Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: Insights from experimental models

Chi-Wing Kong1; Fadi G. Akar2; Ronald A. Li1,2

1Stem Cell & Regenerative Medicine Program, Heart, Brain, Hormone & Healthy Aging Research Center, and Department of Medicine, University of Hong Kong, Hong Kong, China; 2Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York, USA

Summary
Heart diseases have been a major cause of death worldwide, including developed countries. Indeed, loss of non-regenerative, terminally differentiated cardiomyocytes (CMs) due to aging or diseases is irreversible. Current therapeutic regimes are palliative in nature, and in the case of end-stage heart failure, transplantation remains the last resort. However, this option is significantly hampered by a severe shortage of donor cells and organs. Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency to differentiate into all cell types. More recently, direct reprogramming of adult somatic cells to become pluripotent hES-like cells (a.k.a. induced pluripotent stem cells or iPSCs) has been achieved. The availability of hESCs and iPSCs, and their successful differentiation into genuine human heart cells have enabled researchers to gain novel insights into the early development of the human heart as well as to pursue the revolutionary paradigm of heart regeneration. Here we review our current knowledge of hESC-/iPSC-derived CMs in the context of two fundamental operating principles of CMs (i.e. electrophysiology and Ca2+-handling), the resultant limitations and potential solutions in relation to their translation into clinical (bioartificial pacemaker, myocardial repair) and other applications (e.g. as models for human heart disease and cardiotoxicity screening).

Keywords
Human embryonic stem cells, cardiomyocytes, induced pluripotent stem cells

Heart disease and motivation for cell-based therapy
The heart beats with a regular rhythm to pump blood throughout the body. These pumping actions require the highly coordinated efforts of different types of cardiomyocytes (CMs) such as atrial, ventricular and pacemaker cells. These different CMs differ in their cellular morphologies, structural and functional properties. Autonomous rhythmic heart beats are modulated by sympathetic and parasympathetic means according to everyday needs. Normal rhythms originate in the sino-atrial (SA) node, a specialised cardiac tissue consisting of only a few thousands pacemaker cells. The SA node generates spontaneous rhythmic action potentials which subsequently propagate (i.e. the processes of pacing and conduction, respectively) to induce coordinated muscle contractions of the atria and ventricles for effective blood pumping. Since terminally differentiated adult CMs lack the ability to regenerate, their malfunction or significant loss due to disease or aging can lead to lethal consequences such as heart failure and various lethal forms of arrhythmias. Heart transplantation for patients with end-stage heart failure is limited by the number of donor organs available; cell replacement therapy is a promising option for myocardial repair but limited by the availability of transplantable human CMs (e.g. human fetal CMs) due to practical and ethical reasons. As a result, transplantation of non-cardiac cells such as skeletal muscle myoblasts (SkM) and smooth muscle cells have been sought as potentially viable alternatives. However, the non-cardiac identity of these cell sources presented major limitations. For instance, the lack of electrical integration of SkM (conduction via gap junctions) after their autologous transplantation into the myocardium has been shown to underlie the generation of malignant ventricular arrhythmias, which led to the premature termination of clinical trials involving this specific cell source (1). Moreover, it is now well established that although bone marrow stem cells improve cardiac functions of ischaemic patients by promoting angiogenesis (2), they lack the capacity to transdifferntiate into cardiac muscle for myocardiogenesis (3), limiting their utility for cardiac repairs. Recently, adult cardiac resident stem cells have been explored as an autologous cell source. Here we will focus our discussion on human embryonic stem cells (hESC) and induced pluripotent stem cell (iPSC).
Human embryonic stem cells

