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Abstract—Continuous queries are often employed to monitor the locations of mobile objects (MOs), which are determined by sensing

devices like GPS receivers. In this paper, we tackle two challenges in processing continuous range queries (CRQs): coping with data

uncertainty inherently associated with location data, and reducing the energy consumption of battery-powered MOs. We propose the

concept of spatiotemporal tolerance for CRQ to relax a query’s accuracy requirements in terms of a maximal acceptable error. Unlike

previous works, our definition considers tolerance in both the spatial and temporal dimensions, which offers applications more flexibility

in specifying their individual accuracy requirements. As we will show, these tolerance bounds can provide well-defined query

semantics in spite of different sources of data uncertainty. In addition, we present efficient algorithms that carefully control when an MO

should sense or report a location, while satisfying these tolerances. Thereby, we particularly reduce the number of position sensing

operations substantially, which constitute a considerable source of energy consumption. Extensive simulations confirm that the

proposed algorithms result in large energy savings compared to nontolerant query processing.

Index Terms—Tracking mobile objects, continuous queries, distributed processing, data uncertainty, energy consumption.
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1 INTRODUCTION

DRIVEN by the ongoing advances in wireless commu-
nication and sensing technologies, context-aware sys-

tems have emerged as an important class of mobile
computing. In those systems, the location of entities has
been identified as primary context [6], and many applica-
tions rely on real-time location information of a potentially
large number of mobile objects (MOs).

In such systems, each MO is equipped with a positioning

sensor (e.g., a GPS receiver) and reports its position over a

wireless connection (e.g., a GSM/GPRS network) to a so-

called location manager (LM). At the LM, location-aware

applications can register continuous queries [22] to monitor

the activities of MOs. In contrast to one-time queries, such

queries reside in the system and are continuously evaluated

for an extensive period. In this paper, we focus on one

important class of such queries: the continuous range query

(CRQ). It returns all MOs located inside some spatial region.

That is, the query result is updated whenever an MO enters

or leaves this region. CRQs are widely used in context-

aware applications to identify all MOs in a certain spatial

context. Examples include sending personalized advertise-

ments or e-coupons to customers entering the vicinity of a

store [28], monitoring traffic conditions of road sections,

and generating alerts when your children, pets, or bicycles

leave a safety zone [31].

Efficient processing of continuous queries has attracted
a lot of research interest lately. In particular, the idea of
object-side processing has been utilized in various projects
[3], [9], [18], [29]. They leverage the processing capabilities
of mobile devices to evaluate parts of a query locally on
each MO. That is, when a new CRQ is registered, the LM
first propagates the query region to all MOs. Then, each
MO monitors its movement locally and sends a report to
the LM only when it crosses the region’s boundary. In
doing so, no reports are required while an MO moves
without affecting the query result. This can save a large
number of communication messages, which in turn
reduces the server-side workload as well as the energy
consumption of MOs [3], [9].

The latter is of particular importance, as many small,
mobile devices (like cell phones and PDAs) are battery
powered, and energy is their most precious resource.
Maximizing the lifetime of those devices is thus essential
for user acceptance. While most previous works focus solely
on communication costs [3], [9], [18], [29], we argue that the
energy consumption of position sensing often cannot be
ignored either [8], [23]. Even in low-power mode, a
common GPS receiver consumes no less than 75 mJoules
to acquire a new position [19]. The same amount of energy
is required by GPRS to transmit about 120 bytes of data [9].
Moreover, object-side processing typically requires much
more sensing than reporting operations. In particular, we
will show that there is an important trade-off between the
frequency of sensing and the accuracy of query results.

In this paper, we therefore study how sensing costs can
be reduced by relaxing a query’s accuracy requirements.
This is motivated by the observation that many applications
do not require the highest degree of accuracy, but can often
tolerate some well-bounded error—in exchange for lower
energy costs. For example, assume a CRQ is used for
distributing warning messages within a spatial region. It
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may be well acceptable (or even desirable) that some users
receive the alert early (before entering the query region). In
contrast, for distributing location-based advertisements
inside a supermarket, some users could receive it late (after
entering the store). To capture diverse accuracy require-
ments, we introduce the concept of spatiotemporal tolerance
(or st-tolerance). It gives applications the flexibility to define
their notion of acceptable errors precisely. They can define
tolerances not only in the spatial domain, but also in terms
of time. For example, the spatial tolerance can be that MOs
close to the region (e.g., within a distance d) may be
returned as well. With time tolerance, one can express that
MOs have to be added to the result set only after residing
inside the query region for a certain period.

Moreover, st-tolerance helps to cope with data uncertainty
inherently associated with location data [21]. Due to
technical limitations, like sensing inaccuracy and commu-
nication delay, the result of a nontolerant CRQ may always
deviate from the actual result observed in reality, and there
are no conceptual means for informing the query user about
the degree of deviation. In contrast, we show how the
semantics of tolerant CRQ can be provided despite data
uncertainty. That is, we limit the deviation from the actual
result to those MOs inside the spatial and/or temporal
range defined by the tolerance. This allows applications to
control precisely, which kind of deviation they are willing
to accept. For example, it could tolerate some MOs in the
region’s proximity (false positives), but not accept any MOs
inside the store to be missed (false negatives).

To achieve this, we develop efficient algorithms to
schedule sensing and reporting operations of an MO, and
we derive minimal requirements for the tolerance to be
satisfiable in consideration of different sources of uncer-
tainty. With a minimal tolerance, our algorithms ensure
query results that are correct within the given tolerance.
Accepting larger tolerances, furthermore, allows trading
query accuracy off against energy use. In contrast to
previous works, we thereby focus particularly on reducing
sensing costs. Yet, this is achieved without increasing
communication costs. In fact, we will show that the number
of reports is further reduced as well when handling
multiple, simultaneous CRQs.

We have previously proposed an initial solution using
distance-based tolerance [7]. Here, we extend this approach
by defining tolerances along both the spatial and the
temporal dimensions. Moreover, we now discuss proces-
sing multiple queries efficiently, and present considerably
extended evaluation results, assessing not only the resulting
energy consumption, but also the provided accuracy of
query results. While this paper focuses on continuous range
queries over mobile objects, we are convinced that the main
concepts are relevant to other types of continuous queries
and other domains of sensor data as well (e.g., [18], [20]).
In summary, our contributions are:

. proposing the definition of spatial and spatiotem-
poral tolerance semantics for CRQ,

. deriving minimum tolerance constraints to satisfy
the tolerance semantics in spite of data uncertainty,

. developing efficient algorithms that can cope with
data uncertainty and reduce the total energy
consumed by sensing and reporting operations, and

. verifying the effectiveness of our approach by
extensive simulation using a comprehensive mobi-
lity model.

The remainder of this paper is organized as follows: In
Section 2, we first describe our system model. The formal
definition of st-tolerance is presented in Section 3. Subse-
quently, Section 4 discusses the benefits of processing CRQs
with tolerance step by step. Then, we evaluate the
performance of our approach in Section 5, discuss related
work in Section 6, and conclude the paper in Section 7.

2 SYSTEM MODEL

Our system model consists of mobile objects (MOs) and a
location manager (LM). MOs represent any mobile, energy-
constrained devices (like cell phones or PDAs) equipped with
a processor, a wireless network interface, and a positioning
sensor. Each MO is identified by a globally unique id (like an
IP address or phone number), denoted by oi.

