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ABSTRACT 
 
In this paper, a new family of Linear Dispersion Codes 
(LDCs) that can be decoded using a fast Sphere Decoding 
(SD) algorithm in MIMO systems is proposed. The basic 
principle of this structure is to make the LDC to have as 
many as possible the rows orthogonal in the dispersion 
matrices. Monte Carlo simulation results show that the 
optimum LDCs with this orthogonal structure have nearly 
identical bit-error-rate (BER) performances as other optimal 
LDCs. We develop a simplified Sphere Decoding (SD) 
algorithm that can significantly reduce the decoding 
complexity in decoding the new LDCs with proposed 
orthogonal structure. Simulation results show that the 
complexity reduction is more significant for MIMO system 
transmitting higher level modulation. For 2×4 MIMO 
systems transmitting 4 64QAM and 256QAM symbols in a 
block length of 4, the reductions are about 71-83% and 76-
88%, respectively. 
 

Index Terms—MIMO, Sphere decoding, orthogonal, 
complexity 
 

1. INTRODUCTION 
 

Linear Dispersion Code (LDC) [1] is well-known for its 
advantages in providing full-ergodic capacity to Multiple-
Input Multiple-Output (MIMO) communication systems. 
However, the detection complexity of LDCs has always 
been a problem in the design and implementation of high 
speed MIMO systems. The tremendous complexity of the 
Maximum Likelihood (ML) decoding process makes the 
implementation of high speed Space-time block codes 
(STBCs) impractical. Linear decoding algorithms like 
Minimum-Mean-Square Error (MMSE) [2] and Zero-
Forcing (ZF) [3] algorithms are much less complicated, but 
the achievable BER performances are not very satisfactory. 

 
Alamouti [4] proposed a remarkable space-time (ST) 

code in 1998 for MIMO systems with two transmit antennas 
which was later on extended to orthogonal space-time block 
codes (OSTBCs) [5]. The OSTBCs and Alamouti’s code 
attracted much attention because they allow the uses of very 
simple decoding algorithms to achieve the same BER 
performances as with ML decoding. However, the main 
disadvantage of the OSTBCs is that they cannot achieve the 

full-transmission rates for MIMO systems with more than 
two transmit antennas [6].  

 
In [7], Sphere Decoding (SD) was proposed to 

substantially reduce the complexity of ML decoding, yet 
having the same BER performance. However, as Jalden et 
al. pointed out in [8], for a fixed signal-to-noise ratio 
(SNR), the complexity of SD increases exponentially with 
the number of symbols jointly decoded. When data rate is 
high, SD is still too complicated for practical use. 
Improvements in different aspects of SD have been 
proposed. In [9], a so-called Babai Point method was used 
to set the initial searched point in SD. In [10], a Schnorr 
Euchner (SE) enumeration method was proposed to refine 
the search strategy of SD. In [11], Paredes et al. reduced the 
complexity of SD by reducing the number of search levels 
in the tree search process. By combining the advantages of 
OSTBCs and SD, they constructed a family of fast 
decodable full-rate, full diversity codes for a 2×2 MIMO 
system. Biglieri et al. extended this concept to a 4×2 MIMO 
system and developed a family of quasi-orthogonal 
structured codes [12]. 

 
In this paper, we propose a new family of fast-decodable 

full-diversity LDCs for MIMO systems and the LDCs can 
be designed for arbitrary number of transmit and receive 
antennas. To reduce the decoding complexity, we also 
develop a simplified SD for the codes to achieve the same 
BER performance as those using conventional SD or ML 
decoding, but with much less decoding complexity.  

 
The rest of this paper is organized as follows. The 

system model used for the study is defined in Section 2. In 
Section 3, our proposed new family of LDCs together with 
the corresponding simplified SD algorithm is explained. 
Monte Carlo simulation results and discussions are given in 
Section 4. Section 5 concludes this paper.  
 

2. SYSTEM MODEL 
 
The system model used for the study is an Nt×Nr MIMO 
system with Nt transmit antennas and Nr receive antennas, 
over a quasi-static Rayleigh fading channel. The Nr×T 
received signal matrix R is given by: 
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  (1) = +R HC W
 
where the entries of  represent the channel 
coefficients which are assumed to be perfectly known at the 
receiver but not at the transmitter, 

r tN N×∈H C

tN T×∈C C  is the 
codeword matrix with block length T, and rN T×∈W C  
represents the complex additive white Gaussian noise 
(AWGN) matrix with elements being independently and 
identically distributed (iid) and following the normal 
distribution NC(0,N0).  
 