Upon fertilisation of an oocyte by sperm, the resultant zygote, which possesses the total potential (i.e. totipotency) to develop into all cell types including those necessary for embryonic development (such as extra-embryonic tissues), will undergo several rounds of cell division to become a compact ball of totipotent cells known as the morula. As the morula continues to grow (∼4 days after fertilisation), its cells will migrate to form a more specialised hollow, fluid-filled structure known as the blastocyst consisting of an outer cell layer, the trophoderm, and an inner cluster of cells collectively known as the inner cell mass (ICM). While the trophoderm is committed to developing into extra-embryonic structures for supporting fetal development, the ICM will give rise to the embryo. The ICM retains the ability to form any cell of the body except the placental tissues (i.e. pluripotency). Embryonic stem cells (ESCs) are isolated from the ICM for cultivation in vitro. ESCs possess the ability to remain undifferentiated and propagate indefinitely in culture while maintaining their normal karyotypes and pluripotency to differentiate into the derivatives of all three embryonic germ layers (i.e. endoderm, mesoderm and ectoderm) and their lineage derivatives, including brain, blood, pancreatic, heart and other muscle cells. Pluripotent mammalian ESC lines were first derived from rodent blastocysts over 20 years ago, revolutionising mouse genetics and leading to the generation of the first transgenic animal. The first successful isolation of human ESCs (hESCs) by Thomson et al in 1998 further sparked tremendous international scientific interest: Since hESCs are immortal, they can potentially act as an unlimited ex vivo source of even non-dividing, terminally differentiated cells for transplantation and cell-based human therapies. Indeed, hESCs can self-renew while maintaining their pluripotency to differentiate into all cell types (4), including CMs (5–9).

Induced pluripotent stem cells

Although hESC-derived CMs (hESC-CMs) have been reported to improve cardiac function in several animal models of myocardial infarction (10, 11), numerous hurdles need to be overcome before their clinical applications. For instance, generation of patient-specific cells for autologous transplantation has been pursued to avoid immune rejection of the transplanted grafts. This can be accomplished by somatic cell nuclear transfer (SCNT) of a patient’s own nucleus to an enucleated donor oocyte to generate a cloned blastocyst for the derivation of patient-specific ESCs. To date, the establishment of non-human primate “patient-specific” ESCs (12) and cloning of several animal species (13, 14) have been successfully achieved via SCNT; however, significant ethical concerns remain for the application of SCNT in human therapies. Alternatively, direct reprogramming of adult somatic cells such as dermal fibroblasts to become pluripotent hES-like cells (a.k.a. induced pluripotent stem cells or iPSCs) has been recently reported, eliminating potential ethical concerns and making hES/iPS cell-based therapies one step closer to reality. Forced expression of four pluripotency genes (Oct3/4, Sox2 and either c-Myc and Klf4 for mouse and human or Lin28 and Nanog for human) (15–18) suffices to reprogram mouse and human fibroblasts into iPSCs. iPSCs have morphology, proliferation, feeder dependence, surface markers, gene expression, epigenetic status, formation of embryoid bodies *in vitro*, promoter activities, telomerase activities, and *in vivo* teratoma formation similar to hESCs. Technically, iPSCs are cultured under conditions virtually identical to those for hESCs (17, 18). Using the same cardiac differentiation protocol originally developed for hESCs, iPSCs can be similarly differentiated into CMs (17).

