergence is to adap-
tively adjust the norm bound in each iteration. Additional con-
trol mechanism is required to make a good tradeoff between the
accuracy of the linearization and the convergence rate of the pro-
posed algorithm. For simplicity, we do not further explore these
issues and options and will consider them in future work.

D. Initial Design

There are many possible choices of the initial guesses hg, pro-
vided that they are feasible to the original non-convex problem.
In other words, hg should at least satisfy all constraints, while
the actual approximation error in the objective function is less
critical. We propose to find such initial guess by defining a vir-
tual phase response for a given magnitude response. This allows
us to relax the original non-convex problem to a convex problem
so that the constraints can be easily specified under the convex
programming framework described in (3-2). Using this result,
we can easily find an appropriate hg, even though some of the
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constraints, if not all, are in general non-convex constraints as
in (3-7).

As observed in the uniform linear array and other symmetric
arrays with isotropic elements, the desired phase response of
the main beam is always assumed to be zero. In this paper, this
idea is extended to general array geometry and the virtual phase
response is chosen as the average argument (phase) of all the
elements

1 < N
pe(0,0) = 5 D _arg{e P g, 5 (60,0)}  (3-17)
n=1

where arg{e} denotes the argument of a complex number in-
side the bracket. This choice is quite natural in the case of the
uniform linear array (as well as other symmetry arrays) with
isotropic elements because it gives py (¢, ¢) = 0.

Now consider again the problem in (3-7). The non-convex
constraint in (3-7b) can be rewritten as:

where My (6, ¢) and eq (6, ¢) are respectively defined as

[Uw(0,¢) + L (0, 4)]
2

My (8,¢) = (3-19)

and

5 .

ew(0,¢) = (3-20)
With the virtual phase response in (3-17), the constraint in
(3-18) can be approximated by the following convex constraint

Ey(0,0)— My (0, )™ @) < eq(0,4), (0,¢)€Quz.

(3-21)
This constraint is particularly suitable for the case when the
magnitude constraint is specified in decibel scale, which is
frequently encountered in power pattern synthesis problem.
For example, suppose that J\qu,(& ¢) corresponds to a cosecant
beam pattern (in dB), and ey (6, ¢) specifies the maximum
error (in dB) of deviation from Mg (6, ¢). Then, solving the
problem with the constraint in (3-21) results in a beam pattern
|Ew(0,¢)|, which has a specified error of deviation from
My (6, ¢) in decibel scale.

Whereas for the other non-convex lower bound constraint
|Ew(0,¢)|> > VZ(6,) in (3-Tc), the strategy considered in
[4] is employed. To ensure that this nonconvex constraint is
satisfied, we impose a set of linear equality constraints to fix
|Eg (6, ¢)| to values slightly larger than Vg (6, ¢) at several
sample points of (6, ¢). More precisely, the lower bound con-
straint can be approximated using a number of linear equality
constraints as

By (9, ¢x) = [Va (Or, pr) + E]eiPrOr-05) (3-22)
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Ok, ¢r) C Quz, fork = 1,2..., K, where ¢ is a small posi-
tive constant and K is a positive integer. Note it is unnecessary
to impose too many equality constraints because our primary
objective is merely to ensure (3-7c) is satisfied. Using the above
results, the initial guess for the problem of (3-7) can be obtained
by solving the following convex problem

Ey(0,¢) — My (6, $)eiPr (@9

min 1max

hy (0,6)€Qu 1 (3-23)

subject to the constraints in (3-21) and (3-22). The initial guess
found in this way is reasonable because the original non-convex
problem in (3-7) is similar to a minimax problem after lineariza-
tion. Alternatively, it is possible to use LS objective function
instead of the minimax objective function in (3-23). However,
computer simulations suggest that the LS initial guess gener-
ally leads to a slightly slower convergence although the resulting
beam pattern is nearly identical to that obtained using the above-
mentioned initial guess. For simplicity, we shall stick with the
initial guess obtained by solving (3-23).

E. Design Procedure

Without loss of generality, we particularly describe the gen-
eral design procedure for the power pattern synthesis problem
considered in (3-7). It is easy to modify the procedure for a va-
riety of pattern synthesis problems with more complicated array
settings, as we will illustrate in Section IV. Given number of
elements N, array geometry, element pattern function f, and
desired power pattern, the procedure can be summarized as fol-
lows:

Step 1: Define the virtual phase response py (6, ) in the
non-sidelobe region according to (3-17), derive the
convex constraints from the original non-convex
constraints according to (3-18) — (3-22), and for-
mulate and solve the resulting convex optimization
problem in (3-23) for an initial guess hg.

