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Abstract— This paper proposes a new method for identification 
of time-varying autoregressive (TVAR) models based on local 
polynomial modeling (LPM) and applies it to investigate the 
dynamic spectral information of event-related 
electroencephalogram (EEG). The proposed method models the 
TVAR coefficients locally by polynomials and estimates those 
using least-squares estimation with a kernel having a certain 
bandwidth. A data-driven variable bandwidth selection method 
is developed to obtain the optimal bandwidth, which minimizes 
the mean squared error (MSE). Simulation results show that the 
LPM-based TVAR identification method outperforms 
conventional methods for different scenarios. The advantages of 
the LPM method make it a useful high-resolution time-
frequency analysis (TFA) technique for nonstationary 
biomedical signals like EEG. Experimental results show that the 
LPM method can reveal more meaningful time-frequency 
characteristics than wavelet transform. 

I. INTRODUCTION 
Time-varying autoregressive (TVAR) models are widely 

used to describe the dynamics of nonstationary signals, such 
as speech signals, communication signals, and biomedical 
signals [1], [2]. A nonstationary signal s(t) can be expressed in 
the form of a TVAR model as follows:  
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where a(t)=[a1(t), a2(t),···,aL(t)]T is the TVAR coefficient 
vector, L is the order of the model, Ts is the sampling period, 
and ε(t) is a zero mean additive white Gaussian process with 
variance σ2(t). Accurate identification of TVAR models, i.e., 
estimation of the TVAR coefficients a(t), is crucial to 
understand the dynamics of signals and to predict future 
observations. Generally, two classes of TVAR identification 
methods are common in practice [2], and they are 1) adaptive 
filtering and Kalman filtering (KF); 2) basis expansion 
modelling (BEM). Although these methods usually offer 
efficient implementation and different tradeoffs between 
performance and complexity, their performances are often 
dependent on prior information and model parameters [1], [2]. 
Therefore, the estimation accuracy of these methods is 
sometimes limited when prior knowledge is vague or 
parameters are incorrectly specified [2]. 

In this paper we propose a new TVAR identification 
method based on a local polynomial modelling (LPM) 
approach, which does not require explicit information of the 
coefficient variations.  It can achieve a good tracking 
performance and a better flexibility in a variety of 
experimental conditions. The proposed LPM method models 
the TVAR coefficients locally by a set of polynomials and a 

window or kernel having a certain bandwidth. The estimation 
of TVAR coefficients is then reduced to the estimation of 
polynomial coefficients, which can be performed using the 
least-squares (LS) technique [3]-[7]. Since the TVAR 
coefficients may vary considerably over time, it is crucial to 
choose a proper local bandwidth to achieve the best bias-
variance tradeoff. For slow-varying coefficients, we would 
like the bandwidth to be large to reduce the estimation error. 
For fast-varying coefficients, a small bandwidth is desirable in 
order to reduce the bias error. A data-driven bandwidth 
selection technique for LPM is therefore developed, where the 
bandwidths are determined locally and adaptively by 
minimizing the approximated mean squared error (MSE), 
which is the sum of squared bias and variance. Hence, the 
proposed LPM-based TVAR identification method can obtain 
good tracking performances for both slowly-varying and fast-
varying coefficients by employing variable bandwidths. 

Next, we propose to apply the LPM-based TVAR 
identification method for time-frequency analysis (TFA) of 
event-related electroencephalogram (EEG). Event-related 
EEG is the stimulus-induced electrical activities measured on 
the scalp, and it turns out to be a non-stationary process, 
because the states of brain regions change rapidly on a time 
scale of milliseconds [8]. Previous studies showed that event-
related EEG consists of a large number of components, such 
as event-related potentials (ERPs), event-related 
(de)synchronization (ERS/ERD), and other oscillations and 
potentials [8], [9]. TFA techniques have been widely adopted 
in EEG study, because the time-varying spectral components 
can effectively represent ongoing EEG rhythmic activities, 
providing useful information for discovering the nature and 
timing of sensory and cognitive processes. 