Directed cardiac differentiation

Previous studies using CMs derived from murine (m) and human ESCs have provided significant insights into the development of mammalian hearts. *In vitro* ESC differentiation requires an initial step of forming three-dimensional aggregates called embryoid bodies (EBs), which in turn can differentiate into a wide variety of specialised cell types including CMs. Once differentiated, CMs can be readily identified even by visual inspection as spontaneously-contracting outgrowths (9). The cardiogenicity of ESCs is heavily influenced by conditions such as the EB size, media composition (e.g. the presence of fetal bovine serum, inducing agents and other growth and transcription factors), the particular ESC lines being investigated, the time and duration of differentiation. The developmental changes of mESC-derived CMs correlates with the length of time in culture, mimicking that seen in myocardial development *in vivo*: primordial pacemaker-like and SA nodal pacemaker (early), atrial (intermediate) and ventricular (late) CMs appear and predominate at different stages during cardiac differentiation although a heterogenous population of all three CM types is almost always seen in mouse EBs. Terminal differentiation and derivation of specific CM types is an area of tremendous interests that requires further investigation. Morphologically, mESC-derived nodal cells are non-striated, small and round whereas the atrial and ventricular counterparts show organised myofibrillar and sarcomeric structures found in mature cardiac muscle cells. Some nodal CMs lack the contractile apparatus (e.g. leading pacemaker cells in the SA node centre), and thus do not beat (without coupling to muscle CMs) although they are electrically active; in contrast, mononucleated and rod-shaped striated atrial and ventricular derivatives are normally quiescent but are capable of beating upon stimulation by electrical signals from nodal or neighbouring CMs. Recently, several unique multipotent primordial cardiac progenitor populations have been identified (19–21). As an example, specific induction of hESCs with activin A, BMP4, bFGF, VEGF, DKK1 for driven mesodermal differentiation results in generation of a KDRlow/c-kitneg CP population which defines one of the earliest stages of human cardiac development. CP-containing "car-
diospheres” derived from hESCs can efficiently differentiate into CMs in vitro (with >50%, as gauged by CTNT⁺ cells). Further modifications of this protocol enable the induction of a large CP population, allowing the generation of highly enriched CMs even without the need for cell sorting. When properly instructed, CP can also differentiate into smooth muscle and endothelial cells.

Functional and structural properties of hESC- and iPSC-derived cardiomyocytes

The functional and structural properties of hESC-CMs have been investigated by us and several laboratories. Human ESC-CMs express cardiac-specific transcription factors and structural proteins (5–9). Like the murine counterpart, hESC-CMs derived from in vitro differentiation were highly heterogenous consisting of a combination of chamber-specific cell types. A directed differentiation protocol for deriving a particular chamber-specific type (e.g., the ventricular lineage), however, has not been established. Although all hESC lines are by definition pluripotent, we found that different lines have distinct cardiogenic potentials to become early ventricular-, atrial- and pacemaker-like derivatives as gauged by their signature action potential (AP) profiles. For instance, HES2 cells have a higher likelihood than H1 cells of differentiating into ventricular-like hESC-CMs (23) (Fig. 1). In the sections that follow, we will focus our discussion on electrophysiology and Ca²⁺-handling, two fundamental operating properties of CMs.

Functional but immature Ca²⁺-handling of hESC-CMs

During an action potential (AP) of adult CMs, Ca²⁺ entry into the cytosol through sarcolemmal L-type Ca²⁺ (I_{Ca,L}) channels triggers the release of Ca²⁺ from the intracellular Ca²⁺ stores (a.k.a. sarcoplasmic reticulum or SR) via the ryanodine receptors (RyR). This process, the so-called Ca²⁺-induced Ca²⁺-release (CICR) (24), escalates the cytosolic Ca²⁺ ([Ca²⁺]c) to activate the contractile apparatus for contrac-
tion. For relaxation, elevated [Ca^{2+}]_{i} gets pumped back into the SR by the sarco/endoplasmic reticulum Ca^{2+}-ATPase (SERCA) and extruded by the Na^{+}-Ca^{2+} exchanger (NCX) to return to the resting [Ca^{2+}]_{i} level. Such a rise and subsequent decay of [Ca^{2+}]_{i} is known as Ca^{2+} transient. Both the contractile force (inotropic) and frequency (chronotropic) of CMs are dependent on the amplitude and kinetic properties of Ca^{2+} transients. In mature ventricular CMs, CICR is optimised by the presence of t-tubules, invaginations in the sarcolemmal membrane that concentrates ICa,L channels and brings them spatially closer to RyRs (25, 26). With a minimised Ca^{2+} diffusion distance between ICa,L and RyRs, SR deep in ventricular CMs with large cross-sectional area can participate in CICR without significant time lags. This increased efficiency is demonstrated by a uniform increase in cytosolic Ca^{2+} across the transverse section of the cell (with simultaneous recruitment of all SRs). This increased efficiency is demonstrated by a uniform increase in cytosolic Ca^{2+} across the transverse section of the cell (with simultaneous recruitment of all SRs). Such a uniform Ca^{2+} wave starkly contrasts the U-shaped Ca^{2+} wave propagation from the periphery to the center in a de-tubulated ventricular or atrial CM (that lacks t-tubules) (25). The U-shaped waves result from a time delay that is proportional to the diffusion distance squared in recruiting the Ca^{2+} stores at the cell centre (27).