Set iteration number k = 1, linearize the power pat-
tern function Hy (hx+6) according to (3-13), define
the maximum norm bound 6,,,., and formulate and
solve the convex optimization problem in (3-16) for
a linear update vector 6.

Update the solution hy 1 = hy + & and increase &
by one. Repeat from Step 2 until the relative change
of two successive solutions is insignificant or the
maximum number of iteration is reached.

Step 2:

Step 3:

IV. DESIGN EXAMPLES

In the following examples, the maximum norm of the linear
update vector & is chosen as 8. = 1 x 1073, § and ¢ are
respectively discretized into Ng = 901 and Ny = 1801 equally
spaced samples for an increment of 0.2° per sample over the
whole range of interest. All the SOCP optimization problems
were solved by the CVX Matlab Toolbox [20] on a Pentium 4
personal computer.

A. Example 1: Uniform Linear Array

In this example, the power pattern synthesis of a uniform
linear array with isotropic elements is considered. Since the ap-
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Fig. 2. Uniform linear array geometry.

proach in [7] is capable of giving an optimal pattern in this
simple case, a comparison with this approach will be consid-
ered below. Such optimal result provides a gold standard to as-
sess the performance of the proposed approach in this particular
problem.

Consider the uniform linear array of N elements shown in
Fig. 2, where the array lies on the z-axis and has a center of
symmetry at z = 0. Let d be the distance between two adja-
cent elements. The position vector of the nth element is then
given by p,, = [0,0,2,]"; 2, = d[(N —1)/2 — (n — 1)] and
hence we have pliip = 2, cosf forn = 1,..., N. Since coor-
dinate transformation is not required for linear array geometry
and ¢, v (0, $) = 1 for isotropic elements, the radiation pattern
of the uniform linear array is simply given by

N
Ey(0) =) apeltornco? (4-1)
n=1

according to (2-9). Also, it is independent of ¢-direction.

As an illustration, suppose that we want to synthesize a beam
pattern having minimum sidelobe level for § € Q3 and a cose-
cant squared main beam Cyqp(f) (in decibel scale) with max-
imum allowable error +0 dB for § € QY B, together with a
prescribed upper bound magnitude constraint for § € Q5 2. The
problem can be formulated as

min €
an,e

subject to |[Eg(0)|® <e, 0 € Q3"
Ly(0) <|Bw(0)° <UL(9). 0 € Qyf”
|Ey(0)]” <p, 6€QFP

where Ly (6) = 10[Ca8(#)=91/20 and Uy, (9) = 10[Can(®)+1/20,
The array pattern with the following parameters: N = 31; d =
0.5); 0 = 0.2; QB € [95°,120°]; QY8 € [90°,95°]; u = 1,
and Q3L € [0,90°] N [125°, 180°] will be considered below.
For comparison purpose, we use the method in [7] (Matlab
code is available in [20]) to solve the problem in (4-2). Its
basic idea is to reformulate (4-2) with respect to the autocor-
relation of a,,, so that |Ey(#)]” becomes a linear function of
the autocorrelation coefficients. Hence, the equivalent linear

(4-2)
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programming problem can be solved optimally. For practical
implementation, an additional step of spectral factorization is
required to extract a,, from the optimal autocorrelation coeffi-
cients. Fig. 3(a) and (b) show respectively the patterns obtained
after convex optimization and spectral factorization. We notice
a slight difference between these two patterns because of the
numerical error caused by spectral factorization, especially
when N is large. That is, the factorized result may not exactly
assemble the optimal autocorrelation coefficients in the reverse
process. Nevertheless, we only focus on the optimal pattern
derived from the autocorrelation coefficients.

From the discussions in Section III-C, an initial guess of the
proposed algorithm is first obtained by solving the following
convex problem:

min &

Ay

subject to |Fy(8)| <&, 8 € QgF
Ey(0) — My(0)| <ew(), 0 € Qyf?
By (0)] <u®°, 0 € Qy”

LY}

IN

(4-3)

where My (6) and ey () are defined according to (3-19) and
(3-20), respectively. Here, 2 corresponds to ¢ in the original
problem in (4-2). Note, in the second constraint, the corre-
sponding virtual phase response pg(f) is equal to zero as
defined in (3-17). Fig. 3(c) and (d) show respectively the initial
and proposed array patterns. We can see that the proposed
pattern have a much better sidelobe attenuation than the initial
pattern, because the problem in (4-3) ignores the phase infor-
mation and hence more degree of design freedom is available.
Also, the proposed pattern converges to a solution which is very
close to the optimal pattern shown in Fig. 3(a), even though the
initial guess is far away from the optimal solution. This suggests
the proposed iterative method is effective in approaching the
optimal solution.