The LM processes CRQs on behalf of location-aware
applications. A CRQ is defined by a fixed query boundary
qb that confines a closed spatial region. Applications can
register a CRQ at the LM to monitor a region of interest. The
query then remains active until it is deregistered again.
During that time, the CRQ should always return the ids of
all MOs currently located inside qb. That is, after returning
an initial result, the LM must provide (differential) updates,
whenever an MO crosses qb.

We do not assume any particular realization of the LM. It
may be distributed over multiple servers, to which the MOs
are mapped (dynamically) [14], [29]. Each MO commu-
nicates with a single LM-server over a wireless network
(like GPRS, UMTS, or Wi-Fi meshes). To participate in
query processing, MOs have to perform two different
operations that require further consideration.

2.1 Position Sensing

First, an MO has to acquire its geographic position locally.
Typically, this comprises some complex sensor activity,
which consumes a certain amount of energy. For example,
GPS requires about 0.5 s to compute a position fix based on
pseudorange measurements of satellite signals [16]. Like-
wise, WLAN-based positioning requires a series of signal
strength measurements [10]. While no position is required,
the sensor can, however, remain in a low-power sleep mode
to conserve energy1 [8], [23]. In the following, we assume
that each sensing operation is invoked explicitly by the MO
and requires a known time �sense to complete. An MO’s true
position at time t is denoted by posðoi; tÞ. But due to limited
sensing accuracy, the returned sensor position can deviate
from posðoi; tÞ to a certain extent. In this regard, we assume
a known upper bound �sense of the deviation, which is a
characteristic sensor property.

2.2 Communication

In addition, an MO has to send report messages to the LM
from time to time. As all reports will be similar in size, we
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1. In this mode, a GPS receiver may still wake up at low frequency to
refresh satellite data and prevent long start-up times (cf. “Push-To-Fix”
mode in [19]). However, such background energy is consumed indepen-
dently of the frequency of sensing operations.



assume that each message requires the same amount of
energy. Moreover, the communication network causes some
delay before a report reaches the LM. We assume a known
upper bound �com of the end-to-end communication delay.2

While mechanisms for ensuring a maximum delay have
been proposed (cf. [5]), existing network technologies often
have unbounded delays. However, it was shown that
reasonable upper delay bounds that hold with high
probability can be empirically determined based on the
networking environment [17].

Besides communication and position sensing, an MO also
has to perform some local processing. Since this involves
only simple computations, the processing delay and energy
consumption are negligible. Finally, we assume that each
MO has knowledge about its maximum velocity, denoted by
vmax. This is a common assumption for tracking mobile
objects and determining reasonable values has been dis-
cussed elsewhere, e.g., [21]. We do not assume movements
to be limited to a road network. Thus, we use the euclidean
distance to measure how far two positions are apart. Table 1
summarizes the symbols used throughout this paper.

3 TOLERANT CRQ: DEFINITION AND SEMANTICS

In this section, we propose our concept of a tolerant CRQ.
By specifying a so-called tolerance space, applications can
control how the result of a tolerant CRQ may deviate from
the actual result. This tolerance space “blurs” the query
boundary qb in both the space and time dimension, which
relaxes the accuracy requirements for those MOs inside the
tolerance space. As mentioned above, this provides for
query results that are correct within the given tolerance.

For clarity of presentation, let us first consider the spatial
dimension of a tolerance space. Then, we extend this
scheme to support the concept of temporal tolerance.

3.1 Spatial Tolerance

Spatial tolerance of a CRQ is based on spatial proximity to qb.
In particular, we introduce two boundaries that sandwich qb.
The inner query boundary qbI is located inside qb (denoted by
qbI � qb), while the outer one qbO is located outside qb (i.e.,
qb � qbO). Both can be of arbitrary shape. The area enclosed
by these two boundaries defines the tolerance space. For
MOs located inside this area (i.e., close to qb), it is not
guaranteed whether they are included in the result.

Definition 1 (Spatially tolerant CRQ (s-CRQ)). Let qbI, qbO

be two closed boundaries, with qbI � qbO. Then, the result of
an s-CRQ includes all MOs currently located inside qbI but
no MO currently located outside qbO. That is, at any time t,
the result is defined by the set S [ T , with

S :¼ oij posðoi; tÞ � qbIf g; and

T � oijposðoi; tÞ � qbOf g ð1 � i � nÞ:

According to this definition, the query result must
contain all MOs that are located inside qbI (the set S).
However, MOs located inside the tolerance space might be
contained in the result set, too. These objects belong to the set
T , which is any subset of MOs located inside qbO—including
those outside qbI. However, no MO located outside qbO is
contained in the query result. This is illustrated in Fig. 1,
which shows the trajectories of several MOs in a one-
dimensional space. At time t, the MOs o1 and o6 are located
outside qbO, and hence are not included in the query result.
On the other hand, o3 and o4 must be included as they are
located inside qbI at that time. The MOs located in the
tolerance space, o2 and o5, may be included in the result set.

Note that Definition 1 is independent of the original
boundary qb. An application can choose qbI and qbO

individually and thereby control the amount of false
positives and false negatives in the query result. Fig. 2
shows three different settings of qbI and qbO. In the setting in
Fig. 2a, the application has to cope with both false positives
and false negatives, while Fig. 2b and Fig. 2c present special
cases, avoiding either false negatives or false positives.

For example, assume that a ski resort’s information
system provides a tracking service to improve the safety of
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TABLE 1
Symbols Used in the Paper

Fig. 1. CRQ with spatial tolerance.

Fig. 2. Different configurations of s-CRQ. (a) False positives and false
negatives. (b) False positives only. (c) False negatives only.

2. In this paper, we focus on the correctness of query results maintained
at the LM. If the transfer of query results to an application causes an extra
delay, only �com must be adapted accordingly. This does not affect the
algorithms presented in this paper.



ski tourists, using their mobile phones to locate and warn
them. CRQs are employed to send warning messages to
skiers in regions that are considered critical in terms of
avalanches. While these CRQs are required to return the ids
of all MOs in the critical regions, we can certainly tolerate
that some MOs in the regions’ proximity are also included
in the result set. These semantics can be achieved by setting
qbI to the critical region and qbO to a size that meets the
application’s notion of proximity.

Next, assume we are also monitoring the region of the ski
kindergarten to notify the instructor whenever a child is
about to leave. In that case, false positives are not acceptable
and thus qbO needs to model the kindergarten’s geographic
boundary. However, we can set qbI to a smaller area,
tolerating that notifications are already generated while a
child is approaching the outer boundary.

3.2 Spatiotemporal Tolerance

To introduce the temporal dimension, we again define the
tolerance space indirectly by giving criteria for those MOs
that must be included or excluded from the query result.
The major difference to s-CRQ is that these criteria consist
of both spatial and temporal constraints. The temporal
constraint is based on the concept of a (temporal) proximity
window. This includes all elapsed points in time that are
considered to be “in proximity” to the current time. That is,
a proximity window of length t, denoted as <t>, is defined
by the time interval ½tc � t; tc�, where tc is the current time.

Now, we can extend the criteria for MOs to be included
in the result set by a temporal constraint: “all MOs that have
been continuously located in qbI during <tI>.” Consequently,
an MO residing in qbI for less than tI time units is still
located in the tolerance space, and hence may be subject to a
false negative. Analogously, the criterion for excluding
MOs is extended to “all MOs that have been continuously
located outside of qbO during <tO>.” This leads to the
following definition of a spatiotemporal CRQ.