Currently the most popular TFA method for EEG is the 
wavelet transform (WT) [10]. The superiority of WT is that it 
addresses the time-frequency resolution tradeoff problem by 
applying a short window at high frequency and a long 
window at low frequency. However, WT has a degraded 
frequency resolution for high-frequency components and a 
degraded time resolution for low-frequency components. 
Therefore, WT may not able to reveal useful components in 
the whole time-frequency plane and cannot acquire accurate 
temporal information on rapid (maybe event-related) changes 
of EEG. Another type of TFA methods (parametric methods) 
describe an EEG signal by a parametric model, and the time-
varying power spectral density (PSD) of the signal can be 
obtained from the estimated model coefficients, hence 
providing a time-frequency distribution (TFD) of the EEG. 
Parametric methods generally have a high frequency 
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resolution than nonparametric methods like WT and Lomb 
periodogram [11]-[13]. In EEG study, TVAR models and KF 
are respectively the most popular parametric model and 
identification method. However, KF is sensitive to model 
parameters so that it often leads to a long tracking lag or a 
large estimation variance (time-frequency resolution tradeoff) 
[11]. The proposed LPM-based TVAR identification method 
is well-suited for TFA of EEG because its bandwidth (time 
scale) is adaptively selected so that the TFD can achieve high 
time-resolution without any loss of frequency resolution. 
EEG signals recorded in a visual oddball paradigm are tested 
and the experimental results show that the LPM method can 
reveal more meaningful time-frequency components than WT. 

The rest of the paper is organized as follows. In Section II, 
the LPM for TVAR models is introduced. The adaptive 
bandwidth selection method for the LPM-based TVAR 
identification is developed in Section III. The proposed 
method is further extended to TFA of EEG in Section IV. 
Experimental results are presented in Section V. Finally, 
conclusions are drawn in Section VI. 

II. LPM FOR IDENTIFICATION OF  TVAR MODEL 
In the TVAR model of (1), the k-th coefficient ak(t) can be 

modelled locally at t=t0 as a p-th order polynomial [3]-[6]: 
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where )( 0
)( tj

kα  are the polynomial coefficients. These 
polynomial coefficients can be estimated locally by 
maximum likelihood (ML) estimation. Since the additive 
noise is zero mean and white Gaussian distributed, the ML 
estimation is equivalent to minimizing a locally weighted LS 
criterion as follows: 
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around t0 used to estimate )( 0
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kβ . The kernel Kh(·) is 

obtained by scaling a basis kernel K(·) using a bandwidth of h. 
Next, we rewrite (3) more compactly in a matrix form as 
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and finally the k-th TVAR coefficient at time instant t0 is 
obtained as )(ˆ)(ˆ)(ˆ 0

)0(
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The TVAR model can be viewed as a special case of a 
time-varying linear regression model, where s(t), s(t-kTs), and 
a(t) are respectively the observations, explanatory variables 
and regression coefficients. In [7], LPM has been proposed 
for estimating the regression coefficients of the time-varying 
linear regression model, and the asymptotic properties of bias 
and variance have been derived. In the content of TVAR 
model, the asymptotic bias and variance of )(ˆ

0
)( tj

kβ  are 
respectively expressed as: 
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where )(
,
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kbS  are two quantities determined by the 
basis kernel K(·) and indices j and k, and )( 0

)1( tp
k

+β  is the 
(p+1)-th derivative of βk(t0). The derivation and details of (6) 
and (7) can be found in [7]. It can be seen from (6) and (7) 
that, when h increases, the bias will increase while the 
variance will decrease. Hence, there exists a locally optimal 
bandwidth hopt(k,t0) for estimating )( 0

)( tj
kβ , and hopt(k,t0) 

should minimize the MSE. As some of the quantities in (6) 
and (7) are difficult to be calculated directly, the optimal 
bandwidth is difficult to be estimated accurately. We next 
introduce an empirical method to select the optimal 
bandwidth from a set of possible bandwidths. 

III. ADAPTIVE BANDWIDTH SELECTION FOR LPM 
In [7], we have developed an effective bandwidth selection 

method for time-varying linear regression models. This 
method is also applicable to the TVAR models with slight 
modifications. Given a finite set of bandwidth parameters in a 
geometric grid, say,  
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where ha>1 is a step factor, h0>0 is a base bandwidth, and J is 
the number of bandwidths, the empirical bandwidth selection 
method in [7] approximates the bias, variance, and MSE 
values of each bandwidth and determines an optimal 
bandwidth as the one that minimizes the approximated MSE.  

Firstly, the bias of )(ˆ
0tβ can be estimated using a Taylor’s 

expansion with an order p+pex: 
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polynomial of degree p+pex, where pex is an excess order [3]. 
However, the (p+pex)-th order LPM still requires an initial 
bandwidth parameter, which is called the pilot bandwidth h* 
and its selection will be discussed later. 

Secondly, suppose local homoscedasticity, the estimation 
covariance of )(ˆ

0tβ can be estimated as: 
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The noise variance σ2(t0) can be obtained as the normalized 
weighted residual sum of squares [3]: 
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where X* and W* are respectively the design matrix and 
weighting matrix in the (p+pex)-th order LPM using the pilot 
bandwidth h*. Consequently, the MSE of )(ˆ

0tβ  is  
))(ˆ(ˆ)(ˆ))(ˆ( 000 ttrttMSE T

βββ Vbbβ += , (12) 
and the optimal bandwidth is determined as the bandwidth 
having the minimum MSE. 

