
ARTICLE IN PRESS IPL:3970

JID:IPL AID:3970 /SCO [m3G; v 1.11; Prn:27/10/2008; 16:15] P.1 (1-4)

Information Processing Letters ••• (••••) •••–•••
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A note on on-line broadcast scheduling with deadlines

Xin Han a,∗, He Guo b, Dawei Yin a, Yong Zhang a

a Department of Computer Science, The University of Hong Kong, Hong Kong
b School of Software, Dalian University of Technology, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 March 2008
Received in revised form 4 July 2008

Communicated by C. Scheideler

Keywords:
Online algorithms
Broadcast scheduling
Competitive ratio

In this paper, we study an on-line broadcast scheduling problem with deadlines, in which
the requests asking for the same page can be satisfied simultaneously by broadcasting
this page, and every request is associated with a release time, deadline and a required
page with a unit size. The objective is to maximize the number of requests satisfied by
the schedule. In this paper, we focus on an important special case where all the requests
have their spans (the difference between release time and deadline) less than 2. We give
an optimal online algorithm, i.e., its competitive ratio matches the lower bound of the
problem.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Broadcasting technologies receive a lot attention on
networks that employs broadcasting to disseminate data
or information. In contract to the traditional point-to-point
mode of communication, broadcasting technologies have
an advantage that one broadcast by the server can simulta-
neously satisfy requests required from multiple clients for
an identical message. In this paper, we focus a pull-based
model of broadcast scheduling problems, which is formal-
ized as below.

Problem description. There is a collection of pages S =
{1, . . . ,n}, in the server. The clients send requests to ask for
these pages and each request has a release time, deadline
and a distinct page to ask for. The server answers requests
by broadcasting pages. Note that a broadcast of a page can
satisfy all the requests asking for the same page simulta-
neously and there is at most one page to be broadcasted at
any time During broadcasting, the preemption is allowed,
but if the broadcast of a page is preempted, then in case
the server choose this page to broadcast again, it must
from the start point not the break point, we call this as

* Corresponding author.
E-mail addresses: xhan@cs.hku.hk (X. Han), guohe@dlut.edu.cn

(H. Guo), dwyin@cs.hku.hk (D. Yin), yzhang@cs.hku.hk (Y. Zhang).
Please cite this article in press as: X. Han et al., A note on on-line broadcast sch
doi:10.1016/j.ipl.2008.10.002

0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.10.002
preemption with restart. When the request for the page that
currently broadcast arrives it must be kept in the queue of
unsatisfied requests.

In this paper, we consider each page has an unit size,
i.e., any page can be broadcasted during one time unit,
and the requests arrive over time. The scheduling algo-
rithm used by the server has no knowledge of requests
in advance and makes decisions only with information of
requests having already arrived. We call this on-line broad-
cast scheduling. There are two models, discrete and con-
tinuous models. In discrete model, the arrival times and
deadlines for all the requests are integral. For the online
version of discrete model. Kim and Chwa [10] gave a best
possible online algorithm with competitive ratio 2. Since
new requests may arrive and end any time, the continuous
model is more general, and is well-studied during these
years. The main objectives are minimizing the flow time
(response time) and maximizing the total throughput, i.e.,
the number of satisfied requests.

Previous results. Most of the previous works on on-line
broadcast scheduling focus on minimizing the flow time
[1–4,6–8,11]. On maximizing the throughput of on-line
broadcast scheduling, Kim and Chwa [10] first gave a
5.828-competitive algorithm, then Chan et al. [5] showed
that the competitive ratio of algorithm in [10] is at most 5.
Recently, Zheng et al. [13] obtained a new on-line algo-
eduling with deadlines, Information Processing Letters (2008),

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:xhan@cs.hku.hk
mailto:guohe@dlut.edu.cn
mailto:dwyin@cs.hku.hk
mailto:yzhang@cs.hku.hk
http://dx.doi.org/10.1016/j.ipl.2008.10.002

ARTICLE IN PRESS IPL:3970

JID:IPL AID:3970 /SCO [m3G; v 1.11; Prn:27/10/2008; 16:15] P.2 (1-4)

2 X. Han et al. / Information Processing Letters ••• (••••) •••–•••
rithm by looking forward two steps and proved that the
competitive ratio is at most 4.56. The lower bound of
maximizing the throughput of on-line broadcast schedul-
ing is 4 which is from a related on-line interval schedul-
ing problem [12]. Fung et al. [9] first studied this on-line
broadcast scheduling problem with laxity (the span of a
request, i.e., the difference between deadline and release
time) constraints, and got some results as below. If all the
requests have their laxity at least 2 then a nice and sim-
ple online algorithm with competitive ratio 2.618 is given.
If all the requests have their laxity at most α < 2, then
an f (α)-competitive algorithm can be achieved, where
4 < f (α) � 4.714. For off-line broadcast scheduling prob-
lem, maximizing the throughput is NP-hard [4].