Definition 2 (Spatiotemporally tolerant CRQ (st-CRQ)).

Let tI; tO � 0 be the length of two proximity windows and qbI,
qbO be two closed boundaries, with qbI � qbO. Then, the result
of an st-CRQ includes all MOs that have been located in qbI

during the entire window <tI> but no MO that has been
located outside qbO during the entire window <tO>. Thus, an
st-CRQ always returns the set S [ T , with

S :¼ oi j 8 t 2 <tI> : posðoi; tÞ � qbIf g; and

T � oi j 9 t 2 <tO> : posðoi; tÞ � qbOf g ð1 � i � nÞ:

According to this definition, the query result must always
contain set S, which includes all MOs continuously located
inside qbI in proximity window <tI>. The result set may
also contain MOs inside the tolerance space spanned by the
boundaries qbI, qbO and proximity windows <tI>, <tO>.
These MOs belong to set T , which is any subset of MOs that
have been located in qbO at least once during <tO>. But no
MO that has been continuously located outside qbO during
window <tO> is contained in the result. Thus, only those
MOs that were spatially close to qb (i.e., entered qbO) in the
recent past (i.e., during <tO>) may be included.

This is illustrated in Fig. 3, which shows the same
trajectories as Fig. 1. To determine the result set of the
corresponding st-CRQ at time t, we have to consider three
cases: 1) MOs that are inside qbI at time t may be included in
the result, if they were located outside qbI at least once
during <tI>, otherwise they are definitely included. There-
fore, the MO o4 may be included, while o3 is definitely
included in the result. 2) MOs that are outside of qbO at time
t may be included in the result, if they were located inside
qbO at least once during <tO>, otherwise they must
be excluded. Therefore, o6 may be in the result, whereas
o1 is not. 3) Finally, MOs that are inside qbO but outside qbI

at time t may be included in the result set or not. Therefore,
o2 and o5 may also be included as well. Apparently, st-CRQ
further relaxes the inclusion and exclusion criteria. The
spatiotemporal tolerance space depicted in Fig. 3 includes
two more MOs (o4 and o6) than the tolerance space in Fig. 1.

Altogether, st-tolerance offers more flexibility and a finer
level of control to specify which MOs may be subject to false
positives or false negatives. Let us again consider the ski
resort example above, where we add a new service for
estimating the current waiting time at each of the resort’s
ski lifts. CRQs are used to determine the number of skiers
currently waiting in a lift’s waiting area. Since skiers may
just pass this area, they are considered to wait only if they
stay there longer than a certain threshold. This knowledge
can be exploited to relax the corresponding st-CRQ by
setting the temporal tolerance tI to that threshold, while qbI

corresponds to the boundary of the waiting area and qbO is
set according to the minimal spatial tolerance possible.
Therefore, the result set will include all skiers waiting in the
corresponding area and potentially some more just passing
this area. Adding the time constraint not only leads to
estimates that are more precise, but also allows for reducing
the energy consumption of MOs significantly, as will be
seen below.

4 PROCESSING TOLERANT CRQs

In the following, we first present a basic algorithm to handle
nontolerant CRQs. This allows us to identify the inherent
problems of processing CRQs without tolerance. Then, we
show how to overcome these shortcomings by extending
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Fig. 3. CRQ with spatiotemporal tolerance.



the algorithm to support st-tolerance. Again, we first
consider a spatially tolerant CRQ and then extend our
solution to spatiotemporal tolerance. In addition, we limit
the discussions to a single active query until presenting
optimizations for multiple concurrent queries in Section 4.5.

4.1 Object-Side Processing—Basic Algorithm

Let us first discuss the efficient processing of a nontolerant
CRQ. For that purpose, we employ the concept of object-side
processing [3], [9], [18], [29] as it requires the least reporting
costs. Whenever a CRQ is registered, the LM sends an
initialization message containing the query boundary qb to
all MOs. Those MOs located inside qb immediately respond
with an enter report, signaling that they belong to the initial
result set. Subsequently, each MO monitors its own position
locally and sends a new report (either enter or leave)
whenever it crosses qb. This approach effectively minimizes
the reporting costs, as reports are sent only if an MO actually
affects the query result. The energy required for receiving
initialization messages is easily amortized by saving report
messages throughout the query’s lifetime [3], [9].

Fig. 4 shows the basic algorithm performed by each MO.
Whenever the MO obtains a new position from the sensor, it
checks—based on the sensed value—whether it crossed qb
since its previous report and, if so, generates a new one.
Then, it immediately starts sensing again. As a result, the
MO performs sensing with maximum frequency (1=�sense),
which is prohibitively costly in terms of energy. Never-
theless, this fails to guarantee correct query results at the
LM at all times. Due to limitations of sensor technologies
and communication latency, the query result may always
deviate from the actual result observed in reality. Specifi-
cally, three different sources of data uncertainty add to this
problem. Together they determine the worst-case error,
which also plays an important role below for processing
tolerant CRQs correctly.

1. Sensing Uncertainty. As discussed in Section 2.1, the
sensed position can deviate from the actual position
up to a distance of �sense due to limited sensor
accuracy (as depicted by the shaded circles in Fig. 5).

2. Sampling Uncertainty. In addition, the resolution
of sensing is limited by the time required for each
sensing operation (�sense). For example, assume a
sensed position is located just in front of qb and thus
does not trigger a report. The MO may then move
as far as �sense � vmax before the crossing event can be
detected (as depicted by p2 in Fig. 5).

3. Communication Delay. Finally, the report message
arrives at the LM only after a certain delay (� �com).

While the report is transmitted over the network, the
MO may move a further distance of up to �com � vmax.

In total, the MO’s true position may hence be located at a
distance �max beyond qb, when the query result is updated at
the LM (cf. Fig. 5), with:

�max ¼ �sense þ ð�sense þ �comÞ � vmax: ð1Þ

While covering this distance, the MO is either a false
positive or a false negative. It is important to notice that �max

depends only on the underlying technologies and is not a
shortcoming of the presented algorithm. Sending a report
any later would clearly increase the worst-case error even
further. If a report was generated any earlier (i.e., based on
some movement prediction), however, an MO could change
its direction of movement (unpredictably) before actually
crossing qb. This would require a second report soon after,
which results in a larger worst-case error, too.

Next, let us consider the energy consumption of an MO.
While the algorithm in Fig. 4 generates only a minimal
number of reports, it performs sensing at highest frequency.
To reduce the sensing costs, we can apply a simple
optimization called selective sensing [8]: After acquiring a
position, the MO can suspend sensing as long as it does not
possibly affect the query result. This is the minimal time
required to reach qb based on its maximal velocity (vmax).
Accordingly, we can replace line 7 of the previous
algorithm (Fig. 4) as shown in Fig. 6. This decreases the
number of sensing operations substantially without affect-
ing the result accuracy. Yet, when the MO is close to qb the
sensing rate remains very high. Whenever an MO
approaches qb with less than vmax, it must perform sensing
in successively decreasing intervals, as the sensor suspen-
sion time shrinks along with the remaining distance to qb
(line 7 in Fig. 6). Consequently, an MO still spends a
substantial amount of energy on frequent position sensing
in order to detect the crossing of qb on time. Reducing the
sensing rate would decrease the accuracy of query results
even further.

