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Summary. Preclinical experiment on multi-drug combination has an increasingly important role

in (especially cancer) drug development because of the need to reduce development time and

costs. Despite of recent progresses in statistical methods for assessing drug interaction, there is

a lack of general method for experimental design for such studies. We propose a general method

for determining the doses comprising the combinations and the sample sizes to detect departures

from additivity especially in the case of more than two drugs in a semi-parametric statistical

model. We utilize the uniform scattered points in the experimental domain to determine the

doses comprising the combinations and calculate the sample size so that the power to detect

departure from additivity is maximized. To our surprise, such an extension to multi-drug is

far more difficult than what it appears when there are three or more drugs involved. Using

the general methodology, we derive the combinations and sample size specifically for a common

class of drugs to derive the experimental design. In addition, we illustrate the method with the

SAHA and Ara-C and Etoposide combination studies.

Key words: Additive action; Dose-effect; Experimental design; F -Test; Semiparametric model;
Synergism; Uniform design.
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1. Introduction

The study of the joint action of drugs has a long history in pharmacology and bio-

statistics (see, e.g., Finney, 1971; and reviews by Berenbaum, 1989; Greco et al., 1995).

Synergism/super-additivity (antagonism/sub-additivity) commonly refers to a dose-effect

greater (lesser) than what would be predictable based on knowledge of single drugs if

they are additive. Although several definitions of additivity exist, the statistical (as op-

posed to mechanistic) Loewe’s additivity has been shown to be a generally applicable

definition and has thus been the primary accepted definition in the evaluation of drug

synergy/antagonism (Berenbaum, 1989; Greco at al., 1995). The Loewe additivity is im-

plied when the doses in a combination contribute to the dose-effect according to individual

drug potencies (see more details in Section 2). Throughout this paper, this definition will

be used, and compounds, agents and drugs will all be referred to as drugs. Because of the

importance of drug combinations in cancer, antiviral and antimicrobial therapies, research

on synergy has recently attracted increased attention from statisticians (see, e.g., Tan et

al., 2003; Kong and Lee, 2006; Lee and Kong, 2008; Fang et al., 2008). A statistical ap-

proach to the design and analysis of drug combinations becomes a natural choice because

of large variations in dose effect observed in the administration of precisely the same dose

to virtually genetically identical animals (or even different aliquots). What makes the

biological experiment unique is that the inter animal (run-to-run) variation is typically

much greater than that in a typical industrial (e.g., mechanical or chemical engineering)

experiment. In addition, these experiments are costly and sample sizes (e.g., the number

of animals) should not be larger than necessary. Statistical experimental design attempts

to control and account for the variation in both the design and the analysis stages. The

key statistical design issues are to find the doses in the combinations and determine sample

sizes (how many combinations and replications at each combination) to detect departures

from additivity. Although a PubMed search of “synergy” generated over 40,000 articles

up to the year of 2007 on the subject, few of them address experimental design issues
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such as dose-finding and sample size determination in such experiments.

In designing a combination study, the model of the joint action is typically not well

specified and the constituent doses in the combinations are to be found instead of being

given. One common feature of more classic designs is allocating the doses of one drug

only while keeping the doses of another drug fixed under the assumption of constant

relative potency (see, e.g., Finney , 1971; Abdelbasit and Plackett, 1982; Tallarida et al.,

1997; Laska et al., 1994; Gennings et al., and 2004; Straetemans et al., 2005). Hence, the

design is suboptimal. In addition, by ignoring the three dimensional nature of the dose

response surface, these methods examine multiple combinations and are prone to giving

false synergistic combinations (Dawson et al., 2000) or missing an apparent interaction at

a particular combination due to inadequate statistical power. Recognizing these unique

features, recently Tan et al., 2003; and Fang et al., 2008) developed a design based on

uniform measures (to select the combinations and calculate the sample size (the number

of replicates at the selected combinations) to detect departures from additivity under the

more realistic setting of nonconstant relative potency. This design is similar in spirit to

a space-filling type design but the dose levels have to be determined instead of being

given (page 181-191, Cox and Reed, 2000). Unfortunately, the method is limited to two

drug combinations. Contrary to what we expect, the extension of the method to multi-

drug combination turns out to be a challenge as shown later in this article because of

the increased complexity in the additive model and in obtaining uniform scattered points

in high dimensional dose regions. This may partially explain why design for three drug

combination is not available despite of the need for such studies.