Our contributions. In this paper, we focus on maximizing
the throughput and give a 4-competitive algorithm if all
the requests have laxity less than 2, which is optimal since
the lower bound of this problem is also 4.

2. Preliminaries

A request Ri is defined as a triple (pi, ri,di), where pi
is the requested page, ri and di are its release time and
deadline, respectively.

Definition 1 (Laxity). For a request R = (p, r,d), its laxity
is defined as (d − r).

Definition 2 (Alive and dead). Given a request R = (p, r,d),
if (d − t) � 1 then we say the request is alive at time t ,
otherwise, dead at time t .

For a request R = (p, r,d), at time t its weight W (R, t)
is defined as the following table, i.e., if it is alive at time t
then its weight is 1 otherwise 0.

d − t (−∞, 1) [1, +∞)

Weight 0 1

For a page P , its weight W (P , t) is defined as the number
of all requests alive at time t in a pending list, i.e.,

W (P , t) =
∑

pi=P

W (Ri, t).

Definition 3 (Competitive ratio). To evaluate an online al-
gorithm, we use the standard measure called competitive
ratio. For any input sequence L, let A(L) be the cost by an
online algorithm A and OPT(L) be the cost by an optimal
off-line algorithm. The competitive ratio of algorithm A is
then defined as R A = supL

OPT(L)
A(L)

.

3. A tight upper bound for laxity less than 2

We first give an on-line algorithm then show that its
competitive ratio is 4 which matches the lower bound [12].
Our algorithm is quite similar with ones in [5,10]. The
main ideas of our algorithm are: (i) whenever we decide
Please cite this article in press as: X. Han et al., A note on on-line broadcast sch
doi:10.1016/j.ipl.2008.10.002
Algorithm 1. Weighting Pages (WP)

1: Initialize the profit W , i.e., W ← 0.
2: while (request-arrival or broadcast-completion) do
3: {
4: request-arrival: Put new requests into the pending list.
5: if W (Pa, t) � 2 · W then
6: Aborted page Pc , go to selection step (including the case Pa = Pc).
7: end if
8: broadcast-completion: Remove the requests satisfied, go to selection

step if the pending list is not empty,
9: selection: Select a page P such that W (P , t) is maximized (break a tie

arbitrarily), and broadcast the page P and W ← W (P , t), where t is
the current time.

10: }

to broadcast a page, the page with the maximal weight is
selected to be served; (ii) when a new request for page pa

arrives if to start broadcasting page pa can double the
profit (i.e., throughput), then we abort broadcasting the
current page, and put the new request into a pending list
and select a page with the maximal weight and broadcast
that page (this is the difference between our algorithm and
the ones in [5,10]). Otherwise, continue to broadcast the
current page and put the new request in the pending list.

Let Pa be the page of a new request which arrives at
the current time t , let Pc denote the currently broadcast
page if it exists. Our algorithm is described (see Algo-
rithm 1).

We first define a concept called basic chain and observe
an important property related to it. Then, we divide the
broadcasts by our algorithm into a set of basic chains and
combine the property to get an upper bound 4 for the
competitive ratio.

Definition 4 (Basic chain). For i � j, a sequence of broad-
casts (Pi, Pi+1, . . . , P j) is called a basic chain if pages
Pi, . . . , P j−1 are aborted broadcasts and page P j is a com-
pleted broadcast, and the broadcast just before Pi is empty
or a completed broadcast.

Theorem 1. For any input list of requests with laxity less than 2,
the competitive ratio of our algorithm is 4.

Proof. Let the sequence of broadcasts (P1, P2, . . . , P j) be
the first basic chain generated by our on-line algorithm.
Let (P∗

1, P∗
2, . . . , P∗

m) be the first pages broadcast by an
optimal scheduling such that the starting point of broad-
casting page P∗

m is sat in the time interval for broad-
casting page P j , shown as Fig. 1 (if P∗

m does not exist,
then we set P∗

m as a dummy page). Let time ti (t∗
i) de-

note the starting point of broadcasting page Pi (P∗
i) for

1 � i � max{ j,m}. Without loss of generality, assume that
(t∗

i+1 − t∗
i) � 1 for 1 � i � m otherwise we can get another

optimal schedule by broadcasting P∗
h at time t∗

h except for
page P∗

i and doing nothing during [t∗
i , t∗

i+1).
Now, for 1 � i � j, we define a set of intervals,

Ii = [ti, ti+1), where t j+1 = t j + 1. For an input list L,
let A(L) and OPT(L) be the number of requests satisfied
by our algorithm and an optimal schedule respectively. For
1 � i � m, let x∗

i be the number of requests which are sat-
isfied by broadcasting page P∗ in the optimal schedule.
eduling with deadlines, Information Processing Letters (2008),

i

ARTICLE IN PRESS IPL:3970

JID:IPL AID:3970 /SCO [m3G; v 1.11; Prn:27/10/2008; 16:15] P.3 (1-4)

X. Han et al. / Information Processing Letters ••• (••••) •••–••• 3
Fig. 1. Page P∗
m starts in time interval [t j , t j + 1).
Remember that the whole sequence of broadcasts (P1,

P2, . . . , P j) by our algorithm is a basic chain. Then we
have the following observation.

