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ABSTRACT 
 
In this paper, the crowd counting and segmentation problem 
is formulated as a maximum a posterior problem, in which 
3D human shape models are designed and matched with 
image evidence provided by foreground/background 
separation and probability of boundary. The solution is 
obtained by considering only the human candidates that are 
possible to be un-occluded in each iteration, and then 
applying on them a validation and rejection strategy based 
on minimum description length. The merit of the proposed 
optimization procedure is that its computational cost is 
much smaller than that of the global optimization methods 
while its performance is comparable to them. The approach 
is shown to be robust with respect to severe partial 
occlusions.  

 
Index Terms— Crowd counting, crowd segmentation, 

model based segmentation, Bayesian method 
 

1. INTRODUCTION 
 
Crowd counting and segmentation is an important, yet 
challenging problem in video surveillance. The main 
difficulty resides in the partial occlusion that prevalently 
exists in the crowd. 

Previous work to human crowd segmentation can be 
classified into two categories: motion based approaches and 
shape based approaches. The argument of the motion based 
approaches [1, 2] is that the motion field of the same human 
object is relatively uniform. Hence low level features are 
extracted and tracked, and the features with similar 
trajectories are clustered to form human objects. However, 
without explicit shape constraint, the performance of this 
kind of methods degrades when multiple human objects 
have similar trajectories. 

Shape based methods usually detect and segment 
crowds in a single image. In [3], edgelet features are 
introduced to construct boosted body part classifiers  and 
responses of part detectors are combined to form a joint 
likelihood model of human. In [4], local information from 
image patches is collected in a probabilistic Hough voting 
procedure. However, these two methods become 
problematic under crowded and cluttered environment. 
Instead of learning the human shape, 2D [5] or 3D [6] 
models can be explicitly designed to represent human 

shapes. In [5], a hierarchical part-template matching is 
proposed to handle partial occlusions. However, as the 
optimization algorithm is greedy, the result may be wrong 
because the assumed occlusion order may not be correct. In 
[6], Markov Chain Monte Carlo (MCMC) is used to 
efficiently search the solution space. However, this kind of 
random search can be computationally expensive. 
Expectation Maximization (EM) is used in [7, 8] to assign 
image features to human candidates, and occlusion 
reasoning is performed in the M-step .  

This paper proposed a Bayes approach that, given the 
foreground and camera parameters, segments the crowd into 
individuals. Considering that finding the global optimal 
solution that maximizes the posterior probability is very 
computationally expensive [6-8], while the assumed 
occlusion order might be wrong of the faster greedy 
approaches [3, 5], in our implementation, the optimization is 
performed within a portion of the candidates in each 
iteration. The merit of the proposed optimization procedure 
is that its computational cost is much smaller than the global 
optimization methods while its performance is comparable 
to them. 
 

2. PROBLEM FORMULATION 
 

Our goal is to segment the foreground into individual 
human objects where occlusion may exist. We formulate the 
crowd counting and segmentation problem as a maximum a 
posterior (MAP) problem such that the optimal solution * 
is given by 

( *) arg max ( | )P I                           (1) 
where  consists of the number of human objects n and their 
corresponding models (mi, i=1,…,n); I is the foreground 
mask. According to Bayes Rule, (1) can be decomposed into 
a prior term and a joint likelihood term. 

( | ) ( ) ( | ) / ( ) ( ) ( | )P I P P I P I P P I           (2) 
We assume that the prior of a solution is the product of 

the prior probabilities of each individual human object and 
is defined as  

1
( ) ( ) ( | )n

i i ii
P P PL L L                      (3) 

The first term of (3) gives each human object in  a 
penalization according to their real world position Li, 
avoiding n to be extremely large, and it is defined as 

