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ABSTRACT

Estimation of local multiple orientations plays an important

role in many image processing and computer vision tasks. It

has been shown that the detection of orientations in an image

patch corresponds to fitting multiple axes to its Fourier trans-

form. In this paper, k-medoids are introduced to detect local

multiple orientations in the Fourier domain. Medoids are re-

lated to a well-known matrix eigenvector problem. A hierar-

chical schema with eigensystem and energy distribution anal-

ysis is employed to determine the number of orientations in an

image patch. The proposed approach detects two types of ori-

entation structure (ridges and edges) without difference. Ex-

perimental results on synthetic and real images show that the

proposed method can detect multiple orientations with high

accuracy and is robust against noise.

Index Terms— Image processing, local multiple orienta-

tions, k-medoids

1. INTRODUCTION

Image local orientation is an important feature used in many

image processing and computer vision tasks, such as texture

analysis, edge detection, and image segmentation [1]. Lo-

cal single orientation can be used to describe image features

like lines and edges [2]. Local multiple orientations (corners,

T-junctions, Y-forks, and X-sings) are widely used in appli-

cations like image registration [3], motion estimation [4] and

tracking [5], and they can describe textures and fabrics in a

more explicit manner in comparison to single one. This paper

presents a unified framework of multiple orientations detector

to overcome the restriction of single orientation detectors.

Many techniques for orientation estimation have been

proposed in the literature. Most local orientation estimation

approaches are based on the analysis of the spatial domain.

Rao and Schunck [6] divided a texture image into an angle

image and a coherence image using an oriented filter, namely

the gradient of Gaussian, and performed manipulations on

resulting gradient vector field. How to deal with noise is the

major problem that gradient-based methods have to face be-

cause local gradients are very sensitive to noise, making the

estimation of local orientations rather unreliable [7]. Freeman

and Adelson [8] introduced steerable filters to calculate the

filter response at various orientations. Similarly, Paris et al.

[9] employed Canny, Gabor, and Gaussian second derivative

filters with different orientations to detect the local orienta-

tions of hair images. Nevertheless, they are often limited in

precision [7].

In parallel with research effort focused in the spatial do-

main, Knutsson and Granlund [1] showed that the frequency

properties of an image patch reflect changes in its gradient di-

rection in the spatial domain, and they introduced quadrature

filters to detect local orientations. Bigun et al. [10] posed the

orientation estimation problem as a least squares fitting of an

axis in the Fourier domain. However, these two approaches

only deal with single orientation and errors arise when han-

dling complex texture.

In order to deal with image features occluded at object

boundaries which go beyond single local orientation, Aach

et al. [11] introduced a framework of double orientations

estimation. However, modeling all the signals as the super-

position of two oriented signals is still too restrictive. For

instance, plant roots generate ”Y-forks” and this implies that

three independent orientations have to be modeled. Muh-

lich and Aach [2, 11] developed a mathematical model for

multiple orientations, which allows a unified treatment of

additively and occludingly superimposed structures as well

as combinations of these. Nevertheless, their method is

restricted to superimposed model. Vliet and Faas [12] em-

ployed a clustering method to divide gradient vectors into at

most 3 clusters. Since one cluster collects the background

pixels and each cluster was analyzed separately using the

structure tensor, their method only handles two orientations.

Two types of orientations, namely ridges (a light-dark-

light signal orthogonal to the orientation direction or vice

versa) and edges (only a single light-dark transition or vice

versa), can be treated in the Fourier domain without differ-

ence since frequency reflects the changes in intensity of an

image independent of the spatial location. Noise can be rel-

atively easily removed using a Gaussian envelope. Different

from the approaches discussed above, this paper introduces k-

medoids to detect local multiple orientations in the frequency

domain. Radial vectors are weighted by the corresponding

energy of Fourier transform, and then k-medoids are utilized
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to fit axes to the weighted vectors of the Fourier transform,

where the medoid of each cluster is related to the solution

of a well-known matrix eigenvector problem. Eigensystem

and energy distribution analysis are employed to determine

the number of orientations. Experimental results show that

the proposed method can obtain multiple orientations with

high accuracy and is robust against noise. Application such

as estimation of hair orientation field is discussed.

The rest of the paper is organized as follows: Section 2

models and analyzes the local multiple orientations problem.

Main steps of the proposed algorithm is given in Section 3.

Performance evaluation of the proposed algorithm is de-

scribed in Section 4. Section 5 is devoted to conclusions.

2. MODELING LOCAL MULTIPLE ORIENTATIONS
PROBLEM

The frequency properties of an image patch reflect the

changes in intensities. If an image patch has a preference

for some orientation, most of the energy in the Fourier do-

main will be concentrated in a sector oriented at the same

angle as the gradients inside the patch. The more orienta-

tion specific the patch is, the narrower the sector will be [1].

Therefore, to detect local multiple orientations in the spatial

domain is consequently the same as to check for the existence

of energy concentration along lines (highlight lines) in the

Fourier domain. Two types of orientations including ridges

and lines can be treated without difference as frequency re-

flects changes in intensity of image independent of the spatial

location.