In this article, we propose an experimental design for detecting departures from addi-

tivity of multiple drugs in preclinical studies in a general statistical setting. The design is

derived by the uniform measures that maximizes the power to detect any overall possible

departures of a given magnitude from additivity while minimizing the lack of fit of the

model for joint action. Thus we refer the design as maximum power design for brevity.

This general framework does not require constant relative potency and is flexible enough

3



to include the design to test joint action of multiple drugs from multiple different classes of

drugs in both in vitro and in vivo experiments. Section 2 formulates the general statistical

model for the joint action of drugs and proposes an F -statistic to test if additive action

presents. The maximum power design to determine doses and sample sizes for testing

joint action based on the general statistical model is derived in §3. In Section 4, we focus

on the experimental design the common log-linear dose-response curve and show why it

is so difficult to derive the design with combinations of three or more drugs. Section 5

illustrates the proposed design method with a study on three anticancer drugs, where the

proposed method identified a synergistic combination that would have been missed and

that is currently being tested in a clinical trial. We conclude with a discussion in §6 and

the more theoretic results on the design are included in the Appendix.

2. Model formulation and statistical inference framework

Consider a combination of k drugs A1, . . . , Ak, comprising doses Xi of Ai (i = 1, . . . , k).

Dose-response relationships for individual drugs are estimated by regression models and

are given by

y = fi(Xi), i = 1, . . . , k, (2.1)

where y is the dose-effect scaled to be a viability (proportion of cells surviving) or a tumor

volume (with some transformation) and fi(Xi) is assumed to be an increasing function of

Xi in the dose range of interest. Then, the potency of drug Ai relative to drug A1 is the

ratio of isoeffective doses of A1 and Ai, ρi(Xi) = X1/Xi where fi(Xi) = f1(X1), i.e.,

ρi(Xi) = f−1
1 fi(Xi)/Xi, i = 2, . . . , k. (2.2)

Note the potency ρi(Xi) may depend on dose Xi.

For a given dose combination of A1, . . . , Ak, x = (x1, . . . , xk)
T , denote the combination

dose-effect (response) by fcom(x1, . . . , xk). According to Loewe’s definition, the isoboles
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(isoeffect equation) of the k drugs is defined as (see (1a) in Berenbaum, 1989),

x1

X1

+
x2

X2

+ · · ·+ xk

Xk

= τ, (2.3)

where Xi represents the dose of the ith drug alone that yields the same response as the

combination (x1, . . . , xk), i.e.,

fcom(x1, . . . , xk) = f1(X1) = · · · = fk(Xk). (2.4)

τ is called the interaction index of the k drugs at the combination of x = (x1, . . . , xk)
T . If

τ = 1, we say that the k drugs are additive at x . The k drugs A1, . . . , Ak are synergistic

(antagonistic) at x when τ < 1(> 1).

From (2.3) and (2.4), we have that

fcom(x1, . . . , xk) = f1(X1)

= f1(τX1) + [f1(X1)− f1(τX1)]

= f1

(
x1 +

X1

X2

x2 + · · ·+ X1

Xk

xk

)
+ [f1(X1)− f1(τX1)],

and the term [f1(X1) − f1(τX1)] = 0 if the joint action of A1, . . . , Ak is additive. Then,

the regression line for the combination with additive action of k drugs is

y = f1

(
x1 +

X1

X2

x2 + · · ·+ X1

Xk

xk

)

= f1 (x1 + ρ2(X2)x2 + · · ·+ ρk(Xk)xk) ,

(2.5)

and ρi(Xi) is a function of (x1, . . . , xk) determined by (2.2)-(2.4). If the potency ρi in

(2.2) is not a constant, the additive model (2.5) has no closed forms.

Since we generally know little about the joint effect of the combinations before exper-

iments, we consider a general semiparametric model for the joint effect of the k drugs in

the experimental domain S0,

y = f1

(
x1 +

X1

X2

x2 + · · ·+ X1

Xk

xk

)
+ f(x1, . . . , xk) + ε, (2.6)
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where the function f is unspecified, ε is the error term due to variation in experiments

and is assumed to be normally distributed with mean 0 and variance σ2. Then, testing

the additive action of the k compounds is equivalent to testing the hypothesis H0: f = 0.