( ) exp( ( ))i iP L L                             (4) 
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where  is a quadratic function of the distance between li 
and the camera – the larger the distance is, the smaller (Li) 
is, which considers the perspective view effect of the 
imaging. The second term is the prior probability of the ith 
human object’s position relative to others (denoted as –i). It 
represents our prior knowledge that two persons must keep 
a certain distance away from each other in the real world 
and is given by 

1,..., ,( | ) (min )

/ if 
( )

1 if 

i i j n j i i j

min min

min

P f

d d d d
f d

d d

L L L L
                  (5)                          

where dmin is the minimum distance required for any two 
human objects. Assuming the pixels are independent, the 
likelihood is defined as 

( | ) ( | ) exp( (1 ( ))
k I

k I

P I P k S k               (6) 

where S (k) is the score of matching the un-occluded part of  
the boundary of mi with the foreground probability of 
boundary (pb) [9], if k belongs to the un-occluded part of 
mi; otherwise S  (k) = 0, meaning that pixel k is not inside 
any human object models of . 
 

3. IMPLEMENTATION 
 

We first extract the foreground from the input image by a 
multiple adaptive thresholds method [10] and obtain the 
camera parameters by [11]. Then an upper semi circle 
detector is used to give an exhaustive nomination of 
candidates. To find the global optimization solution is 
computationally expensive. Therefore, in our 
implementation, by analyzing the mask and the relationship 
between candidates, in each iteration, only a group of the 
possible un-occluded candidates are selected for model 
matching, and the results are fed into a minimum 
description length (MDL) based validation and rejection 
procedure. This kind of optimization reduces the 
computational cost significantly without sacrificing much of 
the performance. 
3.1 Candidate nomination 
From our observation, the only reliable feature of a human 
is the head. Therefore, we use a head detector to provide the 
candidate nomination. The applied method [12] is a Hough-
like circle detector, in which each boundary element spreads 
its vote, modulated by the edge magnitude, into (xc, yc, r), 
the postulated circle’s center and radius. Because the 
boundary elements contain orientation information, they 
vote for circle centers only if they are tangential to the circle. 
In our application, to detect upper semi circles, horizontal or 
slanted edge response just votes for the circle center below 
it, while vertical response of edge would vote for both its 
left and right circle centers. The directional filter we use is 
pb, which effectively removes the edge response of textures 
and thus makes the number of false positive detection of 
heads much smaller. The scale set of the circle detection 

Rad is determined by projecting two spheres, representing 
the lower and upper bounds of human head size respectively, 
onto the input image and taking half of the projections’ 
widths as the bound rmin and rmax.  

Having the upper semi circle detection response of each 
radius in Rad, the maximum of the responses of different 
radii for each pixel (x, y) of I is obtained to get the final 
response R(x, y). Then the local maxima of R(x, y) that are 
above a threshold are found to obtain the head candidates 
set C. Redundant candidates are removed: 1) if the center of 
one circle is inside another circle, the one with the weaker 
response is discarded; 2) those candidates that do not have 
enough foreground area below them are also discarded. An 
example of head candidate detection is shown in Fig. 1. 

    
Fig.1 Head candidate detection: (a) The input image; (b) The 
foreground mask; (c) The head detection response R(x, y); (d) 
Detected circles overlaid on the input image.  
 
3.2 Candidate selection for model matching 
Ideally, only the currently un-occluded candidates should be 
selected for model matching in each iteration (by currently 
un-occluded candidates, we mean that the candidates are 
either un-occluded or if they are occluded, their occluding 
candidates have been validated and removed from the mask 
in the last iteration). This will guarantee that the model 
matching can be executed correctly.  