324 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 3, MARCH 2011

Fig. 4. Basic algorithm for object-side processing of a CRQ.

Fig. 5. Maximum error in updating the query result of CRQ.

Fig. 6. Extending the algorithm in Fig. 4 with selective sensing.



In summary, nontolerant CRQs thus face two inherent
problems: First, data uncertainty prevents precise query
results and applications cannot control the resulting im-
precision. At the same time, MOs try to provide the best
possible accuracy, as they are unaware of the application’s
actual requirements. Even with selective sensing, this costs a
lot of energy due to frequent sensing. We now discuss how
this can be improved by utilizing the concept of tolerance.

4.2 Spatial Tolerance

In the following, we still employ the concept of object-side
processing. Yet, the LM now propagates both query
boundaries qbI, qbO (and for st-CRQ also tI, tO) to the MOs
when a new query is registered. Each MO then utilizes the
given tolerance space to provide for query results that are
correct within the given tolerance and to reduce sensing costs.

According to the definition of s-CRQ, all MOs inside the
inner region qbI must be included in the result set, while all
MOs outside the outer boundary qbO must be excluded.
Essentially, we can guarantee these semantics by updating
the query result early, i.e., while an MO crosses the tolerance
space. That is, an MO is added to the result set after
entering qbO but before entering qbI and is removed after
leaving qbI but before leaving qbO.

Let us consider how to schedule sensing operations to
achieve this despite data uncertainty. Assume that an MO
is located outside qbO with a sensed position p (as shown in
Fig. 7) and is currently not part of the query result. This
MO can defer sensing, but must ensure that a potential
enter report will arrive at the LM before itself crosses qbI.
Therefore, it has to start sensing again before coming too
close to qbI. In particular, let dist(p; qbI) denote the shortest
distance to qbI, then the MO must start sensing again after
a duration

tenterðpÞ ¼ ðdistðp; qbIÞ � �maxÞ=vmax: ð2Þ

Fig. 7 illustrates the various data uncertainties, summing up
to �max (cf. (1)), which have to be taken into account. A
sensing operation that is initiated after tenter and takes �sense

definitely completes while the MO’s distance to qbI is larger
than �com � vmax. Thus, a report generated at that time still
arrives at the LM in time. Starting sensing any later could,
however, result in violating the query semantics.

After obtaining a new position p’ from the sensor, the MO
can then decide to send a report right away or to schedule
another sensing operation first. Any tenterðp0Þ � 0 clearly
allows for another sensing operation, but the MO could still

send a report earlier. To explain this reporting decision, let
us define the following reporting boundaries (see Fig. 8a):

. The inner reporting boundary rbrbI is located at a
distance �max outside qbI (i.e., it is obtained by
enlarging qbI in each direction by �max).

. The outer reporting boundary rbrbO is located at a
distance �max inside qbO (i.e., it is obtained by
shrinking qbO in each direction by �max).

The MO uses these boundaries to distinguish three cases

when making the reporting decision (see Fig. 8a):

1. If p0 is inside rbI, the MO must report “enter”
immediately. In this case, tenterðp0Þ < 0 holds. Thus,
starting another sensing operation without reporting
could cause a violation of the query semantics.

2. If p0 is outside rbO, the MO must not report “enter.”
That is, it may only send an enter report if p0 is at a
distance larger than �max inside qbO. This constraint
is required to ensure that a subsequent “leave” event
can be detected and transmitted to the LM in time
(before leaving qbO again).

3. If p0 is between rbI and rbO, the MO may report
“enter” (and may also schedule another sensing
operation first). We call this the may-report zone. The
reporting decision in this zone may influence the
resulting performance significantly, and we discuss
a suitable reporting policy in Section 4.4.

Analogically, an MO included in the result set must ensure

to generate a leave report using interchanged roles of all

boundaries (see Fig. 8b). The time it may suspend sensing

then depends on the shortest distance to qbO:

tleaveðpÞ ¼ ðdistðp; qbOÞ � �maxÞ=vmax: ð3Þ

The MO must report “leave” if the sensed position is outside

rbO, and must not report “leave” while it is inside rbI. The

may-report zone remains the same. The resulting algorithm

for object-side processing is depicted in Fig. 9.
Note that this algorithm can only provide results within

the given tolerance, if the three cases above do not overlap.

That is, if rbI is located completely inside rbO. Consequently,

providing correct query results within the given tolerance

requires the following minimal tolerance for s-CRQ:

distðqbI; qbOÞ � 2 � �max: ð4Þ
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Fig. 7. The time until the MO must start sensing again. Fig. 8. Reporting decision inside the tolerance space. (a) “Enter” case.
(b) “Leave” case.



This defines a lower bound on the distance between both
query boundaries. With a smaller spatial tolerance, an MO
could sense a position with a distance smaller than �max to
both query boundaries alike. In that case, the semantics of
s-CRQ could no longer be guaranteed.

To ensure correct query semantics, our assumptions
regarding the system parameters (�sense, �sense, �com, and vmax)
must also be fulfilled. In practice, these might be statistical
bounds that hold with high probability [17]. For networks
with statistical delay bounds, statistical guarantees for
satisfying query semantics can thus be provided.

4.3 Spatiotemporal Tolerance

Next, let us consider an st-CRQ, where only MOs
continuously located inside qbI in proximity window <tI>
must be included in the result, whereas only MOs
continuously located outside qbO during <tO> must be
excluded. For st-CRQ, also the algorithm shown in Fig. 9
can be used. Only the definitions of tenter, tleave, rbI, and rbO

have to be adjusted to incorporate the temporal tolerance.
Again, let us consider the “enter” case first. This time, the

LM must receive an enter report no later than tI after the
MO entered qbI in reality. After sensing its position, say p,
an MO can thus suspend sensing for a period

tenterðpÞ ¼ ðdistðp; qbIÞ � �maxÞ=vmax þ tI: ð5Þ

In addition, the reporting boundaries are adjusted accord-
ingly. Recall that an MO must report “enter,” if p is inside
rbI. As shown in Fig. 10, rbI is therefore located at a distance
dI outside qbI, with

dI ¼ maxð�sense; �max � tI � vmaxÞ: ð6Þ

To explain this definition, we have to consider two cases:

1. If p is inside qbI or distðp; qbIÞ < �sense, the MO’s true
position is possibly inside qbI already. In that case,
the MO cannot determine precisely when it crossed
qbI. Due to the previous suspension time (tenter), it

may already be inside qbI for a period tI � �com. Thus,
it must send a report immediately, i.e., this causes
the first subcondition dI � �sense.

2. If p is outside qbI and distðp; qbIÞ � �sense, the MO’s
true position is definitely outside qbI. In that case, the
MO can schedule another sensing operation without
reporting only if tenterðpÞ � 0. This is represented by
the second subcondition dI � �max � tI � vmax, which
becomes relevant for small values of tI (i.e.,
tI < �sense þ �com) as shown in Fig. 10.

