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Abstract 
A structural health monitoring system installed on a bridge provides the necessary data for engineers 
to evaluate its integrity, durability and reliability through the observation of changes in bridge 
properties caused by any damage or deterioration. However, the time-dependent behaviour of 
construction materials such as concrete and steel cables also causes changes in structural 
characteristics. If these are not taken into account properly, false alarms may result. This paper 
presents a systematic and efficient method to study the effects of long-term time-dependent behaviour 
due to concrete creep, concrete shrinkage and cable relaxation on the dynamic properties of cable-
stayed bridges. The finite element model of the cable-stayed bridge is built up with beam elements 
and proper cable elements considering their geometric nonlinearity and time-dependent effects. The 
long-term time-dependent analysis is carried out using an efficient single-step finite element method 
using the age-adjusted elasticity modulus and shrinkage-adjusted elasticity modulus for concrete, and 
the relaxation-adjusted elasticity modulus for steel cables. Then the dynamic properties of the bridge 
can be obtained by the subspace iteration method. The effects of long-term time-dependent behaviour 
including concrete creep, concrete shrinkage and cable relaxation on the dynamic properties of typical 
cable-stayed bridges are examined in detail.  

Keywords: cable-stayed bridges, FEM, free vibration analysis, single-step method, time-dependent 

1 Introduction 
Cable-stayed bridges have become very popular over the last four decades not only because of their 
structural efficiency but also their aesthetic appearance. Structural health monitoring (SHM) systems 
are often installed on such bridges to monitor their safety through the observation of changes in bridge 
properties caused by damage or deterioration. However the time-dependent behaviour can redistribute 
internal forces and change the geometry, resulting in changes in bridge properties. If these are not 
considered properly, false positive or false negative alarms of SHM systems may arise. So it is 
necessary to take into account such effects carefully in order to build a reliable monitoring system. 

A reliable method for time-dependent analysis of concrete structures is to use time integration with 
the finite element method (Ghali et al., 2002). As it is time-consuming, various single-step methods 
have been proposed by incorporating age-adjusted elasticity modulus (AAEM) based on a stress 
relaxation function of concrete (Ghali et al., 2002), shrinkage-adjusted elasticity modulus (SAEM) by 
allowing for the interaction between concrete creep and shrinkage (Au et al., 2009), and relaxation-
adjusted elasticity modulus (RAEM) on the basis of a stress relaxation of tendons (Si et al., 2009). 
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However, the effects of time-dependent behaviour on the dynamic performance of concrete 
structures have received little attention. Sapountzakis and Katsikadelis (2003) adopted an effective 
AAEM as a time-dependent tangential modulus to study the creep and shrinkage effects on dynamic 
analysis of reinforced concrete slab-and-beam structures, and showed that the natural frequencies 
decreased with time.  As there has been little work on the time-dependent effects on dynamic 
properties of cable-stayed bridges, it is desirable to develop a systematic and efficient method to 
investigate the effect of time-dependent behaviour due to concrete ageing, creep and shrinkage, and 
cable relaxation on the dynamic properties of such structures. 

2 Methodology for analysis of time-dependent behaviour 

2.1 Equivalent creep coefficient for steel cables 
The intrinsic stress relaxation prσΔ  in a steel cable is the loss of stress at constant strain. It depends on 
both the duration of sustained tension t  (hour) and the ratio of the initial stress 0pσ  to the “yield” 
strength of steel pyf .  The equation proposed by Magura et al. (1964) for stress-relieved cables is 
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It is assumed that the creep coefficient is independent of age and the modulus of elasticity sE  remains 
constant.  Given the type of tendon and based on the intrinsic stress relaxation, the creep coefficient of 
a tendon stressed at time t0 can be worked out at regular time intervals tΔ  as (Au and Si, 2009): 
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Defining an ageing coefficient )(),( 00 tttt ss −= χχ  to take into account time-dependent effects due 
to creep which is also assumed to be independent of age, then the RAEM )( 0ttEs −  (Si et al., 2009), 
which is essential to the single-step method of analysis involving steel cables, can be defined as 
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2.2 Single-step method for time-dependent behaviour of cable-stayed bridges 
To carry out the single-step finite element analysis of a cable-stayed concrete bridge for time-
dependent behaviour, one may use the AAEM (Ghali et al., 2002) to account for concrete creep, the 
SAEM (Au et al., 2009) to account for interaction between shrinkage and creep of concrete, and the 
RAEM (Si et al., 2009) to account for relaxation of steel cables.   