In the first iteration, we aim to find the possibly un-
occluded human objects. Assume that the full body is within 
the mask for all the human objects. Lower extrema (LE) of 
the mask boundary are extracted. Then, restricting LEs’ 
vertical and horizontal distances with the head top, LEs that 
can represent a candidate’s feet are assigned to the 
candidate. Only the candidate that is assigned at least one 
LE is considered to be possibly un-occluded. For the 
following iterations, bounding boxes are drawn for each 
candidate. A bounding box is a quadrangle that defines the 
maximum possible range of a human being, given the head 
top position. If a candidate’s bounding box’s intersection 
with the current mask Icur= I - Iocc (Iocc is the occupancy map 
generated by the validated candidates) is different from its 
intersection with the mask in the last iteration, meaning that 
the surrounding candidates’ status has been changed, it is 
selected for model matching in the current iteration.  
3.3 Model matching 
The 3D human shape model we use consists of seven parts – 
the head (modeled by an ellipsoid), the shoulder (a half 
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ellipsoid), the torso, the left/right thigh and the left/right calf 
(each by a cylinder) – as is shown in Fig. 2. To restrict the 
searching space, only 17 walking/standing postures are 
selected for model matching. In addition, seven orientations 
(0, 30 , 60 , 90 , 120 , 150  and 180 ) and four scales 
(corresponding to the height of 1.55m, 1.65m, 1.75m and 
1.85m respectively) are used. Further, the head is allowed to 
deviate horizontally from the vertical torso center by rhead 
/2 and rhead /4 where rhead is the radius of the model head.   

    
Fig. 2 Illustration of some 3D human models 

Given a selected candidate ci, each model Mj in the 
model set is projected onto the image according to the 
candidate’s head top position and the camera parameters. 
The matching is measured by both the model’s region 
coverage with the current mask Icur and the model 
boundary’s matching with the pb map of the foreground. 
The pb map used here is not treated with the non-maximum 
suppression; therefore, it is similar to the distance transform 
performed on an edge map. The matching score S(Mj) is 
given by the product of the region matching score Sr(Mj) 
and the shape matching score Ss(Mj) 

&

( ) ( ) ( )
( ) ( & ) ( & (1 ))

( ) ( ) / ( & )
j cur

j r j s j

r j j cur j

s j j curk Mb I

S M S M S M

S M M I M I

S M pb k Mb I

            (7) 

where ( ) denotes the size of the non-zero pixels of the 
image and Mbj is the boundary image of Mj. In Sr(Mj), the 
minuend encourages larger area to be explained by the 
model while the subtrahend penalizes the regions falling out 
of I and hence prevents extremely large models to be 
selected. Ss(Mj) is simply the average pb value of the un-
occluded part of the model boundary. The best matched 
model mi is then selected as the one that results in the 
maximum increase of the posterior as followed: 

arg max ( ( ) log ( | ))
ji M j j valm S M P L L                (8) 

where Lval represents the real world positions of the 
validated candidates and P(Lj | Lval) is defined in (5). As the 
penalty term P(Li) is nearly a constant for the same head 
candidate, it is not included in (8).  
3.4 Candidate validation and rejection 
The candidate that has good model matching quality (high 
matching score), indicating that the candidate is unlikely to 
be a spurious candidate, and the candidate that is the nearest 
to the camera, indicating that the candidate is unlikely to be 
un-occluded, are preferred to be validated. To combine our 
preference for these two kinds of candidates, we propose the 
following candidate validation and rejection procedure. The 
idea is that we first reject the candidates that have 

unsatisfactory model matching quality and the candidates 
whose corresponding area can be better explained by other 
candidates, and then confirm the candidate that is not 
occluded by any other candidates.   
a) Consider single candidate’s model matching quality 
For each candidate ci that is selected in 3.2, if adding mi into 
 cannot increase the posterior P(  | I), ci is rejected. This 

situation occurs when mi is poorly matched or mi just 
explains a relatively small area. 
b) Consider other candidates’ model matching quality 
For each remaining candidate ci and the corresponding 
model mi, the MDL principle is applied to evaluate if it 
should be rejected or not. The evaluation is in terms of the 
savings that can be obtained by rejecting ci: 

,

,( )(1 ( ))

(1 max ( ( , )))

( )
cur i

i i i i

i cur i s i

i j i s jk m

i i

Sav SE SE SM

SE m S m

SE S m k

SM L

                (9) 

where mcur,i is mi’s intersection with Icur. SEi is the error 
introduced by using mi to explain mcur,i. SE-i is the error 
introduced by combining other candidate models matched in 
the current iteration to explain mcur,i. Ss(mj, k) = Ss(mj) if k  
mcur,j and Ss(mj, k) = 0 otherwise. SMi is the cost of the 
model and  and Li are the same as they are defined in (4). 
If Savi is positive, ci is rejected. 

