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Abstract 
In the conventional semi-analytical finite strip analysis of folded plates, the boundary conditions and 
the intermediate support conditions must be satisfied a priori.  The admissible functions used as the 
longitudinal part of the displacement functions are sometimes difficult to find, and they are valid for 
specific conditions only.  In this paper, a general finite strip is developed for the analysis of folded 
plate structures.  The geometric constraints of the folded plates, such as the conditions at the end and 
intermediate supports, are modelled by very stiff translational and rotational springs, as appropriate.  
The complete Fourier series including the constant term are chosen as the longitudinal approximating 
functions for each of the displacements.  As these displacement functions are more general in nature 
and independent of one another, they are capable of giving more accurate solutions.  The potential 
problem of ill-conditioned matrices is investigated and the appropriate choice of the very stiff springs 
is also suggested.  The formulation is done in such a way to obtain a unified approach, taking full 
advantage of the power of modern computers.  A few numerical examples are presented for 
comparison with numerical results from published solutions or solutions obtained from the finite 
element method.  The results show that this kind of strips is versatile, efficient and accurate for the 
analysis of folded plates. 
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1 Introduction 
The use of folded plates, as a special kind of shells, is popular in civil engineering and other branches 
of engineering.  Folded plates made of reinforced concrete are extensively used in long-span roofs.  
The box girder bridges and shear walls can also be considered and analysed as a particular form of 
folded plates.  As many folded plate structures have uniform cross sections, they have been 
successfully analysed by the conventional semi-analytical finite strip method (Cheung 1969; Cheung 
and Cheung 1971; Cheung and Delcourt 1997), the spline finite strip method (Fan 1982; Cheung and 
Fan 1983) as well as the finite strip method using computed shape functions (Cheung and Kong, 
1995) and the finite strip method using modified Fourier series (Cheung et al., 1998).  A summary of 
the development of finite strip method was presented by Cheung and Tham (1998). Shahidi et al. 
(2005) developed a new finite strip method to analyse very large deformations but small strain of thin 
plates and folded plates by use of the elastic Cosserat theory. Recently, Eccher et al. (2008; 2009) 
successfully carried out both linear elastic and geometric nonlinear analyses of perforated folded plate 
structures using the isoparametric spline finite strip method. 
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In the conventional semi-analytical finite strip method, the boundary conditions and the 
intermediate support conditions must be satisfied a priori.  The admissible functions used as the 
longitudinal part of the displacement functions are sometimes difficult to find, and they are valid for 
specific conditions only.  Moreover, in the in-plane stress analysis of folded plates, the longitudinal 
displacement functions are very often related to the first derivative of the transverse displacement 
functions.  These place certain restrictions on the general use of the method.  

In this paper, a general semi-analytical finite strip is presented for the analysis of folded plate 
structures using an expansion beyond the span of structure.  The folded plate structure is discretized 
into flat shell finite strips for analysis.  The boundary conditions are then introduced by imposing very 
stiff translational and rotational springs, as appropriate. A few numerical examples are presented for 
comparison.  

2 Longitudinal approximating function 
Figure 1 shows an arbitrary function f(y) which is defined over the interval (0, l).  To avoid any errors 
associated with the Gibbs phenomenon, one can construct a function g(y) over the interval (-l, 0) to 
form a new function ϕ(y) so that extension using the period T=2l gives a periodic function which 
ensures the continuity and smoothness at abscissae of integral multiples of l, as shown in Figure 1. 

The function f(y) initially defined over the interval (0, l) can be similarly extended to form ϕ(y) 
over the interval (-l, l) and written in terms of trigonometric functions of lπω =0  as (Liu et al., 1995) 
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For convenience, the terms in Eq. (1) are renumbered as a unified set of longitudinal approximating 
functions Ym(y) with another index variable m running from 1 to 12 += rR  as 
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Theoretically this set of approximating functions Ym(y) can approach any well behaved function 
defined over the interval (0, l) effectively.  The extended period of 2l is an optimum value, as further 
increase in period will not improve the accuracy any more 
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Figure 1. An arbitrary function f(y) defined over the interval
(0, l) and its periodic extension. 



   
 

 

3 Finite strip formulation 

3.1 Finite strip discretisation 
Figure 2 shows a typical flat shell finite strip of length l, breadth b and thickness h.  The displacement 
vector u(x,y,t) at an arbitrary point M(x,y) located on the mid-surface of the strip comprises the 
components u(x,y,t), v(x,y,t) and w(x,y,t) in the x, y and z directions respectively, where t stands for 
time.  In line with the normal finite strip approach, the displacement vector u(x,y,t) can be written in 
terms of the shape function matrices cu(x), cv(x) and cw(x), the displacement functions Ym(y) and the 
nodal displacement vector δm(t) as (Cheung and Tham 1998) 
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where Hm(x, y) is the interpolation function matrix for the m-th mode, and 
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Once the displacement functions are chosen, the stiffness matrices, mass matrices, load vectors, etc. 
can be established and the problem solved in the usual finite strip method (Cheung and Tham, 1998). 

3.2 Stiffness matrix fss
mnK  of the flat shell strip 

The stiffness matrix fss
mnK  of the flat shell strip can be worked out by integrating over the area Ae as 
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in terms of the elasticity matrix D and the strain matrices Bm and Bn.  The stiffness matrix fss
mnK  of the 

flat shell strip can also be assembled using the elements p
ijk  of the stiffness matrix p

mnK  of the plane 

stress strip, and the elements b
ijk  of the stiffness matrix b

mnK  of the plate bending strip as 
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Figure 2.  A typical flat shell strip in local coordinate system. 
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3.3 Mass matrix fss
mnM  of the flat shell strip 

The mass matrix fss
mnM  of the flat shell strip can be worked out as 
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where ρ is the mass density of the strip.  Likewise the mass matrix fss
mnM  of the flat shell strip can 

be assembled using the elements p
ijm  of the mass matrix p

mnM  of the plane stress strip, and the 
elements b

ijm  of the mass matrix b
mnM  of the plate bending strip in a manner similar to stiffness 

matrices. 