Regarding the design complexity of the proposed method,
each iteration is solved in about 5 seconds, thanks to the efficient
SOCP solver. The number of iterations and the design time may
increase with the numbers of variables and constraints involved,
but the design complexity is still affordable for nowadays per-
sonal computers.

Next, we shall demonstrate the effectiveness of the proposed
approach by considering a more difficult power pattern syn-
thesis problem of conformal arrays with arbitrary array geome-
tries and polarization characteristics, where no optimal solution
is guaranteed in general.

B. Example 2: Hemi-Spherical Array

In this example, the power pattern synthesis of a hemi-spher-
ical array with circular polarization is considered. As mentioned
earlier, the convex programming methods in [7] and [8] are not
directly applicable to such nonlinear array geometry and direc-
tive elements.

For simulation purpose, we follow the common practice used
in related studies and assume that the radiation characteristics
of each element are described by certain established empirical
models. The use of such model not only helps us to verify the
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Fig. 3. Synthesized power patterns obtained using (a) optimal autocorrelation coefficients, (b) complex excitations factorized from autocorrelation coefficients,
(c) initial complex excitations, and (d) proposed complex excitations. MBE: Main Beam Error.

usefulness of the proposed approach more conveniently, but also
allows the antenna designers to predict the radiation pattern of
the target array and determine the required configurations, such
as the number of antennas used and their locations, to meet a
given specification before proceeding to construct the real an-
tenna system. Once the real system has been constructed, it is
also possible to use the measured element radiation patterns in
the problem formulation so as to perform final tuning of the re-
sultant beam pattern.

As an illustration, the individual element pattern is assumed
to be the lowest order circular patch model used in [13] as fol-
lows

for, (0, ¢) = {6”/"14@(9%) 0, € [0,90°]
I 0 otherwise
f@/ (0/ ¢/ ) — { —jej¢’ﬂ (COS 0%)14@(9;1) 0% c [0,900]
s 0 otherwise
(4-4)

where Ag(0),) = J2(0.557siné),) — Jo(0.557sin b)) and
Ag(0),) = J2(0.55msinbl,) + Jo(0.557 sin 0.,). Following
[21], an isosahedron type of element distribution is used in the
hemi-spherical array and it is given by the following parame-
ters:

ap =pl15°, p=10,1,2,3 (4-5a)

0 p=0andqg=0

Poq = (%) 72° p=1,2,3andq=0,...,5p— L.

(4-5b)

In this distribution, the average element spacing is approxi-
mately given by 0.3Ry, where Ry is the radius of the sphere
(Ry = A in this example). Fig. 4 shows the corresponding array
geometry, in which the polar coordinate of each element is
(Ry, vy, Bpq) and there are N = 31 elements. All the elements
are assumed to be pointed towards the radial direction. For
coordinate transformation mentioned in Section II, the required
rotation matrix of the element located at (R, v, Bpq) is given
by

cosap, 0 —sinoy, cosBpq sinflpy O
M,, = 0 1 0 —sinfB,; cosfB,, 0
sina, 0 cosaq 0 0 1

After simple re-indexing to replace p and ¢ by n, the polarization
components of the array in the elevation and azimuth directions
can be respectively expressed in term of a,, according to (2-6)
and (2-7).

Now suppose that we want to synthesize a beam pattern
having the following desired properties:
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Fig. 4. Hemi-spherical array geometry with radius Ry = A.

i) Desired co-polarization component | Eg (6, ¢)|*:

€[-0.1dB,0.1dB]
<-15dB
to be minimized

f € [-5°,5°] and ¢ € [0°,180°]
6 €[—30°, —20°] and ¢ € [0°, 180°]
6] € [20°,90°] and ¢ € [0°,180°].

ii) Desired cross-polarization component | Eg (6, ¢)|*: to be
minimized, § € [-90°,90°] and ¢ € [0°,180°].