For “leave” events, the parameters can be determined
analogously. An MO that is not included in the result set
can schedule the following sensing operation after a time

tleaveðpÞ ¼ ðdistðp; qbOÞ � �maxÞ=vmaxþtO: ð7Þ

It must report “leave” immediately, if the sensed position is
outside the reporting boundary rbO, which is located at a
distance dO inside qbO, with

dO ¼ maxð�sense; �max � tO � vmaxÞ: ð8Þ

As described before (cf. Section 4.2), an MO outside rbO

must not report “enter,” while an MO located inside rbI

must not report “leave.” The may-report zone for both
events is again located in between rbI and rbO. To guarantee
that query results meet the given tolerance, it is again
required that rbI is completely included in rbO. Accordingly,
query results that are correct within the given tolerance
require the following minimal tolerance for st-CRQ:

distðqbI; qbOÞ � dI þ dO: ð9Þ

Resolving the max-functions of dI and dO thereby yields four
inequalities that must all hold to fulfill the condition above:

distðqbI; qbOÞ � 2 � �sense; and

distðqbI; qbOÞ � �sense þ �max � tI � vmax; and

distðqbI; qbOÞ � �sense þ �max � tO � vmax; and

distðqbI; qbOÞ � 2 � �max � ðtI þ tOÞ � vmax:

ð10Þ

Due to the first inequality, an st-CRQ always requires a
minimal spatial tolerance (for any sensor with �sense > 0).

Finally, note that s-CRQ is just a special case of st-CRQ.
With both temporal tolerances tI and tO set to 0, an st-CRQ
exhibits the same semantics as an s-CRQ with the same
spatial tolerance.

4.4 Reporting Policy

Now, let us consider the MO’s behavior inside the may-
report zone. Whenever an application can accept tolerances
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Fig. 9. Algorithm for processing a tolerant CRQ.

Fig. 10. Reporting boundary for an st-CRQ. (a) tI � �sense þ �com.
(b) tI < �sense þ �com.



that exceed the minimum defined above, this zone has a
nonzero width. An MO inside this zone can decide freely
whether to report after a sensing operation or not. However,
this decision may significantly affect the MO’s energy
usage. A suitable reporting policy must therefore balance the
number of sensing and reporting operations.

Clearly, to minimize communication costs, an MO
should defer each report as long as possible. That is, it
should never send a report inside the may-report zone, but
wait until it crosses the second reporting boundary. Yet, this
again requires a lot of sensing, as suspension times decrease
successively while the MO approaches the respective
reporting boundary (analogically to the discussion in
Section 4.1). Moreover, the report will often be inevitable
later nonetheless. Only if the MO turns around and changes
its direction of movement before reaching the second
reporting boundary the report can be avoided.

To reduce the total energy consumption, we employ the
following policy, which balances reporting and sensing
overhead. Inside the may-report zone, an MO sends a report
only when this increases the next suspension time. To do so,
it compares both tenter and tleave (as depicted in Fig. 11), since
the opposite function determines the sensing schedule after
a report is sent. For example, consider the “enter” case, in
which the MO schedules sensing operations according to
tenter. As long as the MO moves toward qbI, tenter is
decreasing. At the same time, tleave is increasing due to the
growing distance from qbO. After sending an enter report,
tleave will be used to schedule the next sensing operation.
Thus, the upcoming suspension time is maximized by
sending a report as soon as the sensor returns a position p
with tleaveðpÞ > tenterðpÞ.

This policy effectively minimizes the MO’s energy
consumption if the MO continues to move toward rbI, and
finally crosses this boundary. In that case, it minimizes the
sensing overhead without increasing the communication
overhead. In our previous work [7], we have carefully
evaluated this trade-off for distance-based tolerances. This
has confirmed that the energy consumption only increases
if a report is sent later. That is, the additional energy spent
on communication in some situations is easily amortized by
the reduction of sensing operations. This also holds for
spatiotemporal tolerances, as we will show in Section 5.

Finally note that, apart from energy consumption, the
reporting policy also affects the accuracy of query results.
That is, even though the semantics of tolerant CRQ are
met at all times, reports may be generated far away from
the original query boundary (qb). This may cause a large
deviation from the “ideal result.” In this regard, a different
reporting policy could utilize the given tolerance less
aggressively (i.e., trade off some energy savings against
better query accuracy). But interestingly, both optimization

criteria are in fact achieved simultaneously, if tolerances
are defined symmetrically at both sides of qb (i.e.,
distðqb;qbIÞ ¼ distðqb;qbOÞ and tI ¼ tO). In that case, our
reporting policy advises a report as soon as the MO crossed
qb, which corresponds to half of the tolerance space.

4.5 Multiple Queries

So far, we only considered a single query. In practice, an
MO can be involved in multiple CRQs at the same time,
though. Therefore, we now extend the algorithm introduced
before to handle multiple queries efficiently and briefly
discuss some optimizations of this scheme.

In principle, an MO could simply execute the algorithm
independently for each active CRQ. However, we can
further optimize the energy usage if the algorithm considers
the entire set of (locally known) queries and shares sensing
and reporting operations between those queries. The
extended algorithm is shown in Fig. 12. Here, we assume
that the MO maintains a list of all active CRQs in the variable
queries. For each query, it contains the tolerance parameters
as well as a variable lastReport to memorize the query’s state.
Processing the set of active queries then involves the
following three steps: 1) whenever a new position is
obtained from the sensor, the MO checks for all queries if
a report should be sent. For that purpose, it evaluates the
enter- and leave-Condition for each query as discussed before
(cf. Fig. 9). 2) If at least one query calls for a report, the MO
generates a single report message to update all relevant
queries at once. To ensure small message sizes, it is even
sufficient to report the MO’s id and position. Given that the
LM knows the MO’s parameters (�max and vmax) and the
reporting policy in use, the LM can deduce independently
which query results it has to update. 3) Finally, the next
sensing operation is scheduled according to the minimum of
the suspension times (either tenter or tleave) of each query.

While this algorithm always loops over all active CRQs,
we can furthermore improve the local processing time by
reducing the number of queries to access in steps 1 and 3 of
the algorithm. This can be achieved by introducing a spatial
index, like a quad- or R-tree [25], to index the boundaries in
main memory. It can be used to efficiently select the queries
relevant at a certain position, while taking the tolerances
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Fig. 11. Reporting policy.

Fig. 12. Object-side processing of multiple tolerant CRQs.



into account. For example, assume that an MO’s currently
and previously sensed positions are recorded in pnew and
pold, respectively. Then, the index structure can be used to
retrieve all queries with a boundary qbO that contains pnew or
pold (or both). Only for those queries, the MO has to check
whether a report is required (step 1). To compute the next
sensing suspension time (step 3), the MO can first retrieve
the query boundary closest to pnew. If tS is the suspension
time for that particular query (which includes its temporal
tolerance), then the MO has to consider only those queries
located within a distance tS � vmax to pnew in order to
determine the minimum suspension time of all queries.

Nevertheless, running too many queries in parallel will
eventually overload MOs, which often have limited
resources. An interesting approach to adjust the number
of queries to an MO’s capabilities has been proposed in [3].
Each MO is associated with a so-called resident domain,
which is a spatial region that surrounds the MO’s current
position. Only CRQs that intersect with this resident
domain are propagated to an MO for object-side processing.
Consequently, an MO’s load can be adapted by modifying
the size of its resident domain. This approach is likewise
applicable to tolerant CRQs.

5 EVALUATION

We have performed an extensive experimental evaluation
to evaluate the performance of our approaches. In the
following, we first explain the simulation setup and then
discuss the results in detail.