To derive the experimental design, we first assume that model (2.5) has (or is approx-

imated by) a generalized additive structure, namely, additive after transformation. For

example, we have an approximate additive structure with polynomial approximation since

the additive model with a non-constant potency has no closed form. As further detailed

in Section 4, such approximation can be achieved once the individual dose-response or

the class of drugs is given. Suppose that there is a one-to-one invertible transformation:

(x1, . . . , xk) ∈ S0 7−→ (z1, . . . , zk) ∈ S, by

zi = ϕi(x1, . . . , xk), i = 1, . . . , k, (2.7)

such that the additive model (2.5) can be expressed as

f1

(
x1 +

X1

X2

x2 + · · ·+ X1

Xk

xk

)
≈ α1g1(z1) + · · ·+ αkgk(zk), (2.8)

where the functions g1, . . . , gk are linearly independent, and

max

∣∣∣∣f1

(
x1 +

X1

X2

x2 + · · ·+ X1

Xk

xk

)
− [α1g1(z1) + · · ·+ αkgk(zk)]

∣∣∣∣ <
1

2
η/V(S),

where η is a given magnitude of synergism or antagonism worth detecting and V(S) is the

volume (or area) of the domain of experiment S (see below). Then model (2.6) becomes

y ≈ α1g1(z1) + · · ·+ αkgk(zk) + g(z1, . . . , zk) + ε, for (z1, . . . , zk) ∈ S, (2.9)

where g(z1, . . . , zk) = f(x1, . . . , xk), and α1, . . . , αk are known parameters. To ensure the

identifiability of α1, . . . , αk, we further assume that the unspecified function g(z1, . . . , zk)

satisfies the following orthogonality condition:

∫

S
G(z1, . . . , zk)g(z1, . . . , zk)dz1 · · · dzk = 0, (2.10)

where G(z1, . . . , zk) = (g1(z1), . . . , gk(zk))
T .
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Consequently, the experimental design for the k drug combinations is transformed into

z = (z1, . . . , zk)
T in domain S with model (2.9). When there are m experimental points

z(i) = (z
(i)
1 , . . . , z

(i)
k )T , i = 1, 2, . . . , m, in the experimental domain S, we can obtain the

dose-levels x(i) = (x
(i)
1 , . . . , x

(i)
k )T ∈ S0, i = 1, 2, . . . , m, by the inverse transformation in

(2.7) for the combination experiments of the k drugs. For a given z, the additive action

in the mixture of the k drugs is implied if g(z) = 0. When g(z) > 0(< 0), the mixture of

the k drugs is synergistic (antagonistic).

Hence, testing the additive action of k drugs is equivalent to testing the hypothesis

H0 : g = 0 versus H1 : g 6= 0.

The test is powered at a given magnitude η(> 0) of departure from additivity worth

detecting. Thus, if ∫

S

g2(z)dz ≤ η2, (2.11)

then the combinations of k drugs are still considered additive. The amount η is the

smallest synergy (antagonism) of significance, which is usually based on medical and

pharmacological knowledge and especially investigators’ experience in a particular class

of drugs.

In fact, the test statistic can be derived based on the common lack of fit test involving

least square error estimates under the full model (2.9) and the additive model (2.5).

Assume that the m points in the experimental domain are z(1), . . . , z(m), and there are

ni experiments at the dose-level z(i) = (z
(i)
1 , . . . , z

(i)
k )T ∈ S with corresponding responses

yij, j = 1, . . . , ni, i = 1, . . . , m. Denote n = n1 + · · · + nm. Let y be the n × 1 vector

with elements yij ordered lexicographically and 11k be the k × 1 vector of one. Let Z be

the m × k matrix with ith row (g1(z
(i)
1 ), . . . , gk(z

(i)
k )), where gi is given by (2.8). Denote

V = UZ(ZT UT UZ)−1ZT UT , J = U(UT U)−1UT and U = diag(11n1 , · · · ,11nm). Then, if

hypothesis H0 is true (i.e, the joint action of the k drugs is additive), the statistic for the

test of lack of fit

F =
yT (J − V )y/(m− k)

yT (I − J)y/(n−m)
. (2.12)
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has a central F -distribution with degrees of freedom m − k and n − m (see Wiens,

1991). When the alternative hypothesis H1 holds, the statistic (2.12) has a noncentral

F -distribution with degrees of freedom m−k and n−m and the noncentrality parameter

δ =
n

σ2

[∫

S
g2(z)dξ(z)− bT

g,ξB
−1
ξ bg,ξ

]
≡ n

σ2
B(g, ξ), (2.13)

where

Bξ =

∫

S
G(z)GT (z)dξ(z), bg,ξ =

∫

S
G(z)g(z)dξ(z),

and ξ is the design measure, which is a probability distribution function with mass pi =

ni/n at z(i), i = 1, . . . , m.