In other words, the problem objective is to minimize the
sidelobes and cross-polarization simultaneously. Also, the
beam pattern is shaped to have a flat magnitude response
for # € [-5°5°] and ¢ € [0°,180°], and a prescribed
sidelobe attenuation of —15 dB for § € [-30°,—20°] and
¢ € [0°,180°]. Note that we only consider the space for z > 0
(i.e., 0 € [-90°,90°] and ¢ € [0°,180°]), because the radiation
field at lower half of the sphere is negligible according to the
element pattern function and array geometry we respectively
defined in (4-4) and (4-5). Equivalently, the problem can be
posed as:

min €
An €

subject to 1070:1/10
< |Bo(8,¢)” <1010 9 € [-5°,5°] N ¢ € [0°,180°]

|Eo (8, ¢)]” <10715/10 g [-30°, —20°] N $€[0°,180°]
|Bo (6, ¢)* <e, |0] € [20°,90°] N ¢ € [0°,180°]
|Es(0,)]* <e, 0€[—90°,90°]N¢e[0°,180°].  (4-7)

The corresponding convex problem for determining the initial
guess can be written as:

min €
Ap €

subject to |Ee (6, ¢) — Mo (8, p)e’Pe®)
<eo(h, pr), 0 €[-5°,5°]N ¢ € [0°,180°]
|Eo (6, $)| <1071/20 g € [-30°,-20°] N ¢ € [0°,180°]
|Eo(8, )] <&, |0] € [20°,90°] N ¢ € [0°,180°]

|Es(0,4)] <&, 6€[-90°,90°] N € [0°,180°]  (4-8)

where jo (6, $), Mo(f,¢) and eo (6, ¢) are determined ac-
cording to (3-17), (3-19) and (3-20), respectively. Fig. 5
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compares the results of the initial and proposed co- and
cross-polarization patterns. It can be seen that the proposed
patterns satisfy all the required constraints, while achieving
much lower sidelobes and cross-polarization than the initial
pattern. This illustrates the design flexibility and freedom of
the proposed approach in handling non-convex magnitude
constraints in general power pattern synthesis problems.

C. Example 3: Circular-Arc Array With Mutual Coupling

It has been demonstrated that the radiation pattern is signifi-
cantly degraded when mutual coupling is not considered [22]. In
this example, we extend the proposed pattern synthesis method
to include the effect of mutual coupling. To this end, we first
rewrite (3-9) as:

Ey = (Ca)"qq (4-9)
where the interaction among the elements are characterized by
a (N x N) complex matrix C called mutual coupling matrix.
In general, the coefficients of C' are difficult to determine ana-
lytically, but can be calculated using numerical techniques sug-
gested in [1]. Consequently, the proposed method can be applied
to handle the mutual coupling effect if g, in (3-9) is replaced by
CTq\I, and subsequent steps described in Section III are derived
similarly.

As a comparison, we focus on the same array settings and
specifications studied in [22], wherein an 18-element cir-
cular-arc array with radius Ry = 4.3 is considered. The array
is placed on the = — y plane and only the horizontal plane (i.e.,
the elevation angle of § = 90°) is considered. The spacing of
adjacent elements is 0.53)\. The azimuth location of the nth
elementis 3, = AB(N —2n+2)/2,n =1,...,N and A8
is the angular separation. Each element has a cosine isolated
pattern, which is given by fy (¢),) = max{cos¢!,,0}. To
calculate the total radiation pattern, each element undergoes a
coordinate transformation with the rotation matrix

cosfB, sinf, 0
M, =|—-sinf8, cosB, 0 (4-10)
0 0 1

A cosecant main beam with unequal sidelobe level is syn-
thesized according to the pre-defined pattern masks shown as
dashed lines in Fig. 6(a). Using the notations defined previ-
ously, the pattern masks can be translated into the following
specifications

<-20dB $€[—180°,0°]

Ea ()] € [-2dB,0dB] ¢ € [5°,10°]
VW) € [Cap(9)—2dB, Cap(¢)] ¢ € [10°,35°]
< -30dB ¢ € [40°,180°]

4-11)
where Cyqp(¢) denotes the cosecant squared function in decibel
scale.

In [22], the alternating projection method is used to find a
pattern lying within the required pattern masks. The resulting
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Fig. 5. (a) and (b) Synthesized results of the initial co- and cross-polarization power patterns. (c) and (d) Synthesized results of the proposed co- and cross-
polarization power patterns. Solid lines represent the power patterns in discretized ¢-planes and dashed lines represent the prescribed pattern constraints (excluding

the main beam constraint for clarity).