To select a pilot bandwidth h*, the intersection of 
confidence interval (ICI) method can be used [5]-[7]. The ICI 
method selects bandwidth hICI(k,t) for each k-th coefficient at 
each time instant t by calculating the variance of (10) using 
different bandwidths in H. Because the TVAR coefficients at 
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each time should be estimated as a whole (using one 
bandwidth), not individually (using different bandwidths for 
different k), hICI(k,t) will be combined (generally, averaged) to 
produce the pilot bandwidth h*(t). The algorithm of ICI is 
omitted to save space, and more details can be found in [5]-[7]. 

IV. LPM-BASED TVAR FOR EEG 
We now apply the LPM-based TVAR identification 

method for TFA of event-related EEG. By modelling an EEG 
signal by the TVAR model of (1), we can obtain its time-
varying PSD from the estimated coefficients and noise 
variance as: 
 2
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We now discuss the parameter selection when applying the 
LPM method in our EEG study. Following the literature [3]-
[7], the Epanechnikov kernel is employed due to its low 
complexity. The effective size, i.e., the time interval, of an 
Epanechnikov kernel is 2h. Next, to determine the bandwidth 
set H of (8), h0 should be selected as the minimum bandwidth 
that makes (5) solvable (overdetermined). Because a (p+pex)-
th order LPM is used to approximate MSE, the number of 
samples included in the kernel should be larger than 
(p+pex+1)L (the dimension of )(ˆ tβ ). If the data are uniformly 
distributed at a sampling frequency of fs, it is required that  
 )2/()1(0 sex fLpph ++≥ . (14) 

Moreover, to achieve a good tradeoff between 
performance and complexity, in our study, the largest 
bandwidth of H is selected to make the largest kernel cover at 
least 1/8 of the data set, and the number of bandwidths, J, is 
set as 4. As for the selection of polynomial order p and pex, 
since the major advantage of the adaptive bandwidth selection 
is its fine time-resolution, p and pex should be as small as 
possible to fulfill the condition of (14). Hence, we set p=0 and 
pex=1 in this study. The proposed bandwidth setting gave 
satisfactory results in our experiments. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
A. Simulated TVAR Model 

We first used a second-order TVAR model to illustrate the 
good performance of the LPM method. The total number of 
samples is 250 and the additive noise is zero mean with a 
variance of 0.01. The coefficient a1 jumps from -1.9 to -1.0 at 
time 125, as shown in Figure 1, while a2 equals a constant -1.0. 
For comparison, the KF and BEM methods are also tested. In 
KF, the state transition matrix is chosen as identity matrices to 
produce a random-walk KF. As mentioned in [1], [11], the 
ratio between the variances of the state noise and the 
observation noise, Rσ, determines the tracking performance of 
KF. Here, two values (0.01, 1) of Rσ are tested in KF. In BEM, 
Legendre polynomial functions are employed and the number 
of basis functions is 5.  

One simulation is presented in Figure 1. It can be seen 
that, BEM gives a smooth estimation, but rapid changes are 
smoothed out at the same time. The performance of KF 
heavily depends on the selection of Rσ. A large Rσ enables the 
KF to track fast-varying coefficients while a small Rσ helps to 
reduce the variance of slowly-varying coefficients. In LPM, a 
small bandwidth can detect fast change of coefficients, but it 
may lead to large estimation variations, and a large bandwidth 
can obtain smooth estimates when coefficients vary slowly, 
but it cannot accurately estimate fast-varying coefficients. 
LPM with variable bandwidth can obtain satisfactory results 
for the whole data because of the adaptive variable 
bandwidths used. The mean squared deviation (MSD) values, 
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averaging from 100 Monte-Carlo simulations, are given in 
notation of Figure 1, and we can see that the LPM with 
variable bandwidth method has the minimum MSD value. 

 
Figure 1.  Comparisons between various TVAR identification methods: (a) 
KF with different Rσ and BEM, (b) LPM with a constant small kernel (hmin) 

and a constant large kernel (hmax), and adaptive variable bandwidths (hvar), (d) 
the estimated adaptive bandwidths hvar. The MSD values  from 100 Monte-

Carlo simulations are, KF (Rσ,=1): -16.9 dB; KF (Rσ,=0.01): -16.5 dB; BEM: 
-15.5 dB; LPM (hmin): -17.9 dB; LPM (hmax):  -16.8dB; LPM (hvar): -20.2dB. 