5.1 Simulation Setup

The experiments are modeled based on a typical scenario of
pedestrians commuting inside an European city. It com-
prises a simulation area of 2:0� 2:0 km2. Movement traces
were generated with the CanuMobiSim simulator [27] and
follow a smooth motion mobility model [2] through the
streets of the city. This model uses stochastic principles to
control the change of speed and direction in order to obtain
a realistic movement behavior. The target speed is chosen
randomly between 0 and 5 m/s every 30 seconds. To
simulate typical GPS receivers, a sensing uncertainty is
added to each position, which is obtained from a statistical
error model based on Gauss-Markow processes [24] with an
imprecision � 6:3 m in 95 percent. Each sensing operation
takes 0.5 s, and the communication delay is chosen
randomly between 0 and 1 s. To assess the impact of these
factors of uncertainty, our algorithms use the following
upper bounds, respectively: vmax ¼ 5 m=s, �sense ¼ 10 m,
�sense ¼ 0:5 s, and �com ¼ 1 s.

For each simulation run, we simulated the movements of
100 different MOs over 1 hr. During this time, they had to
process a set of 25 CRQs placed randomly within the
simulation area. For simplicity, we assume that the bound-
ary of a query is a circle, with radius r ¼ 200 m. All presented
results were obtained by averaging 100 simulation runs.

For different tolerance sizes, we measured the number of
sensing and reporting operations. Then, we used the
specification of the Apple iPhone 3GS (a typical smart
phone) to determine the lifetime of MOs. It offers a battery
capacity of 4.5 Wh (1,219 mAh @3.7 V) and a standby time of
300 hr, which corresponds to a constant background power

consumption of 15 mW. Each reporting operation is assumed
to cost 150 mJoules to transmit 240 bytes over GSM/GPRS
[9]. Each sensing operation consumes 75 mJoules with a low-
power GPS receiver [19]. The GPS receiver consumes
another 1.5 mW of background power on average.3

We also compare our results with the traditional object-
side processing technique (e.g., [3], [29]). This is the most
efficient solution for CRQs we are aware of (cf. Section 6).
However, previous works considered neither the sensing
operations nor the different factors of uncertainty. By
considering these issues, the methods in [3] and [28] are
equivalent to our protocol with zero-tolerance.

5.2 Energy Consumption

First, we evaluated the effect of tolerance values. We
incorporated a spatial tolerance to both sides of the query
boundaries by increasing and decreasing the radius r by the
same distance dtol. Likewise, the same temporal tolerance
ttol was added for both MOs entering and leaving a query
region (i.e., tI ¼ tO ¼ ttol). The values of dtol and ttol are set in
a way that satisfy the conditions in (10), i.e., dtol � 10 m and
dtol þ ttol � 5 m=s � 17:5 m. To assess the energy savings of
st-tolerance, we measured the average number of sensing
and reporting operations performed by each MO per hour.
The result, in logarithmic scale, is depicted in Fig. 13 for
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3. Independent of sensing operations, the GPS receiver regularly
calibrates its RTC (about 1 sec. on-time every 5 minutes) and updates
ephemeris data (approximately 30 sec. on-time every 30 min.) in order to
provide fast start-up times (i.e., “hot start” behavior) [17].

Fig. 13. Sensing and reporting operations performed per hour. (a) dtol

and (b) ttol.



different values of dtol and ttol. Fig. 13a also shows the
results for zero spatial and temporal tolerances.

We can see that sensing is performed more frequently
than reporting, which verifies our approach of focussing
primarily on sensing. Without tolerance, an MO has to
perform about 20.5 sensing operations per report. How-
ever, a minimal tolerance of dtol ¼ 17:5 m ðttol ¼ 0Þ saves
26 percent of sensing operations, while generating the
same number of reports. The spatial tolerance prolongs
the sensors’ suspension times; and very short ones are
effectively cut off by sending reports early—i.e., before
reaching the respective reporting boundary. Larger values
of dtol yield even lower sensing cost. For example, dtol ¼
35 m saves 72 percent of sensing operations over non-
tolerant processing. The reporting cost also decreases with
larger tolerance sizes (7 percent with dtol ¼ 35 m). This is
because the overlap of adjacent tolerance spaces from
different queries increases. Consequently, more query
results can be updated simultaneously, with a single
report message (cf. Section 4.5).

Fig. 13b shows that increasing the temporal tolerance has
a similar effect on sensing and reporting operations. In fact,
we can observe that a temporal tolerance t	 yields a close
performance as a spatial tolerance t	 � vmax. This is because it
increases suspension times to the same degree.

Based on these measurements, we also evaluated the
impact of tolerance on the overall lifetime of MOs. Without
tolerance, an MO’s battery is exhausted within 95 hours. The
increase in lifetime for different tolerance sizes is depicted in
Fig. 14. A minimal tolerance of dtol ¼ 17:5 m ðttol ¼ 0 sÞ, for
example, increases the lifetime by 18.5 percent, while a 10m-
10s tolerance yields an increase of 100.5 percent. We can thus
conclude that the use of tolerance improves the battery
lifetime significantly. Even small tolerances successfully
circumvent the critical behavior of object-side processing
close to qb (cf. Section 4.1). Moreover, this is not achieved at
the cost of more report messages. Rather the reporting
overhead is also reduced to some extent.

5.3 Accuracy Analysis

Next, we measured the resulting accuracy of query results.
Notice that the result of a tolerant CRQ does not deviate
from the semantics of query tolerance. Here, we measured
the average deviation from the ideal result, which is
observed in reality without tolerance. In particular, let

RSqueryðqi;tÞ be the actual result set, and RSidealðqi;tÞ be the
ideal result set of a query qi at time t. Let fþðqi; tÞ and
f�ðqi; tÞ denote the fraction of false positives and false
negatives, respectively:

fþðqi; tÞ :¼
RSqueryðqi; tÞ �RSidealðqi; tÞ
�� ��

RSqueryðqi; tÞ
�� �� ; ð11Þ

f�ðqi; tÞ :¼
RSidealðqi; tÞ �RSqueryðqi; tÞ
�� ��

RSidealðqi; tÞj j : ð12Þ

Then, we derive the average fraction of false positives fþ

(and of false negatives f�) over time:

fþ=� :¼ 1

n
�
Xn

i¼1

R ei
si
fþ=�ðqi; tÞdt

ðei � siÞ
; ð13Þ

where n denotes the number of active queries, and si, ei
denote the start and end times of query qi, respectively.

Symmetric tolerance. Fig. 15 shows the resulting
fraction of false positives and false negatives for the
scenario above. Starting at 0.8 percent for minimal tolerance
both fþ and f� increase linearly with spatial and temporal
tolerance. This is due to longer sensor suspension times,
which cause an MO to spend more time on the other side of
qb before acquiring a new position. Nevertheless, the
absolute deviation is not very high for moderate tolerance
values. For instance, dtol ¼ 10 m and ttol ¼ 10 s result in
4.0 percent (for fþ) and 4.1 percent (for f�). We also
observe that a temporal tolerance t	 again performs like a
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Fig. 14. Increase in lifetime over nontolerant CRQ.

Fig. 15. Deviation from the ideal result. (a) False positives and (b) false

negatives.



spatial tolerance t	 � vmax. As the energy savings were also
similar, a temporal tolerance can thus adequately replace a
spatial tolerance of that size.

Even more interestingly, we further obtained the same
deviation (of fþ ¼ f� ¼ 0:8%) for processing the CRQs
without tolerance as with minimal tolerances. That is, even
though minimal tolerances reduce the energy consumption
significantly, they do not affect the accuracy of the query
result. The energy is saved only by considering the
inevitable technical limitations during algorithm design.