Let f(x, y), with f : R2 → R, denote a gray-level image

and w be a m × n (m and n are odd and set to be 11 in our

experiments) patch with its center at (x0, y0). Transforming

w into the Fourier domain and shifting direct component (DC)

to the center gives F (u, v)(u = −(m−1)/2, . . . , 0, . . . , (m−
1)/2, v = −(n − 1)/2, . . . , 0, . . . , (n − 1)/2). In practice,

both w and F (u, v) are weighted by a Gaussian envelope with

variance 0.03n to emphasize the central pixel and eliminate

noise, respectively. Since this weighting does not influence

our considerations, we drop it for ease of notation. Each term

of the Fourier transform can be further represented by a vector

ωuv = ‖F (u, v)‖2

(
u
v

)
. More weight is assigned to a

term with high energy and far away from the origin (0, 0).
(see Fig. 1)

Vector ω can also be represented as (l, θ) in polar coor-

dinates, where l and θ are amplitude and angle of the vector,

respectively. Sorting ω according to its angle gives the or-

dered set {ωi|i = 1, . . . , N}, where N = mn. To detect

local K orientations is the same as finding K axes to fit its

Fourier transform with a minimal error. These axes can be

given by K unit vectors μj = (1, θj). Briefly, it minimizes

Fig. 1. Example of an image patch and its corresponding

Fourier transform and vector representation. Left: original

image patch. Middle: Fourier transform of the left. Right:

vector representation of the middle.

the following distortion measure

E =
N∑

i=1

min
1≤j≤K

(ν(ωi, μj)) (1)

where ν(ωi, μj) is the dissimilarity between two vectors ωi

and μj . It can be defined as following

ν(ωi, μj) = −lτi cos2(θi − θj) (2)

where τ denotes the impact of the amplitude of vector ωi.

Usually, τ is set to be 2, and the dissimilarity term would

become the negative value of the square of the projection from

vector ωi onto the unit axis μj .

The objective function E is a piecewise trigonometric

function with multiple local minima, resulting in a difficult

optimization.

3. K-MEDOIDS FOR LOCAL MULTIPLE
ORIENTATIONS

K-medoids algorithm, being the most common generalization

of k-mean, is widely used for its simplicity [13]. It aims at

partitioning observations into clusters in which each observa-

tion belongs to the cluster with the nearest medoid. Minimiz-

ing the objective function (1) is the same as minimizing

E =
N∑

i=1

K∑
j=1

rijν(ωi, μj) (3)

where rij are indicators (rij ∈ {0, 1}) describing which of

the K clusters the vector ωi is assigned to.

An iteration approach is applied to minimize E. Consider

first the determination of the rij with fixed μj . Since E in

(3) is a linear function of rij and the terms involving different

i are independent, it can be optimized for each i separately

by choosing rij to be 1 for whichever value of j that gives

the minimum value of ν(ωi, μj). More formally, this can be

expressed as

rij =
{

1 if j = arg minkν(ωi, μk)
0 otherwise

(4)
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After each vector ωi is assigned to a cluster, the medoids

should be updated, i.e., optimization of the μj with the rij

held fixed. Since μj is independent, it can be computed sepa-

rately by minimizing the following

e(μj) =
N∑

i=1

rijν(ωi, μj) (5)

Let qj = (cos(θj), sin(θj))T . Eq. (5) is equivalent to

−qT
j Cjqj , where

Cj =

⎡
⎢⎢⎣

N∑
i=1

rij l
τ
i cos2(θi) 1

2

N∑
i=1

rij l
τ
i sin(2θi)

1
2

N∑
i=1

rij l
τ
i sin(2θi)

N∑
i=1

rij l
τ
i sin2(θi)

⎤
⎥⎥⎦ (6)

Minimizing −qT
j
Cjqj is a standard eigenvalue problem,

which is discussed in [7]. The optimal vector qj is the unit

eigenvector of Cj corresponding to the largest eigenvalue.

The process of building rij and updating μj is repeated

until the medoid of each cluster converges. Finally, the lo-

cal multiple orientations of pixel (x0, y0) in an image can be

achieved at {θ1 + π
2 , · · · , θk + π

2 }.

Since corners, T-junctions, Y-forks, X-sings are the most

frequent features of interests in many practical situations and

unstable and little useful results will arise when too many ori-

entations are being considered, the maximal number of local

orientations estimated is set to be 3. A hierarchical schema is

introduced to test whether or not to accept the zero-, single-,

double- or triple-orientation hypotheses. Clearly, high ratio

between F (0, 0) and all the energy of Fourier transform indi-

cates a homogeneous neighborhood without a clear oriented

structure. Confidence for the zero-orientation assumption is

high if

‖F (0, 0)‖2
m∑
u

n∑
v
‖F (u, v)‖2

> ε1 (7)

where ε1 is a confidence parameter.