After rejecting the candidates that are not good enough, 
the candidates, which are nearer to the camera than any 
other candidates that intersect with them, are validated. The 
validated candidates are then added to , and their explained 
regions are subtracted from Icur and added to Iocc. The entire 
optimization procedure is summarized below.  

 
Algorithm: optimization algorithm 
Given the candidate nomination C, 
initialize  =Ø, Iocc as empty (black image), the validated 
candidates set Cval = Ø, the rejected candidates set Crej = Ø, 
and the posterior as P(  | I) = exp(-A(I)). 
while Cval  Crej C  
1. Select the possible currently un-occluded candidates. 
(3.2) 
2. For each candidate selected in step 1, perform model 
matching and select the best matched model as the one 
increases the posterior most. (3.3) 
3. Reject and validate these candidates and update Crej, Cval, 
, Icur, and Iocc. (3.4) 

end 
return . 

 
4. EXPERIMENTAL RESULT 

 
The proposed method is evaluated on 70 images selected 
from 23 image sequences that are taken around our campus. 
These images contain crowded scenarios where severe 
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partial occlusion of human exists and there are totally 486 
human objects in them. The parameters of the proposed 
method are fixed for all the test image sequences. To 
nominate nearly all the true candidates, the threshold for 
head detection is set a bit lower to be 0.1. To determine 

(Li), we require that a human object have at least the area 
of a head visible on the image and this area should match 
satisfactorily. Therefore, (Li) is set to be the average image 
head area of a human located at Li times 0.5 (the required 
matching score). The minimum distance dmin between two 
human objects is set to be 0.4m, according to the analysis of 
pedestrians’ inter-distance in the real world.  

Several segmentation results are shown in Fig.3 with 
the best matched models’ boundaries overlaid on the human 
objects. Due to the space limit, not the whole image but 
only the portion that contains the occlusion is shown here. It 
can be seen that, from Fig. 3(a) to Fig. 3(f), crowd counting 
is correctly performed, while in Fig. 3(g), the girl carrying a 
brown bag is not detected. Wrong posture and orientation 
estimation also exist [e.g., the occluded girl in Fig. 3(a) and 
the girl in black in Fig. 3(f)], and in Fig. 3(g), both the 
position and posture of the girl in white are wrongly 
estimated, caused by the incorrect head detection. 

Totally, among the 486 human objects in the 70 images, 
465 (95.6%) are detected and 17 (3.5%) false alarms are 
produced by the proposed method, which is comparable 
with the global optimization results shown in [6] and [7]. 
Because we use both the region and edge information, 
whereas [6] just uses region and [7] just uses bounding 
contour of the silhouette, our method is expected to have a 
higher accuracy than [6] and [7] in model matching.  

 
5. CONCLUSION 

 
A Bayesian approach for crowd counting and segmentation 
has been proposed in this paper. Foreground and probability 
of boundary are used to provide image evidence. The 
solution is obtained in a way that balances the 
computational cost and the performance. Results on 
challenging data show the robustness of the proposed 
method.  

However, there are still missed detections, false alarms 
and wrong posture estimation. To improve the performance, 
the most important future work is to combine the crowd 
segmentation results across consecutive frames, which can 
resolve the ambiguities of a single frame, to obtain a more 
reliable counting, segmentation and posture estimation 
performance. 
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Fig. 3 Experimental result of crowd counting and segmentation 
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