Given the central importance of CICR in cardiac excitation-contraction (EC) coupling, proper Ca^{2+} handling properties of hESC/iPSC-CMs are therefore crucial for their successful functional integration with the recipient heart after transplantation. Indeed, abnormal Ca^{2+} handling, as in the case of heart failure, can even be arrhythmogenic (e.g. by causing delayed afterdepolarization) (24). In murine (m) ESC-CMs, both the SR load and RyR are essential for regulating contractions even at very early developmental stages (28, 29). As for the human counterpart, in 2006 Dolnikov et al. were the first to study the Ca^{2+}-handling properties of hESC-CMs in detail (30). They reported that Ca^{2+} transients recorded from spontaneously beating or electrically stimulated hESC-CMs respond to neither caffeine nor ryanodine; hESC-CMs recorded as beating clusters also displayed a negative force-frequency relationship that is different from adult CMs. Based on these observations, the authors concluded that hESC-CMs are immature and do not express functional SRs, and that their contractions result from trans-sarcolemmal Ca^{2+} influx (rather than Ca^{2+} release from the SR). Due to the paucity of further hESC-CM data, we sought to help define the poorly known Ca^{2+}-handling properties of hESC-CMs in detail. They reported that Ca^{2+} transients recorded from spontaneously beating or electrically stimulated hESC-CMs respond to neither caffeine nor ryanodine; hESC-CMs recorded as beating clusters also displayed a negative force-frequency relationship that is different from adult CMs. Based on these observations, the authors concluded that hESC-CMs are immature and do not express functional SRs, and that their contractions result from trans-sarcolemmal Ca^{2+} influx (rather than Ca^{2+} release from the SR). Due to the paucity of further hESC-CM data, we sought to help define the poorly known Ca^{2+}-handling properties of hESC-CMs and human fetal left ventricular (LV) CMs (16–18 weeks) (Fig. 2A). In stark contrast to the previous study, we demonstrated the presence of functional SRs even in hESC-CMs that were younger (31) (18–24 vs. 55-day old post-differentiation of Dolnikov et al.). Upon electrical stimulation, hESC- and fetal LV-CMs generated similar Ca^{2+} transients. However, caffeine induced Ca^{2+} release in 65% of fetal LV-CMs and only ~40% of H1- and HES2-CMs. Rya-
nodine significantly reduced the electrically-evoked \(\text{Ca}^{2+} \) transient amplitudes and slowed the upstroke of caffeine-responsive HES2– and H1-CMs but NOT caffeine-insensitive cells; thapsigargin, a SERCA inhibitor, similarly reduced the amplitude and slowed the decay of \textit{only} caffeine-responsive HES2– and H1-CMs (31). Thus, the discrepancy can be largely attributed to the newly identified caffeine-responsive population. NCX protein expression is highest in hESC-CMs, but intermediate and weakest in fetal and adult LV-CMs, respectively. We later confirmed that the same trend is also seen at the functional level (32). Although highest in adult LV-CMs, SERCA2a is already substantially and comparably expressed in H1-, HES2-, and fetal LV-CMs. RyR is expressed in hESC-CMs and fetal LV-CMs, but the organised pattern for adult LV-CMs is not observed (due to the lack of t-tubules in hESC-CMs). On the far end, the regulatory proteins junctin, triadin, and calsequestrin (CSQ) are expressed in adult LV-CMs but completely absent in hESC-CMs. Furthermore, hESC-CMs do not display t-tubules that are seen in normal adult human atrial and ventricular CMs (33) (Fig. 3). Consistent with the lack of t-tubules, the \(\text{Ca}^{2+} \) waveform of hESC-CMs is U-shaped, suggesting inefficient CICR or time delay in activation of RyRs at the centre with faster and greater magnitude of \(\text{Ca}^{2+} \) transient increase at the periphery relative to the central part of the cells (33). Table 1 summarises some \(\text{Ca}^{2+} \)-handling properties of hESC-, fetal and adult CMs.