3. Experimental design based on uniform measures

Recall our goal is to select the m combinations of drugs, z(1), . . . , z(m) in domain S such

that the power of the F -test in (2.12) is maximized at a given type I error level and the

variability in modeling joint action is minimized. The power of the test is an increasing

function of the noncentrality parameter δ given by (2.13). The quantity B(g, ξ) is a

function of both g and the design measure ξ. Let F−
η be the class of functions whose

element g satisfying conditions (2.10) and (2.11), and F+
η be the class of functions defined

again by (2.10) and (2.11) as in F−
η but with the inequality in (2.11) reversed. Wiens

(1991) proved that for any design ξ there are an g+ ∈ F+
η and an g− ∈ F−

η such that

B(g+, ξ) ≤ η2 = min
g∈F+

η

B(g, λ) and B(g−, ξ) ≥ η2 = max
g∈F−η

B(g, λ).

where λ is the uniform distribution on S. Since the least squares estimate of σ2 is

yT (I − V )y/(n− k) and

E

[
yT (I − V )y

n− k

]
= σ2 +

n

n− k
B(g, ξ),

we have

Optimality. The uniform design measure ξ maximizes the minimum power of the F -test

and minimizes the maximum bias in the estimation of σ2.
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Therefore, if we choose the design measure ξ to be uniform on S, then the noncentrality

parameter δ is maximized and (2.13) becomes

δ =
n

σ2

∫

S
g2(z)dz. (3.1)

It is worthwhile to point out that the experimental points obtained are the uniformly

scattered points by the number theory method (NTM), but not random numbers gener-

ated from a uniform distribution. Although they are more difficult to obtain, the uniformly

scattered points by NTM are more uniform (with smaller discrepancy) and more efficient

than those by random numbers from a uniform distribution (see Appendix for more de-

tails). The design where experimental points are uniformly scattered based on a uniform

design measure in the experimental domain is called the uniform design proposed by Fang

and Wang (see, Fang and Wang, 1994; Fang et al., 2000).

3.1 Uniform design and uniform scattered points

To obtain uniform scattered points in the experimental domain, i.e., allocating the com-

binations for the experiment, potentially any NTM generation may apply. We utilize the

U-type design of an m× k matrix Um,k = (uij) with each column being a permutation of

{1, 2, . . . ,m} (Fang and Wang, 1994). Then the m points on the k-dimensional unit cube

Ck = (0, 1)k, Vm,k = (vij), are defined by

vij = (uij − 0.5)/m, i = 1, . . . , m; j = 1, . . . , k. (3.2)

Let Um,k denote the set of all Um,k and Vm,k be the set of all Vm,k. Then the uniform

design is to choose the m points so that the discrepancy of Vm,k is the smallest over all

of possible Vm,k in Vm,k. Many U-type design matrices with smallest discrepancy can be

found in Fang (1994).

Based on the uniform scattered points on Ck, it is easy to obtain the uniform design

on the domain S and the combinations of the drugs for experiment. Given the single-drug

dose response models, the domain S we are interested is, e.g., from ED20 to ED80, or
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some ranges based on the amount of systemic exposure or growth inhibition of cells in a

particular experiment. Suppose that the domain S = {z = (z1, . . . , zk)
T : ZjL < zj <

ZjH , j = 1, . . . , k}. Let v(i) = (v
(i)
1 , . . . , v

(i)
k )T , i = 1, . . . , m, are m uniform design points

on Ck obtained by the U-type method. The m uniform design points on S are given by

z(i) = (z
(i)
1 , . . . , z

(i)
k )T , where

z
(i)
j = v

(i)
j (ZjH − ZjL) + ZjL, j = 1, . . . , k, i = 1, 2, . . . , m. (3.3)

Then, the m combinations of k drugs A1, . . . , Ak for the combination experiment can be

obtained by the inverse transform of (2.7).