Asymmetric tolerance. Recall from Section 4.4 that
symmetric tolerances are most advantageous in terms of
query accuracy. However, an application may choose to use
different tolerance values inside and outside a query
boundary. To assess the effect of “asymmetric tolerance,”
we repeated the previous experiment with tolerances applied
to outside the query boundary only. Specifically, qbI is set to
qb, while qbO is obtained by enlarging r by a distance dtol.
Likewise, the inner proximity window is zero (tI ¼ 0), and
the outer proximity window is varied (tO ¼ ttol). In this
setting, the distance between both boundaries is required to
exceed both �max � �sense (i.e., dtol � 27:5 m) and 2 � �max �
ttol�vmax (i.e., dtol þ ttol � 5 m=s � 35 m), to satisfy (10).

This does not affect the energy consumption, as it
depends solely on the total “width” of the tolerance space.
Yet, without inner tolerances st-CRQ prevents any false
negatives—a semantic that cannot be achieved with non-
tolerant CRQ. On the other hand, the resulting fraction of
false positives (depicted in Fig. 16) is larger than in the
previous experiment. This is the result of suppressing false
negatives. All reports are generated at a “safe distance”
outside the query boundary and MOs are thus included in
the result for a longer time. With a minimum tolerance, this
causes the smallest fraction of false positives feasible without
allowing false negatives. With larger tolerance sizes, the
fraction of false positives further increases, as MOs utilize
the acceptable deviation to reduce power consumption.

We also repeated this experiment with tolerances applied
to the inside of qb only and found similar results (with
values of fþ and f� interchanged). We omit the results here.

5.4 Effect of Query Load

Next, we evaluated the effect of different query loads. For
that purpose, we varied the number of active CRQs placed

randomly within the simulation area, assuming symmetric
tolerances again. Fig. 17 depicts the average number of
sensing and reporting operations performed by each MO
per hour (note the different scales). We observe that the
frequency of both operations increases with a growing
number of queries. This is because the average distance of
an MO to the closest query boundary decreases, so that
1) suspension times become shorter, and 2) more reports are
generated. Fig. 17a also reveals that the sensing rate
increases slower under larger tolerances. Even with small
tolerances, the savings over nontolerant CRQs increase
substantially. For example, a minimum tolerance of 10 m
and 1.5 s saves 21 percent with five queries, but this
increases to 30 percent for 75 queries. With 10 m-10 s
tolerance, this changes from 73 to 89 percent. We remark
that tolerances provide the highest benefit when an MO is
located close to a boundary, which occurs more often with a
larger number of CRQs.

Fig. 17b shows that tolerances also save an increasing
number of reports. A single query requires the same
number of reports regardless of tolerance size. For multiple
queries, only minimal tolerances require as many reports as
the nontolerant approach. In contrast, a 10 m-10 s tolerance,
for example, saves 23.5 percent of reports with 50 queries.
As discussed in Section 5.2, this is due to an increasing
overlap of tolerance spaces among queries, which allows
the updating of more queries with a single message.

In total, the energy savings hence likewise increase with
more CRQs to consider. With a 10 m-10 s tolerance, the
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Fig. 16. False positives caused by asymmetric tolerances.

Fig. 17. Increasing the number of active CRQs. The average number of
(a) sensing and (b) reporting operations performed by each MO per
hour.



lifetime of an MO is prolonged by 35 percent when
processing five queries, but prolonged by 184 percent with
75 queries.

In another experiment, we used 25 CRQs again and
increased the radius r of all query regions. The obtained
results are similar: With an increasing size of query regions,
an MO crosses a query boundary more often. Thus, the
number of reports increases, while suspension times
decrease. The advantage of tolerances is also more, and
more energy is saved for larger query regions.

In summary, the impact of tolerances increases while an
MO is located close to a query boundary. With higher query
loads, this occurs more often and thus the energy savings
over nontolerant CRQs increase.

5.5 Effect of Movement Speed

Finally, we also studied the effect of faster movement
speeds. Note that this actually comprises two different
factors of influence. First, MOs become more dynamic when
their movement speed increases. Second, this also requires a
larger value for vmax, the maximum velocity assumed by the
algorithm. Interestingly, we found that each of the two
factors influences only one of the MOs’ operations: the
movement speed affects only the number of reporting
operations, while the number of sensing operations is
affected only by the assumed vmax parameter. To show this
effect, we performed the following experiments:

Sensitivity of vvmax. First, we increased vmax, but left the
real movement patterns of MOs unchanged. That is, their
speed still ranges from 0 to 5 m/s, but the algorithm uses a
less accurate bound of the maximum speed. As a result, the
number of reports does not change considerably. Conver-
sely, Fig. 18 shows that generally, the sensing operations
increase with vmax. This is because a larger vmax lowers the
maximal suspension time between sensing operations (cf.
Section 4). This effect is cancelled out by a higher temporal
tolerance, since it enlarges the suspension times by a
constant duration (independent of vmax). For example, with
a 10 m-10 s tolerance, the number of sensing operations
grows just slightly. Spatial tolerances, however, increase the
suspension times by a duration of dtol=vmax only, and thus
have a smaller effect for larger vmax. We conclude that
temporal tolerances are less sensitive to vmax.

Note that Fig. 18 also shows values for vmax that are
smaller than the true maximum speed of MOs. This clearly

yields the lowest sensing costs. However, this gain comes at
a price, as the algorithm does no longer provide query
results within the given tolerance space. For vmax ¼ 5 m=s,
Table 2 lists the battery lifetime, the number of reports that
arrived at the LM late (i.e., after the MO actually left the
tolerance space), and the time those reports are delayed.
While the battery lifetime increases with smaller vmax, more
reports arrive late and the tolerance semantics are no longer
provided. In particular, the maximum delay can be very
high and hence there is no conceptual bound of the error in
query results anymore.

If the derivation from the true speed is small (e.g., at
4 m/s), there are only slight penalties in terms of delayed
reports, average and maximum delay. This is due to two
reasons: First, it is unlikely that MOs move at high in one
direction for a long period. Instead, they make turns in
between and change the movement speed. Thus, their
effective speed toward the query boundary is typically
lower than the maximum velocity. Second, the reporting
policy does not defer reports until the last possible moment.
Reports are typically sent well before reaching the end of
the tolerance space.

We conclude that our algorithms are quite robust against
small violations of vmax in practice. On the one hand, this is
a valuable feature, as MOs may temporarily exceed the
assumed maximum velocity without affecting the tolerance
semantics significantly. On the other hand, this also
indicates the potential for further optimizations by (adap-
tively) relaxing vmax. However, this requires careful con-
sideration, as vmax set too small can cause a large error in
query results.

Movement speed. In the next experiment, we tested the
effect of varying the MO’s movement speed (with vmax fixed
at 15 m/s). For this purpose, we generated movement traces
as described before, but with a constant speed v. From one
experiment to the next, v was gradually increased. This
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Fig. 18. Increasing the maximum velocity vmax.

TABLE 2
Decreasing the Maximum Velocity vmax



time, we found that the number of sensing operations is
barely affected. On the other hand, Fig. 19 shows how the
number of reporting operations increases, since faster MOs
cross query boundaries more frequently. At the same time,
the benefits of tolerances also increase with larger v. At
v ¼ 15 m=s, a 10 m-10 s tolerance saves 47.5 percent of
reports over nontolerant CRQs.