Claim 1. For 1 � i � m, x∗
i � 2i+1−m W , where W = W (P j, t j).

Proof. Recall that t∗
i is the start time to broadcast page P∗

i .
For 1 � i � m, we have

(
t∗

i+1 − t∗
i

)
� 1. (1)

On the other hand, the whole sequence of broadcasts
(P1, P2, . . . , P j) by our algorithm is a basic chain, by the
definition of a basic chain, for 1 � i � j we have

ti+1 − ti � 1. (2)

Let I f = [t f , t f +1) be the interval such that t∗
i ∈ I f . By (1)

and (2), we have the number of broadcasts during [t f , t j]
by our algorithm is not less than the number by the opti-
mal schedule during [t∗

i , t∗
m], i.e.,

(j − f) � (m − i) ⇒ f � j − (m − i) = j + i − m. (3)

According to algorithm WP, for any page P , we have

W (P , t f) � 2 f − j W (P j, t j) = 2 f − j W . (4)

Let t′
i be the time when the last request for page P∗

i re-
leased at or before time t∗

i in the input list. Let t′′
i =

max{t f , t′
i}. According to algorithm WP, at time t′′

i there
is a comparison between W (P∗

i , t′′
i) and W (P f , t f). Since

page P f is broadcast at time t′′
i by our algorithm, we have

W
(

P∗
i , t′′

i

)
< 2W (P f , t f). (5)

By inequalities (3)–(5), we have

W
(

P∗
i , t′′

i

)
� 2i+1−m W . (6)

Let x′′
i be the number of requests for page P∗

i which are
alive at time t′′

i . By the definition of x′′
i and t′′

i � t∗
i , we

have

x∗
i � x′′

i . (7)

By (7) and (6)

x∗
i � W

(
P∗

i , t′′
i

)
� 2i+1−m W . � (8)

Next we are going to bound OPT(L), i.e., the through-
out by the optimal schedule. Without loss of generality,
broadcasts generated by our algorithm and the optimal al-
gorithm looks like Fig. 1.

We prove this theorem by mathematical induction over
the number of basic chains produced by our algorithm.
Please cite this article in press as: X. Han et al., A note on on-line broadcast sch
doi:10.1016/j.ipl.2008.10.002
First, we prove that the theorem holds if the whole broad-
cast generated by algorithm WP is a basic chain. Then we
assume that the theorem holds for the case in which there
are h basic chains. Finally, we prove that the theorem still
holds for (h + 1) basic chains.

Step 1. There is only one basic chain in the whole
broadcast generated by our algorithm. In this case, we
prove P∗

m is the last page in the optimal schedule. Oth-
erwise there is at least one request alive at time t∗

m + 1,
where t∗

m � t j . Since all the requests have laxity less than
2, the alive request must be released after t j . So, the re-
quest would have been broadcasted by our algorithm after
t j + 1. But, this contradicts with the fact that the whole
sequence of broadcasts (P1, P2, . . . , P j) generated by our
algorithm is one basic chain. So page P∗

m is the last page
in the optimal schedule. By Claim 1, we have

OPT(L) =
m∑

i=1

x∗
i �

m∑

i=1

2i+1−m W

= 4W

2m

m−1∑

i=0

2i � 4W = 4A(L).

Step 2. Assume that this theorem holds when there
are h basic chains in the whole broadcast generated by
our algorithm, where h � 1. Next we consider the case in
which there are h + 1 basic chains in our broadcast. First,
we define four sublists of requests. We define L2 as the
sublist of requests that will be considered by our algo-
rithm after time t j + 1, i.e., the sublist of requests with
release time at least t j + 1 or requests which are still alive
at time t j + 1 (t∗

m + 1) and not satisfied by our algorithm
before t j + 1. In the same way, we define L∗