For LDCs, the codeword C can be expressed as [1]: 
 

 
1

N

i i
i

s
=

= ∑C M ⋅  (2) 

 
where  are the dispersion matrices of the LDC, 

 are the transmitted symbols taking values from some 
complex constellation in a finite set S , and N is the number 
of symbols in one codeword. All elements in R, H, C and 
W of (1) are complex variables. The transmitted symbols in 
(1) can be expressed in vector form as 

1{ }N
i i=M

1{ }N
i is =

1 2 3 4[ , , , ..., ]Ns s s s s=s . 
Then substituting (2) into (1) and taking vectorization on 
both sides yields [1]: 
 
 = +r KXs w  (3) 
 
where 1,1 2,1 ,1 1,2 ,2 ,( ) , ,..., , ,..., ,...,

r r r

T

N N Nvec r r r r r r⎡= = ⎣r R T ⎤⎦  with 

ri,j being the entry in the ith row and jth column of matrix R 
and [ ]T denoting matrix transposition, 

0 1[ ( ), ( ),..., ( )]Nvec vec vec=X M M M ,  ( ) Tvec= =s s s  

1[ ,... ]T
Ns s=   and ( )vec=w W . , where 

K , I is an identity matrix and ⊗  denotes the 
Kronecker product. 

= ⊗K I H
r tN T N T×∈C

 
Separating the real and imaginary parts of the elements in 
r , s  and w  of (3) and then vectorizing them give the real-
valued expression: 
 
  (4) = +r Gs w
 
where Re( ), Im( )

TT T⎡ ⎤= ⎣ ⎦r r r , [ ]Re( ), Im( ) T=s s s  

, and 1 1[Re( ),..., Re( ), Im( ),..., Im( )]T
N Ns s s s=

[Re( ), Im( )]T T=w w w T , with Re(.) and Im(.) denoting the 
real and imaginary parts, respectively, of (.).  In (4), G  is a 
2NrT×2N real matrix given by: 
 

 Re( ) Im( )
Im( ) Re( )
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

KX KX
G

KX KX
 (5) 

 
Here, we adopt an ordering scheme to construct our 
proposed code structure. First, we arrange the vector s  in 
(4) to  
 

1 1 2 2[Re( ), Im( ), Re( ), Im( ),..., Re( ), Im( )]T
N Ns s s s s s=s   (6) 

    
1 2 3 4 2[ , , , ..., ]T

Ns s s s s=
 
To keep the received signal vector r  in (4) unchanged, we 
need to arrange the columns of G  correspondingly. That is, 
for = [ , , …, ], where , for i = 1, 2, …, 2N, 

denotes the i

G 1g 2g 2Ng ig
th column of G , we arrange the columns of G  

to give: 
 
  1 1 2 2 2[ , , , ,..., , ]N N N+ +=G g g g g g g N  (7) 
 
With these arrangements, the received signal vector r  in 
(4) can be re-written as: 
 

 = +r Gs w  (8) 
 

3. PROPOSED LDC AND DECODING ALGORITHM 
 
Proposed orthogonal row structure  
We propose a new family of LDCs which have the first m 
dispersion matrices among the N dispersion matrices 

1{ }N
i i=M  in (2) satisfying the following condition: 

 
 H

i j =M M 0       (i≠j; i, j≤m) (9) 
 
where  is an N0 t×Nt matrix with all elements being zero and 
(.)H denotes the transpose conjugate of a matrix (.). The 
condition of (9) implies that among the first m dispersion 
matrices, any row of one dispersion matrix is orthogonal to 
the rows of any other dispersion matrices. It can be easily 
proved that with proper scaling, LDCs with the dispersion 
matrices satisfying (9) will satisfy the full-capacity 
constraint and power constraint in [1], which are the basic 
requirements for full-ergodic capacity LDCs.  
 
Simplified SD 
Sphere decoding attempts to obtain the solution of [7]: 
 

 
2

ˆ arg min
∈
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s

s r -
S
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To do this, we can first conduct the QR decomposition of 
 : G

  (11) 
(2 2 ) 2rN T N N− ×

⎡
= ⎢

⎣ ⎦

P
G Q

0
⎤
⎥

where P is an upper triangular matrix, Q 
 is an orthonormal matrix, and  N

2 2N N×∈R
2 2r rN T N T×∈R rT≥N. Then 

(10) can be written as: 
 
 2

ˆ arg min
∈

= −
s

s y Ps
S

 (12) 

where 1
T=y Q r , Q1 is the first 2N orthonormal columns of 

Q. Based on (12), the SD can now search only the points 
within a hypersphere centered at the received signal with 
radius d by solving the following inequality iteratively [7]: 
 
 2 2d− ≤y Ps  (13) 

To explain how the orthogonal row structure can be used to 
simplify the SD process, we first introduce the following 
Lemma: 
 
Lemma 1: If a LDC has an orthogonal row structure and so 
satisfies (9), the elements pij, for i = 1, 2, …, 2m-1 and j = 
i+1, i+2, …, 2m, in the upper triangular matrix P in (12) are 
all zeros. The proof is omitted here due to the page limit. 
 