\(\text{Ca}^{2+} \) homeostasis is dependent on such \(\text{Ca}^{2+} \)-handling proteins as \(I_{\text{Ca,L}} \) channels, RyR, SERCA and NCX. RyRs are arranged in large organised arrays (up to 200 nm in diameter with more than 100 RyRs) at the junctions between the SR and sarcolemma (i.e. t-tubules) beneath \(I_{\text{Ca,L}} \) channels (34). These arrays constitute a large functional \(\text{Ca}^{2+} \) release complex. RyRs are also coupled to other proteins at the luminal SR surface such as triadin, junctin and calsequestrin (CSQ) (35). As the most abundant, high-capacity but low-infinity \(\text{Ca}^{2+} \)-binding protein in the SR, the cardiac isoform CSQ2 can store up to 20 mM \(\text{Ca}^{2+} \) while buffering the free SR \([\text{Ca}^{2+}] \) at \(\sim 1 \text{ mM} \) (36). This allows repetitive muscle contractions without run-down. CSQ2 also coordinates the rates of SR \(\text{Ca}^{2+} \) release and loading by modulating RyR activities. Indeed, the SR \(\text{Ca}^{2+} \) content affects the amount of \(\text{Ca}^{2+} \) released via CICR (37, 38). For a given \(I_{\text{Ca,L}} \) trigger, a high SR \(\text{Ca}^{2+} \) load enhances the open probability of RyRs while directly providing more \(\text{Ca}^{2+} \) available for release (39). By contrast, \(I_{\text{Ca,L}} \) can no longer cause CICR when the SR \(\text{Ca}^{2+} \) content is sufficiently low. Mechanistically, CSQ senses the levels of luminal \(\text{Ca}^{2+} \) and effects RyRs via triadin and junctin. For instance, when SR \(\text{Ca}^{2+} \) declines (e.g. during CICR release), the increased level of \(\text{Ca}^{2+} \)-free CSQ deactivates RyRs by binding via triadin and junction; alternatively, SR \(\text{Ca}^{2+} \) reload (e.g. upon relaxation when CICR terminates) relieves the CSQ2-mediated inhibition of RyRs (36, 40). Thus, CSQ2 is an important determinant of the SR load. Interestingly, CSQ can activate purified RyRs in the absence of triadin and junction (41, 42). As mentioned, CSQ is completely absent in hESC-CMs. We hypothesised that gene transfer of CSQ in hESC-CMs suffices to induce functional im-

Figure 3: T-tubule imaging of a hESC-CM and a mature ventricular CM. Di-8-ANEPPS confocal microscopic images of a hESC-CM (A) did not show intracellular fluorescent spots like those in an adult guinea pig ventricular CM (C) suggesting the absence of t-tubules. The absence of t-tubules in ESC-CMs was further confirmed by atomic force microscopy (AFM) imaging of an adult ventricular cardiomyocyte (D) showing regularly spaced pores in the sarcolemma that coincide with the Z-lines, while hESC-CM (B) surface showed comparatively smoother topology with no presence of invaginations that are indicative of t-tubules. E) Electrically induced \(\text{Ca}^{2+} \) transient in hESC-CMs: Top: Time progression linescans of pseudo-colored transient increase in intracellular \(\text{Ca}^{2+} \) across the mid-plane of a hESC-CM showed a U-shaped wavefront. Bottom: Quantified \(\text{Ca}^{2+} \) transient of linescans of the top panel. Adapted from Lieu et al. 2009.
provement of SR. Figure 4 shows that transduction of hESC-CMs by the adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity and decay in comparison to the Ad-CMV-GFP and Ad-CMV-CSQΔ-IRES-GFP control groups. CSQΔ is a non-functional version of CSQ with 53–869bp of the coding sequence deleted (43). Ad-CSQ also increased the SR Ca2+ content (as tested by caffeine), without altering I_{Ca,L}, suggesting that the improved transient was not simply due to more Ca2+ influx for CICR.