pattern shown in Fig. 6(a) almost fulfills the requirements, ex-
cept for a portion of the pattern near the band edge. In particular,
the worst case errors deviated from the desired specifications
in (4-11) are 0.545 dB (¢ = 0°), 0.049 dB (¢ = 5°), 0.247
dB (¢ = 35°) and 1.776 dB (¢ = 40°), respectively. On the
other hand, the proposed method is employed to minimize the
sidelobe level at ¢ € [40°,180°], while the other pattern re-
quirements are left as constraints to the minimization problem.
From Fig. 6(b), the sidelobe level of the proposed pattern at
¢ € [40°,180°] is found to be —29.6 dB, while the prescribed
specifications in other three regions of ¢ are precisely satisfied.
Comparing with the pattern obtained using the alternating pro-
jection method, the proposed pattern has slightly better perfor-
mance in every target regions of ¢ defined in (4-11). The main
reason is that the alternating projection method aims at finding
a suitable pattern that closely matches with the pattern masks,
rather than optimizing the pattern according to the masks, as
suggested in a comprehensive work for this method [23]. There-
fore, the resulting pattern is in general not guaranteed to satisfy
all the requirements, especially when the masks are not chosen
properly. However, it is not always straightforward to find such
masks because we do not have prior knowledge on the ultimate
performance of the array at hand. For example, if the required
sidelobe level at ¢ € [—180°,0°] is increased to —15 dB, one
has to define the masks at ¢ € [40°,180°] in a trial and error
manner. For the proposed method, such intervention is not re-

quired. Fig. 7(a) shows another optimized power pattern ob-
tained by setting the maximum sidelobe level at ¢ € [—180°,0°]
to —15 dB. We can see that the sidelobe level at ¢ € [40°, 180°]
is now minimized to about —32.7 dB. Of course, if this minimal
value is employed as the upper mask at ¢ € [40°,180°] in the
alternating projection method, a reasonably good pattern that al-
most satisfies the masks can still be obtained. Nevertheless, the
proposed method is able to provide more accurate results than
the alternating projection method in most cases.

We now illustrate the effect of mutual coupling by repeating
the synthesis problem without taking the mutual coupling into
account for the desired pattern where the maximum sidelobe
level is set to —15 dB at ¢ € [—180°,0°]. The degradation of
the resulting pattern due to mutual coupling is demonstrated in
Fig. 7(b). We can see that it significantly deviates from the de-
sired specifications as the mutual coupling is not compensated.
This suggests that the proposed method provides an attractive al-
ternative to conventional methods for solving the general power
pattern synthesis problem of conformal arrays with the effect of
the mutual coupling. Table I summarizes the dynamic range ra-
tios for all array excitations designed in Examples 1, 2 and 3.
Those obtained using the proposed method are all reasonable.

V. CONCLUSIONS

An iterative SOCP method for the power pattern synthesis
of narrowband conformal arrays is presented. The non-convex
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Fig. 6. Synthesized power patterns including mutual coupling effect, obtained using (a) the alternating projection method, and (b) the proposed method. Dashed
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Fig. 7. (a) Synthesized power pattern including mutual coupling effect. (b) Synthesized power pattern excluding mutual coupling effect. Dashed lines show the

required pattern masks.

TABLE I
DYNAMIC RANGE RATIOS IN EXAMPLES 1, 2 AND 3.
Dynamic Range Ratio

Example 1

Spectral factorization (Fig. 3b) 9.1989

Initial guess (Fig. 3¢) 35.9446

Proposed method (Fig. 3d) 7.7371
Example 2

Initial guess (Fig. 5a and 5b) 171.0002

Proposed method (Fig. 5c and 5d) 28.4675
Example 3

Alternating projection (Fig. 6a) 19.8979

Proposed method (Fig. 6b) 7.5617

Proposed method (Fig. 6¢) 5.8526

Proposed method (Fig. 6d) 6.3996

power pattern synthesis problem is solved via a sequence of
linear approximations in which each subproblem is solved using
SOCP. Design results show that the proposed method is an at-
tractive alternative to traditional design methods in tackling a
wide range of pattern synthesis problems with various types of
magnitude constraints, because of its generality and flexibility.
In particular, the proposed method is able to design a power
pattern that is close to the optimal one in the case of uniform
linear array with isotropic elements, and is also applicable to
more complicated power pattern synthesis problems involving

arbitrary array geometries and polarization characteristics, and
mutual coupling effect.

The proposed method can also be extended to handle the
model errors, say due to inexact radiation characteristics and
location of antenna elements. By treating the unknown errors
as random variables with appropriate bounds specified by the
antenna designers, the corresponding uncertainties can be taken
into account in the design procedure to reduce the sensitivity
of the designed pattern at the expense of slightly degraded per-
formance. This is usually referred to as the robust beamformer
design problem. Due to page limitation, we will report this in-
teresting problem in future work.
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