2 as the sublist
of requests that will be considered by the optimal schedule
after t∗

m + 1, i.e., L∗
2 is the sublist of requests with release

time at least t∗
m +1 or requests which are still alive at time

t∗
m + 1 and not satisfied by the optimal algorithm before

time t∗
m +1. Let L1 = L − L2 and L∗

1 = L − L∗
2. By definitions,

L1 is the sublist of requests with release time before t j + 1
and not alive at time t j + 1, i.e, requests with release time
before t j + 1 and not satisfied, or requests satisfied before
t j + 1. Observe that for any request R ∈ L1, if request R is
not satisfied by algorithm WP, then request R is not alive
at time t j + 1, therefore R is not alive at time t∗

m + 1 too,
where t∗

m � t j . Then R /∈ L∗
2. If request R is satisfied by al-

gorithm WP before t j +1, then it is not alive at time t∗
m +1

since every request has laxity less than 2. So, in both cases,
we have R /∈ L∗

2, where R ∈ L1. Then

L∗
2 ⊆ L2 = L − L1. (9)

To estimate the throughput by algorithm WP and the op-
timal algorithm, we need to modify L2 and L∗

2 slightly. For
every request in L2 (∈ L∗), if its release time is at least
eduling with deadlines, Information Processing Letters (2008),

2

ARTICLE IN PRESS IPL:3970

JID:IPL AID:3970 /SCO [m3G; v 1.11; Prn:27/10/2008; 16:15] P.4 (1-4)

4 X. Han et al. / Information Processing Letters ••• (••••) •••–•••
t j + 1 then just copies it into L1
2 (L∗1

2) else modifies its re-
lease time to t j + 1 then copies it into L1

2 (L∗1
2). For every

request in L∗
2, if its release time is at least t∗

m + 1 then just
copies it into L∗2

2 else modifies its release time to t∗
m + 1

then copies it into L∗2
2 . By the above definitions and (9),

we have

OPT
(
L1

2

)
� OPT

(
L∗1

2

)
� OPT

(
L∗2

2

)
, (10)

A(L) = A(L1) + A
(
L1

2

)
, (11)

OPT(L) = OPT
(
L∗

1

) + OPT
(
L∗2

2

)
. (12)

And by the assumption for h basic chains and Claim 1, we
have

4A
(
L1

2

)
� OPT

(
L1

2

)
and 4A(L1) � OPT

(
L∗

1

)
. (13)

So,

4A(L) = 4
(

A(L1) + A
(
L1

2

))
by (11)

� OPT
(
L∗

1

) + OPT
(
L1

2

)
by (13)

� OPT
(
L∗

1

) + OPT
(
L2∗

2

)
by (10)

= OPT(L) by (12)

Hence, this theorem holds. �
Please cite this article in press as: X. Han et al., A note on on-line broadcast sch
doi:10.1016/j.ipl.2008.10.002
References

[1] N. Bansal, M. Charikar, S. Khanna, J. Naor, Approximating the average
response time in broadcast scheduling, in: SODA, 2005, pp. 215–221.

[2] N. Bansal, D. Coppersmith, M. Sviridenko, Improved approximation
algorithms for broadcast scheduling, in: SODA 2006, pp. 344–353.

[3] Y. Bartal, S. Muthukrishnan, Minimizing maximum response time in
scheduling broadcasts, in: SODA 2000, pp. 558–559.

[4] J. Chang, T. Erlebach, R. Gailis, S. Khuller, Broadcast scheduling: algo-
rithms and complexity, in: SODA 2008.

[5] W. Chan, T. Lam, H. Ting, P. Wong, New results on on-demand broad-
casting with deadline via job scheduling with cancellation, in: CO-
COON 2004, pp. 210–218.

[6] J. Edmonds, Scheduling in the dark, Theoretical Computer Sci-
ence 235 (1) (2000) 109–141.

[7] J. Edmonds, K. Pruhs, Multicast pull scheduling: when fairness is fine,
in: SODA 2002, Algorithmica 36 (2003) 315–330.

[8] J. Edmonds, K. Pruhs, A maiden analysis of longest wait first, in:
SODA 2004, ACM Transactions on Algorithms 1 (1) (2005) 14–32.

[9] S.P.Y. Fung, F.Y.L. Chin, C.K. Poon, Laxity helps in broadcast schedul-
ing, in: Proceedings of 9th Italian Conference on Theoretical Com-
puter Science, 2005, pp. 251–264.

[10] J. Kim, K. Chwa, Scheduling broadcasts with deadlines, Theoretical
Computer Science 325 (2004) 479–488.

[11] J. Robert, N. Schabanel, Pull-Based data broadcast with dependencies:
be fair to users, not to items, in: SODA 2007, pp. 238–247.

[12] G.J. Woeginger, On-line scheduling of jobs with fixed start and end
times, Theoretical Computer Science 30 (1994) 5–16.

[13] S. Fung, F. Zheng, W. Chan, F. Chin, C. Poon, P. Wong, Improved on-
line broadcast scheduling with deadlines, Journal of Scheduling 11
(2008) 299–308.
eduling with deadlines, Information Processing Letters (2008),

	A note on on-line broadcast scheduling with deadlines
	Introduction
	Problem description.
	Previous results.
	Our contributions.

	Preliminaries
	A tight upper bound for laxity less than 2
	References