B. TFA of Simulated Signals 
We next compare various TFA methods, including short-

time Fourier transform (STFT), WT and TVAR-based PSD 
with different identification methods, using a chirp signal with 
an instantaneous frequency w(t) shown in Figure 2 as red 
lines. The number of samples is 250 and the sampling 
frequency is 250Hz. An additive Gaussian white noise with a 
SNR of 10 dB is added. Hann windows with sizes 20 and 100 
are used in STFT, while the Morlet wavelet is used in WT. 
The order of TVAR models is selected as 4 according to the 
Akaike's information criterion. Parameters for TVAR 
identification methods are the same as those in previous 
simulation. One representative simulation is presented in 
Figure 2. The MSD values of estimated instantaneous 
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obtained by averaging from 100 Monte-Carlo simulations and 
are listed in notation of Figure 2. It can be seen that the TFD 
obtained using the LPM with variable bandwidth has better 
time-frequency resolution than the other methods tested and it 
can attain fine frequency resolution in a wide frequency range.  

 
Figure 2.  Comparisons between various TFA methods. The red lines are 

true instantaneous frequency, and the blue lines are estimated instantaneous 
frequency (the frequency with the maximum PSD value at each time point). 

The MSDs of instantaneous frequency estimates from 100 Monte-Carlo 
simulations are respectively: (a) 11.7 dB; (b) 13.7 dB; (c) 10.2 dB; (d) 19.3 

dB; (e) 25.2 dB; (f) 11.2 dB; (g) 16.4 dB; (h): 10.8 dB; (i): 9.5 dB. 
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C. Real Event-related EEG 
A set of visual oddball event-related EEG was collected 

from the Electrical Geodesic 128-channel EEG system, with 
vertex referenced. The standard stimulus is a visual character 
‘O’ with 80% occurrence, while the target stimulus is a visual 
character ‘X’ with 20% occurrence. Inter-stimulus interval 
was 1500ms and the duration of one trial was 1000 ms (100 
ms before and 900 ms after stimulus onset). Twelve subjects 
were recruited and they were required to press the correct 
button immediately after he/she recognized the stimulus. A 
total of 250 stimuli were presented, and the sampling rate was 
250 Hz. Automatic artifact correction for EEG by blind source 
separation was performed to attenuate the artifacts [14]. The 
behavioral data, such as onset time, subject response time and 
subject response accuracy, were also recorded. The order of 
TVAR models is selected as 12 by the Akaike's information 
criterion, which is consistent with previous study [11]. 

Figure 3 (a) shows the conventional WT- and LPM-based 
TFDs of an averaged target-response EEG (averaged over 50 
trials; recorded at O2) of one subject. It can be seen that, 
compared with WT, the LPM-based TFD can achieve a higher 
frequency resolution for high-frequency components and a 
higher time resolution for low-frequency components. The 
power peaks of low-frequency components A and B in alpha 
and theta bands can be seen clearly in LPM-based TFD, and 
they should be due to the P300 and other early ERP 
components [8], [9]. A 60-Hz component C starting from 0ms 
is pronounced in the LPM-based TFD, which should be the 
steady-state visual evoked potential (SSVEP) in response to 
computer monitor flicker [15]. In addition, we can see clearly 
a beta-band oscillation (17-20Hz, component D) after 700ms, 
which should be the visual attention waiting for the next 
stimulus [9], [16]. For single-trial EEG, LPM can also achieve 
a meaningful result. Figure 3 (b) illustrates the TFDs of a 
single-trial target EEG signal when the subject pressed the 
wrong button. We can see that, except the 60-Hz SSVEP, 
P300, and post-response beta oscillation, the component E 
around 600ms and theta band is distinct. This component 
should be linked to the error-related negativity (ERN), which 
occurs when the subject knows his/her error immediately after 
the response [9]. On the other hand, the ERN pattern in WT is 
very vague due to the coarse resolution of WT in low 
frequency bands.  

Due to page limitation, more results (different subject and 
different electrodes) are not presented here. It should be noted 
that LPM is a powerful method to discover fine time-
frequency components of EEG. It facilitates the further 
analysis, such as statistical analysis, source location, etc., so as 
to interpret more thoroughly the disclosed time-frequency 
components and reveal the underlying physiological and 
psychological mechanisms.  

VI. CONCLUSION 
A novel LPM approach and a data-driven variable 

bandwidth selection scheme for identification of TVAR 
processes were presented. Simulation results showed that the 
performance of the LPM with adaptive bandwidth selection 
method is superior to conventional TVAR identification 
methods in a variety of testing conditions. The proposed 
method was further applied to TFA of event-related EEG, and 
experimental results showed that the LPM method can reveal 
more clearly time-frequency components than WT. 
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Figure 3.  Comparisons between morlet WT and LPM-based PSD 

estimation: (a) averaged target EEG, and (b) single-trial target EEG with a 
wrong response. 
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