Human iPSC-derived cardiomyocytes

We have previously reported that both human ESCs and iPSCs express several specialised ion channel proteins that appear to regulate cell proliferation and cell cycle (49, 50). Using the same methods for hESCs, human iPSCs can likewise differentiate into CMs with cardiac-specific molecular, structural, electrophysiological and Ca2+-handling properties (51). The iPSC-derived CMs expressed cardiac-specific transcription factors and structural proteins (22). Functional CMs with nodal-, atrial-, or ventricular-like

Table 1: Summary of differences. H1- and HES2-CMs have comparable trends and are collectively referred to as hESC-CMs.

<table>
<thead>
<tr>
<th></th>
<th>hESC-CMs</th>
<th>Fetal LVCMs</th>
<th>Adult LVCMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression levels of Ca2+-handling proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RyR</td>
<td>++</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>SERCA</td>
<td>+++</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>Phospholamban</td>
<td>-</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>CSQ/Tdn/Jtn</td>
<td>-</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Calreticulin</td>
<td>++++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>NCX</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Ca2+ transient properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal [Ca2+]_i</td>
<td>++</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>Amplitude</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Decay</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Upstroke</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Figure 4: Effect of CSQ overexpression on hESC-CMs. A) Representative electrically-induced Ca2+ transient tracings for Ad-GFP (n=12) and Ad-CSQ (n=29) transduced hESC-CMs. B) Bar graphs of amplitude.* P < 0.05, ** P < 0.01. Adapted from Liu et al. 2009.

Immature electrophysiological properties of hESC-CMs

Adult LV CMs are normally electrically silent-yet-excitatory upon stimulation. To assess the electrical maturity of ventricular hESC-CMs, we investigated their ability to generate APs. The majority of ventricular hESC-CMs were spontaneously firing, exhibiting a high degree of automaticity. The remaining quiescent cells could elicit single APs upon stimulation, indicating that their excitability was intact. However, these silent-yet-excitatory ventricular hESC-CMs displayed a prominent “phase 4-like” depolarisation, a known substrate for delayed after depolarisation (DAD). Furthermore, their resting membrane potentials (RMPs) were significantly depolarised. Collectively, these immature electrical properties of hESC-CMs are signatures of arrhythmogenic, failing adult ventricular CMs. Thus, strategies for facilitated maturation need to be developed. Building upon our series of cardiac automaticity studies (44–48), we first identified the lack of Kir2.1-encoded I_{K1} in hESC-CMs as the primary mechanistic contributor to the immature proarrhythmic electrophysiological properties. Forced Kir2.1 expression alone sufficed to render the electrical phenotype indistinguishable from that of primary adult ventricular cells. Based on these proof-of-concept data that the developmentally arrested Ca2+ and electrophysiological phenotypes of hESC-CMs can be rescued, we are currently developing a non-genetic, non-pharmacologic method for reproducibly driving global maturation, by targeting the micro-environmental niches and other non-cell autonomous means.
electrophysiological phenotypes have also been observed (51). Multielectrode array recordings established the development of a functional syncytium with stable pacemaker activity and action potential propagation. Positive and negative chronotropic responses were induced by application of isoproterenol and carbamochrome, respectively (22). Like hESC-CMs, iPSC-CMs also display immature Ca\(^{2+}\)-handling properties with smaller transient amplitude and slowed kinetics (unpublished). Depending on the method and conditions of reprogramming, however, some iPSC-CMs appear to be more resistant to maturation methods that work effectively for hESC-CMs. In addition to clinical applications, the ability to generate patient-specific hiPSC-CMs also provides an opportunity to develop novel in vitro models of cardiac disorders. Indeed, these in vitro models could serve as a platform for investigating arrhythmia mechanisms and for predicting efficacy of pharmacological therapies.