The AAEM ),( 0ttEcc  to account for concrete creep (Ghali et al., 2002) can be expressed as 
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where )( 0tEc  is the elastic modulus at time 0t , ),( 0ttccχ  is the ageing coefficient and ),( 0ttcϕ  is the 
creep coefficient of concrete at time t  after loading at time 0t .  The incremental load vector cc

eq }{Δ  
of a concrete member from time 0t  to t  can be derived as 

 ccccccc
e ttfttkq ϕδ )},({}{)],([}{ 00 Δ+Δ=Δ  (6) 

in terms of the incremental creep displacement vector cc}{ δΔ , the stiffness matrix ccttk )],([ 0  and the 
incremental load vector due to creep effect cf ϕ}{Δ  calculated by using the AAEM. 

The SAEM ),( 0ttEcs  to account primarily for shrinkage and its interaction with creep (Au et al., 
2007) is similarly given in terms of an ageing coefficient ),( 0ttcsχ  by 
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Then the incremental load vector cs
eq }{Δ  from time 0t  to t  can be expressed as 

 cscscscs
e ttfttkq )},({}{)],([}{ 00 Δ+Δ=Δ δ  (8) 

In terms of the incremental shrinkage displacement vector cs}{ δΔ , the stiffness matrix csttk )],([ 0  and 
the incremental load vector due to shrinkage csttf )},({ 0Δ  formed by SAEM. 

Based on the RAEM defined in Eq. 4, the incremental load vector T
21 ][}{ ss

e ffq ΔΔ=Δ  can be 
expressed in terms of the stiffness matrix sttk )],([ 0 , the incremental nodal displacement vector { }suΔ  
and the incremental load vector due to cable relaxation sttf ϕ)},({ 0Δ  as (Si et al., 2009) 

 ssss
e ttfuttkq ϕ)},({}{)],([}{ 00 Δ+Δ=Δ  (9) 

where the stiffness matrix sttk )],([ 0  is given in terms of the cross sectional area sA  and length sl  by 
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The incremental load vector sttf ϕ)},({ 0Δ  is given in terms of the cable force )( 0tNs  at time 0t  by 
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2.3 Modelling of cable-stayed bridges for free vibration analysis 
A long-span cable-stayed concrete bridge consists of different kinds of structural components with 
time-independent nonlinear effects including interaction between axial force and bending, sag effects 
caused by weight of stay cable and large displacements (Curley and Shepherd, 1996).  The bridge 
deck and pylons are modelled as Bernoulli-Euler beam elements (Au et al., 2001b).  Each stay cable is 
modelled as a single truss element with an equivalent modulus eqE  (Au et al., 2001b) given by  
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where caH  is the horizontal projected length, caA  is the cross-sectional area, caE  is the effective 
modulus of elasticity, w  is the weight per unit length and T  is the updated cable tension of the cable. 

An efficient approach to consider the “P-delta effect” of the bridge girders and towers is to adopt 
the geometric stiffness matrix Gk][  of each beam element (McGuire et al., 2002) to modify its elastic 
stiffness matrix Ek][ . The total stiffness matrix Tk][  (Zienkiewicz and Taylor, 1989) becomes  

 GET kkk ][][][ +=  (13) 



   
 

 

After building up the global matrices, free vibration analysis of the cable-stayed bridge can be 
carried out (Cook et al., 2001) using the instantaneous moduli of elasticity. 