3.2 Sample size determination

Suppose that the experimental points are uniformly scattered on the domain S and the

number of runs (experiment units) at each point is the same. The sample sizes (number

of experimental units) to detect a given meaningful synergism or antagonism can be

calculated at a given significance level (α) and a given power level (1 − β) based on the

F -statistic in (2.12). At a given alternative η, the smallest meaningful difference to be

detected, the statistic F has a noncentral F -distribution with degrees of freedom m − k

and n−m and the noncentral parameter δ in (3.1). Then the sample size calculation can

be raedily implemented with SAS or Splus.

Table 1 provides several illustrative designs for which numbers of experimental units

and replications (1-6) with the several different effects to detect at given α = 0.05 and

1 − β = 80% for k = 2 and 3. From this table, the more replications are at each

combination, the less is the total number of experiments. However, there should be at

least k + 1 experimental units for the combination experiments of k drugs and at least

one replication at each unit. It is worth noting that with the same replication at each

mixture, the total experimental units for detecting departures from additivity in three

drug combinations are slightly less than those in two drugs combinations. In practice, we

should choose more experimental combinations with less replications for the combination
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study of more drugs. The balance of the number of combinations and the number of

replications is based on knowledge about the specific drugs. For example, if the variation

among animals is known to be substantial, the number of replications may need to be

slightly higher.

[insert Table 1 here]

In summary, to derive the uniform design for the joint action and analyze the data

produced, we (1) obtain dose-response regression models of single drugs from experiments

of single drugs. (2) choose the meaningful difference η2 to be detected and then calculate

the number of mixtures m by the method in Section 3.2. The variance (σ2) can be

estimated by the pooled measurement variations from the single drug experiments. (3)

find m combinations of drugs A1, . . . , Ak based on the maximum power design proposed

in Section 3.1. (4) upon completion of the combination experiment, use the F statistic in

(2.12) to test the hypothesis of the additive action of the k drugs and statistical models

(e.g., B-spline) to fit the dose response surface and the interaction index surface (see Fang

et al., 2008).

4. Designs for a common class of single drug dose-response curves

Note critical to the unform design method is to be able to derive an approximation of

the additive model in (2.8) and to obtain uniformed scattered points in the experimental

domain. Such derivation depends on the dose response curve. Different classes of drugs

may have different dose-response curves. We focus on the log-linear dose-response curve

because it represents a wide class of drugs including antimetabolites, antibiotics, inter-

ferons, growth factors, neuropeptide Y, phorbol esters, narcotics and neuronal agonists,

hepatotoxins, and cromoglycate. Furthermore, other shapes of dose-responses can be re-

duced into log-linear curves with some transformations, such as Hill models in studies

of drugs causing muscle contraction, neuronal activators, inhibitors of cell proliferation

and tumor promoters, and in general toxicology (see Berenbaum, 1989). We show how to
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use the general framework to derive experimental designs for log-linear individual dose-

response curves. Assume that the single dose-response curves of drugs A, B and C are

y(XA) = αA + βA log XA,

y(XB) = αB + βB log XB,

y(XC) = αC + βC log XC ,

(4.3)

respectively, where y is the dose-effect scaled into viability (proportion of cells surviving)

or a tumor volume (with some transformation). Without loss of generality, we assume

that βC ≤ βB ≤ βA. The potency ρ(XB) of B relative to A is

ρ(XB) = ρ0X
βB/βA−1
B , ρ0 = exp[(αB − αA)/βA]. (4.4)

and the potency ρ(XC) of C relative to A is

ρ(XC) = ρ1X
βC/βA−1
C , ρ1 = exp[(αC − αA)/βA]. (4.5)

When βC = βA, the potencies ρ(XB) and ρ(XC) above are constant and equal to ρ0

and ρ1, respectively. In this case, the additive model at combination dose (xA, xB, xC) is

y(xA, xB, xC) = αA + βA log(xA + ρ0xB + ρ1xC)

= αA + βA log(z1) + βA log[(1− ρ0)z2 + ρ0]

+βA log[(1− ρ1

ρ0

)(1− z3) +
ρ1

ρ0

],

(4.6)

where 



z1 = xA + xB + xC

z2 =
xA

xA + xB + ρ1xC/ρ0

z3 =
xC

xA + xB + xC

(4.7)

According to Section 2, the m experimental points {(z(i)
1 , z

(i)
2 , z

(i)
3 ), i = 1, . . . , m} which

maximize the statistical power in detecting synergy should be uniformly scattered in the
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experimental domain S = {(z1, z2, z3) : ZL < z1 < ZH , (z2, z3) ∈ V2}, where ZL and ZH

are the lower and upper limits of the total dose according to drug A, respectively, and

Vq =̂ {(w1, . . . , wq) : wj > 0, j = 1, . . . , q, Σq
j=1wj < 1}. (4.8)

The m combinations {(x(i)
A , x

(i)
B , x

(i)
C ), i = 1, . . . , m} can be obtained by the inverse trans-

formation of (4.7).