Electronic pacemakers for heart rhythm disorders

Normal rhythms originate in the sino-atrial node (SAN), a specialised cardiac tissue consisting of only a few thousands pacemaker cells (52, 53). Malfunction of cardiac pacemaker cells leads to rhythm generation disorders. Traditional treatments require pharmacological intervention and/or implantation of electronic pacemakers. While such therapy is effective, it is also associated with significant risks (e.g. infection, haemorrhage, lung collapse and death) and expenses (>600,000 cardiac pacemakers are implanted annually worldwide). Other disadvantages include limited battery life (replaced every 5–10 years), permanent implantation of catheters, and lack of autonomic neurohumoral responses. As for paediatric patients with conditions such as symptomatic bradycardias, bradycardia-dependent ventricular arrhythmias and other postoperative arrhythmias that require electronic pacemakers for life-sustaining rhythms, several considerations can complicate their management (54–58). For instance, somatic growth may result in lead tension and thereby increase the risk of lead dislodging and fracturing that are fairly common in active young patients. The placement of an electronic system could also be hindered by congenital heart defects and structural abnormalities.

Unlike rhythmically AP-firing pacemaker cells, adult atrial and ventricular muscle cells are normally electrically silent unless they get stimulated by signals transmitted from neighbouring cells that originate from the SAN. This quiescent nature of cardiac muscle CMs is due to the absence of I\(_{\text{f}}\) and the intense expression of I\(_{K1}\) (a.k.a. the inward-rectifier K\(^+\) current), encoded by the Kir2 gene family, which stabilises a negative resting membrane potential (RMP \(-80\) mV). Given the limitations of electronic pacemakers, several gene- and cell-based approaches have been explored to confer upon normally-quiescent cardiac muscle cells the ability to intrinsically fire APs similar to genuine nodal pacemaker cells as potential biological alternatives or supplements to devices. In addition to the translational potential, these studies also shed mechanistic insights into cardiac automaticity. Mikes et al. demonstrated that genetic suppression of I\(_{K1}\) in normally-silent ventricular myocytes by >80% can cause spontaneous firing activity in a binary “on-and-off” fashion (59). The induced frequency is only a third of normal, and as such not suitable for acting as a reliable biological pacemaker. Alternatively, we (44, 48, 60) and others (61) have chosen to employ a genuine pacemaker gene product – the HCN channels. Since the four HCN isoforms co-assemble to form heteromultimeric channels, the molecular identity of endogenous I\(_{f}\) is complex and therefore difficult to reproduce via genetic expression of a single HCN isoform. Furthermore, subunit interactions of HCN are poorly defined. Indeed, overexpression of WT HCN1 (48) or HCN2 (62) channels alone in quiescent ventricular CMs is insufficient to cause oscillations. We overcame this hurdle by protein engineering of HCN to create a single construct that mimics native nodal I\(_{f}\) (63–65), thereby enabling us to subsequently construct a functional bioartificial SAN (bio-SAN) in a large animal (swine) model of sick sinus syndrome (S3) (48, 60).

Side-by-side comparison in this SSS porcine model shows that bio-SAN significantly reduces the dependence on device-supported pacing by electronic pacemaker from \(-85\%\) to \(-13\%\) in the same animal after receiving our treatment.

Alternatively, pluripotent human embryonic stem cells (hESCs) can be differentiated into pacemaker-like derivatives for transplantation to recreate an in vivo pacemaker (8, 66). To create biological pacemakers, human mesenchymal stem cells (hMSCs) pre-transported with HCN2 channels have also been employed as a delivery vehicle for introducing I\(_{f}\) into neighboring CMs via gap junction-mediated coupling (67, 68). The stability of such coupling between non-cardiac cells and the myocardium needs to be considered and requires further investigations. Along the same line, ventricular myocytes have been converted into pacemaker-like heterokaryons via chemically-induced fusion with fibroblasts transduced to express HCN1 channels (69). When injected into the guinea pig left ventricle (LV), electrocardiography (ECG) confirmed ectopic rhythms. Previous studies have indicated that similar heterokaryons can remain stable for several months (70–72).