3 Case studies 

3.1 Dynamic properties of a cable-stayed concrete cantilever  
The dynamic properties of a hypothetical cable-stayed concrete cantilever as shown in Figure 1 

under long-term effects are studied using the proposed method. The cantilever is 10m in length with a 
square cross section of 1m×1m. Its weight density is 25kN/m3. The characteristic compressive 
strength of concrete is fck =36MPa. Wet curing is conducted until Ts=3 days after which shrinkage 
begins. The relative humidity is taken as 80% throughout. The stay cable is a stress relieved tendon 
with a cross sectional area As =250mm2, Young’s Modulus Es=200GPa, weight density ρs =78kN/m3 
and initial tension P0=210kN applied at time t0 =28 days referring to the age of cantilever. The initial 
prestressing ratio is 0.8. The parameters of CEB-FIP Model Code 1990 (CEB, 1993) are adopted and 
the sag effect of cable and geometric nonlinearities of the cantilever are ignored. The cantilever is 
modelled by 4 identical beam elements and the cable is modelled by a truss element. First, the initial 
natural frequencies of this structure at Day 28 are calculated without any time-dependent behaviour. 
Then the dynamic properties after 300 days are calculated for various cases, namely (a) Case A: 
concrete ageing only; (b) Case B: concrete ageing and cable relaxation only; (c) Case C: concrete 
ageing, creep, shrinkage and cable relaxation; and (d) Case D: cable relaxation only. The first three 
frequencies and their percentage differences from the initial frequencies are shown in Table 1. 
Table 1. The long-term dynamic properties of cable-stayed cantilever after 300 days 

Mode Initial f 
(Hz) 

Case A Case B Case C Case D
f (Hz) Dif.(%) f (Hz) Dif.(%) f (Hz) Dif.(%) f (Hz) Dif.(%)

1 6.910 7.194 4.11 7.296 5.59 7.297 5.60 6.885 -0.35
2 41.779 43.629 4.43 44.296 6.02 44.299 6.03 41.775 -0.01 
3 117.333 122.536 4.43 124.412 6.03 124.422 6.04 117.331 -0.00
 
Table 1 shows that the natural frequencies increase under concrete ageing effect and its 

combination with other time-dependent deformations, while they decrease slightly under the effect of 
cable relaxation only. It indicates that concrete ageing has the most important influence on the long-
term dynamic properties among various time-varying factors by comparing Cases A, B and C. The 
results from Cases B and C demonstrate that cable relaxation has more effect on the dynamic 
characteristics than concrete creep and shrinkage. Comparison of the results of various cases shows 
that the interaction among various time-varying factors is greater than their individual effects. 
Therefore it is desirable to take into account the interaction among various time-varying factors when 
long-term analysis of dynamic behaviour is performed. 

Figure 1. A cable-stayed cantilever  Figure 2. A cable-stayed concrete bridge 
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3.2 Dynamic properties of a cable-stayed bridge considering time-dependent behaviour 
A cable-stayed concrete bridge from Au et al. (2001a) with a main span of 364m, as shown in Figure 
2, is modelled as a two-dimensional structural system for dynamic analysis. The bridge is hinge 
supported on Tower 1 but roller-supported on Tower 2. The corresponding properties of the bridge 
deck and towers are given in Table 2. The properties of stay cables and the finite element 
discretisation are the same as those of Au et al. (2001a). The characteristic compressive strength of 
the concrete used in the deck and towers is fck =40MPa. Wet curing is carried out until sT =3 days after 
which shrinkage begins. The parameters of CEB-FIP Model Code 1990 (CEB, 1993) are adopted. 
Table 2. Properties of deck and towers of a cable-stayed bridge 
Part of structures A (m2) I (m4) Ec28 (MPa) ρ (kg/m3) 
Bridge deck 6.00 4.1875 36 268 2550
Bridge tower – above deck 14.2 30.0 36 268 2550
Bridge tower – below deck 35.8 40.0 36 268 2550 

 
Firstly, the initial natural frequencies of the bridge at Day 28 are calculated without considering 

geometric nonlinearities and any time-dependent behaviour. Secondly, the natural frequencies at Day 
28 are obtained considering geometric nonlinearities (Case A). Then the dynamic properties after 300 
days are obtained for various cases considering geometric nonlinearities, namely (a) Case B: concrete 
ageing only; (b) Case C: concrete ageing and creep only; and (c) Case D: concrete ageing, concrete 
creep and shrinkage. The first ten natural frequencies together with the percentage changes compared 
with the initial values are shown in Table 3.  
Table 3. Natural frequencies (Hz) of cable-stayed bridge with percentage changes shown in brackets 