3.4 Support conditions 
Unlike the conventional semi-analytical finite strip method in which the support conditions have been 
satisfied a priori by the choice of displacement functions, the support conditions have to be 
introduced afterwards in the present method.  The rigid supports can be considered as very stiff elastic 
supports.  Figure 3 shows a flat shell strip with a point spring support located at the point (xpi, ypi), 
with spring stiffness of kpxi, kpyi and kpzi along the directions of coordinate axes.  The potential energy 
Ups stored in the elastic point supports can be expressed as 
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Substituting Eq. (6) into Eq. (9) gives 
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Figure 3. A flat shell strip with an elastic point support at (xpi, ypi). 



   
 

 

where ps
mnK  is the contribution of the elastic point support to the stiffness matrix of the flat shell strip 

given by 
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The contribution of other types of support to the stiffness matrix can be similarly worked out.   

 

 

 

 

 

 

 

 

3.5 Load vectors 
Figure 4 shows a flat shell strip subjected to a point load Fi ={Fxi, Fyi, Fzi} at the point (xi,yi).  The 
potential energy Upl associated with the point load can be expressed as 
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Substituting Eq. (6) into Eq. (12), one has 
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where pl
mnf  is the load vector corresponding to the point load iF  and it appears as 
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The load vectors for other cases can be worked out in a similar manner. 

3.6 Formulation and solution of the governing equation 
When a plate strip is of constant thickness, the elements of the strip stiffness and mass matrices can be 
expressed in terms of the following basic integral 

 ∫=
l

jiij dyyYyYI
0

)()(       (i= 1, 2, …, R; j=1, 2, …, R). (15) 

Note that the integral ijI  is symmetrical and hence jiij II = .  Because of the orthogonality of the 
harmonic functions, most of the off-diagonal values are zero.  As the above stiffness matrices, mass 
matrices and load vectors have been derived based on the local coordinate system.  They should be 
transformed to the global coordinate system before being assembled together to form the 
corresponding global matrices and vectors for solution of the static and dynamic problems (Cheung 
and Tham, 1998). 
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Figure 4. A flat shell strip under a point load at (xi, yi). 



   
 

 

4 Numerical examples 
In the examples of folded plate structures investigated, it is assumed that a diaphragm is provided at 
each support to prevent the distortion of the cross section. 

4.1 Effect of support stiffness on the solution accuracy 
To investigate the potential problem of ill-conditioned matrices, a clamped beam is modelled as a 
strip with translational and rotational springs having the same numerical stiffness at the two ends.  
Free vibration analysis is carried out using 21 terms and the first 5 frequencies are compared with the 
exact solutions.  Figure 5 shows the variation of percentage errors with the ratio of the added stiffness 
to the maximum element of the stiffness matrix.  It shows that when the ratio is in the range of 103 to 
108, accurate solutions can be obtained using double precision computation of a personal computer. 

Figure 5. Effect of support stiffness on solution accuracy. 

4.2 Free vibration of a cantilever folded plate with two folds 
Figure 6 shows the cross section of a cantilever folded plate of length L with two folds.  The crank 
angle α may take values of 90°, 120° and 150°.  A total of 9 strips of equal width and 13 terms have 
been used.  The Poisson's ratio μ is 0.3.  The dimensionless frequency parameter λi is defined as 

ELii )1( 2μρωλ −=  where ωi is the ith natural circular frequency, ρ is the mass density and E is 
Young’s modulus.  The lowest three frequencies obtained using the present method are compared 
with the finite element-transfer matrix solutions of Liu and Huang (1992) and the finite strip solutions 
of Kong (1994) in Table 1.  Good agreement is observed among various solutions.  The maximum 
difference among the three sets of results is 3%, and in most cases the difference is within 0.5%. 

 
Table 1. Natural frequencies of a cantilever folded plate with two folds. 

Crank angle α 
(degree) 

Mode 
No. 

Frequencies  λi

Present Liu & Huang (1992) Kong (1994)

90 
1 
2 
3

0.1237 
0.1254 
0.2593

0.1249 
0.1260 
0.2579

0.1245 
0.1258 
0.2598 

120 
1 
2 
3

0.0973 
0.1245 
0.2585

0.1000 
0.1241 
0.2571

0.0980 
0.1249 
0.2589 

150 
1 
2 
3

0.0672 
0.1140 
0.2063

0.0687 
0.1145 
0.2109

0.0675 
0.1145 
0.2078 
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Figure 6. Cross section of a folded plate with two folds. 

b1=b2=b3=b=L/3  
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5 Conclusions 
A general finite strip is developed for the analysis of folded plate structures.  The geometric 
constraints of the folded plates, such as the conditions at the end and intermediate supports, are 
modelled by very stiff springs.  The complete Fourier series including the constant term are chosen as 
the longitudinal approximating functions for each of the displacements. Numerical examples are 
presented for comparison with available numerical results.  The results show that this kind of strips is 
versatile, efficient and accurate for the analysis of folded plates.  The method is especially useful in 
the analysis of folded plates with complicated support conditions, such as box girder bridges. 
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