According to Lemma 1, if a LDC with an orthogonal row 
structure is used, there will be a cluster of zeros in the upper 
triangular matrix P in (12). In (13), there are a total of 2N 
inequalities, corresponding to the 2N rows in the matrix 
equation. To solve the inequality iteratively, the SD starts 
from the bottom row of the matrix and works upwards from 
the 2Nth row. When the SD has completed the (2m+1)th row, 
the values of 2Ns , 2 1Ns −

, …, 2 1ms +  will have been 
determined. Then benefiting from the cluster of zeros in P, 
we do not need to use the values of 1is + , 2is + , …, 2ms  to 

determine the values of {  for i = 1 to 2m. Instead, we 

can simply determine the value of  by hard decoding:  

}is

is
 
 is =「 」 (14) 

2

,
2 1

(
N

i i k k
k m

y p s
= +

− ∑ ,) / i ip

where 「a」denotes the possible value of is  closest to a. It 
should be noted that, compared to the complexity of tree 
search, the complexity of hard decoding can be neglected, 
and our proposed code structure can reduce the tree search 
by 2m levels in SD without causing any degradation in BER 
performance.  
 

4. SIMULATION RESULTS 
 
Studies of this new family of LDCs have been carried out 
using two 2×4 MIMO systems transmitting four 64QAM 
and 256QAM symbols in a block length of 4 (i.e. Nt = 2, Nr 
= 4, T = 4, N = 4) over a block-fading channel. In the 
construction of these LDCs with orthogonal row structure, 
we made the first two dispersion matrices to satisfy the 
orthogonal condition of (9), i.e. m=2. Then we used random 
search with the Rank & Determinant criterion to obtain the 
optimal LDC. For the LDCs without the orthogonal row 
structure, we also used random search with the Rank & 
Determinant criterion to obtain the optimal LDC. To assess 
the BER performances of these optimum LDCs in the 2×4 
MIMO system, Monte Carlo simulation was used and the 
results are shown in Figs. 1 and 2 for the 64QAM and 
256QAM signals, respectively. It can be seen that the BER 
performances of the optimum LDCs with and without the 
orthogonal row structure are about the same.  
 
According to [8], the complexity of SD can be measured by 
the number of nodes visited in the tree search process. 
Monte Carlo simulation was therefore used to examine the 
average numbers of visited nodes to evaluate the 
complexities of the conventional SD and simplified SD for 
decoding the same optimum LDC with the orthogonal row 
structure. The results on the complexities for the 2×4 
MIMO systems transmitting four 64QAM and 256QAM 
symbols in a block length of 4 are shown in Figs. 3 and 4, 
respectively. In the 64QAM system, the simplified SD 
reduces the complexity by 71-83%; while in the 256QAM 
system, it reduces the complexity by 76-88%. Reduction is 
more significant for signals with higher-level modulation. 
The reason is that for higher-level modulation, there are 
more branches in each node and so even more nodes in the 
lower levels. So for the same number of search levels 
reduction, more branches reduction and hence complexity 
reduction will be achieved for higher-level modulation.  
 

 
Fig. 1 BER of optimal LDC using 64QAM modulation 
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Fig. 2 BER of optimal LDC using 256QAM modulation 

 
Fig. 3 Complexity of conventional SD and simplified SD for 

64QAM 

 
Fig. 4 Complexity of conventional SD and simplified SD for 

256QAM 
 

5. CONCLUSIONS 
 

In this paper the design of a new family of fast-decodable 
full diversity LDC with an orthogonal row structure in the 
dispersion matrices has been presented. Monte Carlo 
computer simulation results have shown that the optimal 
LDCs with and without our orthogonal row structure have 

nearly identical BER performances. However, the 
complexity of SD for LDCs with our orthogonal row 
structure can be significantly reduced by using a simplified 
SD algorithm. The reduction is more significant for LDCs 
using higher level modulations.  
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