Myocardial repair

Myocardial infarction remains the major worldwide cardiovascular disorder in humans. Immediately after a heart attack, oxygen starvation of myocardial tissues leads to cell death, and in the absence of immediate thrombolytic treatment of the blocked coronary artery, the damage is often irreversible and the heart is permanently impaired. Despite significant improvements in the management of most cardiovascular disorders, sudden cardiac death (SCD) due to ventricular arrhythmias remains a leading cause of morbidity and mortality in the industrialised world, claiming well over 300,000 lives annually in the United States alone. Current treatment options for arrhythmias in patients with heart failure have been especially disappointing, in many cases promoting rather than preventing SCD. Longer term, the remaining CMs hy-
perturbation in an attempt to meet the functional demands, while cardiac fibroblasts secrete collagen and other extracellular matrix proteins during scar formation, which may further impair ventricular function. Indeed, myocardial tissue recovery is particularly limited by its intrinsic inability to regenerate. Palliative interventions to treat damaged heart muscle include changes in life-style, medications that reduce functional requirements or limit certain aspects of remodelling, or surgical interventions that improve cardiac function. In severe cases, transplantation is the only option, and today’s most urgent problem in transplantation is the lack of suitable donor organs and tissues. As mentioned, damaged myocardium could be treated by cell transplantation/replacement therapy. The lack of effective and safe therapeutic options for heart failure patients, coupled with a growing understanding of cardiac regenerative processes and stem cell biology, have led to the development of various cell-based therapies that have shown significant promise in at least partially restoring cardiac function by reducing infarct size. Potential and actual sources of cells or tissues are self (autologous), same species (allogeneic), different species (xenogeneic), primary or immortalised cell lines, and embryonic or adult stem cell-derived donor cells.

Pathophysiological remodeling of cardiac function occurs at multiple levels, spanning the spectrum from molecular and subcellular changes to those occurring at the organ-system levels. Complex alterations in a host of ion channels, Ca$^{2+}$ cellular changes to those occurring at the organ-system levels, multiple levels, spanning the spectrum from molecular and subcellular changes to those occurring at the organ-system levels. Complex alterations in a host of ion channels, Ca$^{2+}$-cycling proteins, and gap junction-related molecules modulates key electrophysiological properties, predisposing to arrhythmias caused by enhanced automaticity, triggered activity, and reentry. Heart failure-induced ion channel dysfunction prolongs the AP, increases spatiotemporal gradients of repolarisation, promotes the formation of arrhythmogenic triggers and results in conduction abnormalities. Cell-based therapies can significantly improve LV function. As such, these therapies may activate complex signalling processes that reverse-remodel the failing heart, and therefore prevent the incidence of arrhythmias. On the other hand, cell-based therapies might also alter the RMP, produce abnormal triggers, promote electrical heterogeneities, modulate conduction, and favour reentrant excitation. As already described, of major concern is the fact that hESC- and iPSC-CMs display a range of functional and structural properties that are remarkably similar to those of immature or failing heart cells. These properties along with a detailed investigation of their electrophysiological consequences require careful investigation before their clinical efficacy can be further assessed.

Conclusion

The availability of hESC and iPSC and their successful differentiation into genuine human heart cells have enabled clinicians and scientists to gain insights into the early development of the human heart as well as to pursue the revolutionary paradigm of heart regeneration. However, hESC- and iPSC-derived CMs appear to be both structurally and functionally immature. One of the most important factors to consider before any potential benefits of hESC-CMs are clinically assessed would be to ensure their safety. Furthermore, the successful use of derived CMs as human heart disease models and cardiotoxicity screening tools depends on their ability to recapitulate the properties of their adult counterparts. Further studies are required to promote their maturation. When combined with other advances in driven differentiation and cardiovascular progenitor identification (19–21), the approaches can facilitate the translation of hESC/iPSCs into clinical and other applications.

Acknowledgement

This work was supported by grants from the NIH – R01 HL72857 (to R.A.L.), the CC Wong Stem Cell Foundation Fund (to R.A.L.) and the University Development Fund (to C.-W.K. and R.A.L.).

References