Mode Initial Case A Case B Case C Case D 
1 0.339 0.336 (-0.88%) 0.340 (0.29%) 0.342 (0.88%) 0.342 (0.88%)
2 0.469 0.462 (-1.49%) 0.470 (0.21%) 0.473 (0.85%) 0.473 (0.85%) 
3 0.698 0.687 (-1.58%) 0.697 (-0.14%) 0.699 (0.14%) 0.699 (0.14%)
4 0.759 0.750 (-1.19%) 0.759 (0.00%) 0.759 (0.00%) 0.759 (0.00%)
5 0.855 0.843 (-1.40%) 0.856 (0.12%) 0.858 (0.35%) 0.857 (0.23%) 
6 1.080 1.061 (-1.76%) 1.087 (0.65%) 1.089 (0.83%) 1.089 (0.83%)
7 1.270 1.252 (-1.42%) 1.290 (1.57%) 1.286 (1.26%) 1.286 (1.26%)
8 1.327 1.302 (-1.88%) 1.338 (0.83%) 1.336 (0.68%) 1.336 (0.68%) 
9 1.388 1.364 (-1.73%) 1.403 (1.08%) 1.401 (0.94%) 1.401 (0.94%)
10 1.450 1.435 (-1.03%) 1.482 (2.21%) 1.488 (2.62%) 1.488 (2.62%)

 
Table 3 shows that geometric nonlinearities reduce the natural frequencies by a maximum of 1.9%. 

However, the natural frequencies increase under the combined effects of time-dependent behaviour 
and geometric nonlinearities by a maximum of 2.6%. It indicates that the time-dependent behaviour 
has more effect on dynamic properties of this bridge than geometric effects. Comparing Cases B, C 
and D shows that concrete ageing plays an important role in increasing the long-term natural 
frequencies. The effects of creep are higher than those of shrinkage. The interaction between concrete 
creep and ageing effects should be considered carefully for long-term performance analysis of 
concrete structures. It is also noted that the time-dependent behaviour and geometric nonlinearities 
often have opposite effects. Therefore they should be studied in detail for reliable damage 
identification in vibration-based structural health monitoring systems. 

4 Conclusions 
A systematic and efficient method is proposed to investigate the dynamic properties of cable-stayed 
bridges considering the effect of long-term time-dependent behaviour due to concrete ageing, creep 



   
 

 

and shrinkage together with cable relaxation. Apart from the use of finite element method that 
considers geometric nonlinearities, it also adopts an efficient single-step approach for analysis of 
time-dependent behaviour using the AAEM and SAEM for concrete and RAEM for cables. Free 
vibration analysis can be carried out using the updated internal forces and geometry of the bridge. 
Numerical examples are presented to illustrate the application of the proposed method as well as to 
investigate the behaviour of typical cable-stayed concrete bridges. Results from these investigations 
show that the natural frequencies, whether accounting for geometric effects or not, increase with time 
due to concrete ageing effect alone, its interaction with creep and shrinkage of concrete, and cable 
relaxation, or their combined effects. However the natural frequencies tend to decrease slightly with 
time when cable relaxation is considered alone. These results also indicate that concrete ageing has 
the most important influence on the dynamic properties among various time-varying factors. The 
interaction between concrete ageing effect and effect of concrete creep, cable relaxation or their 
combined effect are greater than their individual effects. The interaction between ageing effect and 
concrete shrinkage is negligible. Hence the interaction among various time-varying factors should be 
considered carefully during long-term dynamic analysis of concrete structures. Besides, the effect of 
time-dependent behaviour on dynamic properties varies from mode to mode. Therefore, the long-term 
dynamic characteristics due to time-dependent behaviour should be investigated in detail in order to 
ensure reliable damage identification in vibration-based structural health monitoring systems. 
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