In regions where the zero-orientation model is rejected

(K ≥ 1), we test other hypotheses using eigensystem analy-

sis. The single-orientation is first tested where the number of

orientation K is set to be 1. Two eigenvalues λ1 and λ2 (λ1 ≥
λ2) of C1 are obtained. Since eigenvalues are positively cor-

related with the energy in the corresponding axis directions,

they can be used as a measure of confidence of the hypothesis.

The energy independent quantity R = (λ1 − λ2)/(λ1 + λ2)
will be suitable for this task [10]. Confidence for the single-

orientation assumption is high if

R > ε2 (8)

where ε2 is a threshold for judging whether the number of

orientations is more than one.

Table 1. Mean errors for local multiple orientations estima-

tion in the noise-free image and images corrupted by noise
Noise Noise-free Gaussian Gaussian Gaussian Gaussian

SNR +∞dB 6.5dB 5.5dB 4.9dB 4.6dB

Error 0.05rad 0.05rad 0.07rad 0.08rad 0.09rad

Noise Poisson Uniform Uniform Uniform Uniform

SNR 41.5dB 5.7dB 5.4dB 5.0dB 4.7dB

Error 0.05rad 0.06rad 0.07rad 0.07rad 0.08rad

The case that (8) does not hold indicates more than

one orientations exist in the neighborhood (K ≥ 2). Con-

tinue to test triple-orientation assumption (K = 3), getting

λ1
1, λ

1
2, λ

2
1, λ

2
2, λ

3
1, λ

3
2, where λj

i are the eigenvalues of Cj

and λj
1 ≥ λj

2. Obviously, λj
1 + λj

2 = Trace(Cj), which

is positively correlated with the energy that is concentrated

in the jth orientation. If the assumed number of orienta-

tions is too many, then energy distribution does not appear

uniformly. Therefore, a suitable confidence criterion for the

triple-orientation assumption is

min
1≤j≤3

(λj
1 + λj

2)

max
1≤j≤3

(λj
1 + λj

2)
≥ ε3 (9)

If (9) does not hold, then double-orientation assumption

is confidence.

4. EXPERIMENTS AND APPLICATION

The proposed approach is evaluated using both synthetic and

real images. Experimental results show that the proposed

method can detect multiple orientations with high accuracy

and is robust against noise. Applications such as estimation

of orientation field as well as feature points of hair are dis-

cussed.

Using a specially constructed test image, the technique

proposed previously is evaluated in terms of accuracy and ro-

bustness against noise. Fig. 2 shows the synthetic image,

which consists of sine waves with decreasing amplitude in the

radial direction, including all possible directions. Gaussian

uncorrelated white noise, Poisson noise, and uniform noise

are added into noise-free images, respectively. The orienta-

tions of points (including the ones with single-, double, or

triple-orientations) in each image are estimated. The number

of local orientations can be estimated correctly and local mul-

tiple orientations can be obtained with little errors even the

image is polluted by noise. The mean errors for orientations

in images corrupted by different kinds of noise with various

levels are given in Table 1. Fig. 2 shows the estimation of lo-

cal multiple orientations of a noise-free image and an image

with Gaussian noise at SNR 4.6 dB, respectively.

Fig. 3 shows the performance of the proposed approach

and the algorithm proposed by Aach et. al. [11]. Our method

can judge the number of orientations of all the points detected
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correctly while Aach’s cannot. The parameter setting is: ε1 =
0.9, ε2 = 0.5 and ε3 = 0.88.

Fig. 2. Synthetic image for local multiple orientations detec-

tion. Left: orientations of an noise-free image. Right: orien-

tations of an image with Gaussian noise at SNR 4.6 dB.

Fig. 3. Multiple orientations estimation applied to texture im-

age. Left: texture image. Middle: orientations of the left

obtained by the proposed approach. Right: orientations of the

left obtained by [11].

Fig. 4. Estimate the orientation field of hair

To show the robust performance and wide usefulness of

the proposed algorithm, it is utilized to estimate the orienta-

tions of hair which is a challenging problem [14] since hair

fibers are smaller than a pixel, and aliasing and hair light-

ing properties make it diffcult to predict any strong properties

[9]. Fig. 4 shows an image of hair. The proposed algorithm

can divide the hair image into background (zero-orientation,

marked by ◦), smooth partition of hair (single-orientation,

marked by line segment in its corresponding orientation) and

mess partition of hair (more than two orientations, marked by

×).

5. CONCLUSION

K-medoids are introduced to detect local multiple orientations

of images in the Fourier domain. Medoids are related to the

solutions of a well-known matrix eigenvector problem. A hi-

erarchical schema is employed to estimate the number of ori-

entations using eigensystem and energy distribution analysis.

The proposed approach can obtain multiple orientations with

high accuracy and is robust against noise. Experiment results

on texture image show that it performs better in estimation

of the number of orientations compared with other existing

methods. An application in capturing the orientation field of

hair is also illustrated.
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