It follows that faster MOs spend significantly more
energy on query processing. First, they have to send
reports more often (as shown in Fig. 19). In addition, faster
movements also require a larger bound vmax, which causes
more sensing operations (as shown in Fig. 18). However,
we also observe from these figures that the energy savings
over the nontolerant solution only increase for faster MOs.
With v ¼ vmax ¼ 15 m=s, for example, the battery lifetime
for nontolerant CRQ is 52.5 hours. Yet, the use of minimal
tolerances increases the lifetime by 24.5 percent, and a
10 m-10 s tolerance increases it by 187 percent.

5.6 Summary

The concept of st-tolerance provides a novel tool for query
users to adjust their accuracy/efficiency trade-off in a
flexible way. To end with, we now give a summary of the
evaluation results. This can serve as a guideline on how to
choose appropriate tolerance parameters in different appli-
cation domains:

. First, all applications can profit from applying
minimal tolerances to both sides of a query
boundary (qb). As discussed in Section 5.3, this does
not affect the accuracy of query results, but it
considerably reduces the frequency of sensing
operations, and thus the energy consumption.

. Moreover, larger tolerance sizes provide even higher
energy savings at the cost of less accurate query
results. We obtained significant improvements of an
MO’s lifetime for only small increases of the
tolerance (cf. Section 5.2). Energy savings also
increase with higher query loads and faster move-
ment speeds.

. These additional tolerances can be defined in either
spatial or temporal domain. A temporal tolerance t	

yields the same performance as the spatial tolerance
t	 � vmax (cf. Section 5.3). Yet, the semantics are

different. In particular, temporal tolerance provides
a tighter bound: An MO can spend an infinite period
in spatial proximity to qb, but can cover only a
limited distance within the temporal proximity
window. In addition, spatial tolerance has less
impact on MOs with a high maximum velocity
vmax (cf. Section 5.5).

. Finally, applying tolerances symmetrically to both
sides of qb results in the highest accuracy of query
results. However, asymmetric tolerances offer im-
portant means to limit the amount of either false
positives or false negatives (at the cost of increasing
the other). Preventing either of them entirely is a
unique feature that cannot be achieved without an
appropriate definition of tolerance.

6 RELATED WORK

Monitoring the positions of mobile objects has been studied
extensively in recent years. In early solutions, all queries are
evaluated at the server-side, while MOs are required to
constantly report their positions. The characteristics of the
employed reporting protocol thereby determine the energy
consumption of MOs as well as the accuracy of query
results [21], [30]. Our previous work has shown how
selective sensing can be used to reduce the energy consump-
tion of such protocols significantly [6]. While this approach
is well suited for continuous tracking of MOs and for
spontaneous queries, it is suboptimal for other continuous
queries, like CRQs. Since MOs are “query blind,” many
reports may be sent without affecting any query result.

Many optimizations for continuous queries have been
developed recently. But all of them focus on reducing
communication costs and do not consider the issues of
sensing new position data. First, the idea of “query aware”
MOs was introduced by advising MOs of safe regions, in
which no reports are required [22], [11]. This was carried on
by propagating the queries itself to all near-by MOs for
object-side processing, which results in even lower commu-
nication cost. In [3] and [29], this is studied for CRQs, while
[18] focuses on continuous nearest-neighbor queries (CNQ),
and [9] considers moving CRQs and CNQs. We adopted
this approach for our paper.

Conceptually, object-side processing can be classified as
a data stream filtering technique: The positions of each MO
represent a constantly changing data stream; and to
evaluate continuous queries over these streams efficiently,
a customized stream filter is set up at each data source. To
improve the performance of such filters, Bobcock and
Olston proposed the concept of tolerance [1], [20]. This
assumes that users can tolerate some degree of imprecision
(called tolerance) in query results. By incorporating toler-
ances into filter conditions, they trade off result accuracy for
less communication costs. For example, [20] discusses filters
for average and minimum queries with value-based
tolerance. In [1], filters are designed for top-k queries, using
Kalman Filters at each stream is discussed in [12], and filters
for nonvalue tolerances are presented in [4].

However, all these works assume that data generated by
streams is always correct. They do not consider the different
sources of uncertainty introduced by sensing data items, as
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explained in Section 4.1. This can cause stream filters to
miss important events, and introduce nontolerated errors.
In contrast, we have derived necessary minimum con-
straints for tolerant CRQs and our algorithms ensure that
such tolerances are met despite data uncertainty.

Moreover, none of the aforementioned works considers
the energy required for sensing new data. They assume that
communication is the only relevant factor of energy
consumption and thus focus on minimizing the number of
report messages. Yet, our results in Section 5 confirm that
acquiring new sensor data cannot be ignored, but can
instead dominate the energy use of MOs—at least for the
prominent sensing technology GPS. In contrast to previous
works, we therefore use the given tolerance to maximize
sensor suspension times. As a result, an MO can save far
more energy than it spends on reporting at all.

On the other hand, sensing has already been identified as
a relevant source of power consumption in the area of
sensor networks [15], [23]. Proposed solutions reduce the
energy consumption by acquiring new data from a subset of
sensors only. Generally, this is achieved by exploiting
correlations between values of multiple sensors (either on
the same node or on multiple nodes in spatial proximity)
and predicting the expected value of others with some level
of confidence [13]. However, this differs from the problem
considered in this paper, as the positions of different MOs
can change independent of each other.

Finally, reducing energy consumption by selective sensing
has also been studied for activity recognition with body-
worn sensors (e.g., [26]). These works focus on the trade-off
between energy use and accuracy of recognition, though.

7 CONCLUSION

In this paper, we addressed the efficient processing of
continuous range queries over mobile objects. It has been
shown how the concept of spatiotemporal tolerance helps to
overcome two important challenges: coping with data
uncertainty and saving precious energy of MOs.

Limitations of current sensor technologies and commu-
nication delay entail different factors of uncertainty that
affect the accuracy of query processing. This prevents
providing precise results for nontolerant CRQs. In contrast,
our definition of spatiotemporally tolerant CRQs offers
intuitive, well-defined query semantics in spite of data
uncertainty. We derived appropriate minimum constraints
for the tolerance size such that our algorithms can compen-
sate all sources of uncertainty and consistently provide
results within the given tolerance. Thereby, tolerant CRQs
offer applications a lot of flexibility to specify their accuracy
requirements precisely. They can specify the acceptable error
in both space and time dimensions, independently for both
sides of the query boundary. This enables semantics that
prevent either false negatives or false positives.

In addition, we have pointed out that position sensing
operations can have a critically large impact on the energy
consumption of MOs. The main reason is that the frequency of
these operations has to be increased when an MO is moving
closer to the boundary of a nontolerant CRQ. On that account,
our algorithms utilize the defined tolerance space effectively
to increase sensor suspension times. Our evaluation confirms

that this can save a large portion of energy that MOs spend on
query processing. Most notably, defining only minimum
tolerance sizes symmetrically to both sides of the query
boundary reduces the power consumption significantly,
without degrading the quality of query results at all. These
energy savings further increase, if an application is willing to
accept larger tolerances.

In the future, we are going to study how this concept of
spatiotemporal tolerance can be applied to other continuous
queries (like nearest-neighbor queries, for example).
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