When βC < βA, the potency ρ(XC) depends on the dose-level XC . Then, based on

(2.5), the additive model at combination dose (xA, xB, xC) is

y(xA, xB, xC) = αA + βA log

[
xA + ρ

βA/βB

0 ρ
1−βA/βB

1 ψ
βC (βB−βA)

βB(βC−βA) xB + ρ1ψxC

]
(4.9)

where ψ is a function of (xA, xB, xC) and can be obtained by solving the following equation

ψ =

[
xA

ρ1

+

(
ρ0

ρ1

)βA/βB

ψ
βC (βB−βA)

βB(βC−βA) xB + ψxC

]1−βA/βC

. (4.10)

As alluded to earlier, the difficult is to find an approximation of the additive model (4.9).

Since the right-hand side of (4.10) approximates to
[

xA

ρ1

+

(
ρ0

ρ1

)βA/βB

xB +

(
ρ0

ρ1

)βA/βB βC(βB − βA)

βB(βC − βA)
(ψ − 1)xB + ψxC

]1−βA/βC

=

[
xA

ρ1

+

(
ρ0

ρ1

) βA
βB βA(βC − βB)

βB(βC − βA)
xB +

{(
ρ0

ρ1

) βA
βB βC(βB − βA)

βB(βC − βA)
xB + xC

}
ψ

]1−βA/βC

≈
[

xA

ρ1

+

(
ρ0

ρ1

) βA
βB βA(βC − βB)

βB(βC − βA)
xB

]1−βA/βC

+
βC − βA

βC

[
xA

ρ1

+

(
ρ0

ρ1

) βA
βB βA(βC − βB)

βB(βC − βA)
xB

]− βA
βC

[(
ρ0

ρ1

) βA
βB βC(βB − βA)

βB(βC − βA)
xB + xC

]
ψ

− βA(βC−βA)

2β2
C

[
xA

ρ1

+

(
ρ0

ρ1

) βA
βB βA(βC − βB)

βB(βC − βA)
xB

]− βA
βC
−1[(

ρ0

ρ1

) βA
βB βC(βB − βA)

βB(βC − βA)
xB+xC

]2

ψ2,
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then, an approximate solution of (4.9) is given by

ψ(xA, xB, xC) ≈ β2
Ch1(xA, xB)

βA(βC − βA)h2
2(xB, xC)

{(
1− βA

βC

)
h2(xB, xC)− h

βA
βC
1 (xA, xB)+

[(
βC−βA

βC

h2(xB, xC)− h
βA
βC
1 (xA, xB)

)2

+
2βA(βC−βA)

β2
C

h2
2(xB, xC)

]1/2


 ,

(4.11)

where

h1(xA, xB) =
xA

ρ1

+

(
ρ0

ρ1

) βA
βB βA(βC − βB)

βB(βC − βA)
xB

h2(xB, xC) =

(
ρ0

ρ1

) βA
βB βC(βB − βA)

βB(βC − βA)
xB + xC .

The additive model (4.9) becomes

y(xA, xB, xC) ≈ g1(z1) + g2(z2) + g3(z3), (4.12)

where
g1(z1) = αA + βA log(z1),

g2(z2) = βA log[(1− ρ0)z2 + ρ0],

g3(z3) = βA log[(1− ρ1/ρ0)(1− z3) + ρ1/ρ0],

and




z1 = xA +

(
ρ0

ρ1

) βA
βB
−1

[ψ(xA, xB, xC)]
βA(βC−βB)

βB(βC−βA) xB + ψ(xA, xB, xC)xC

z2 =
xA

xA +

(
ρ0

ρ1

) βA
βB
−1

[ψ(xA, xB, xC)]
βA(βC−βB)

βB(βC−βA) xB +
ρ1

ρ0

ψ(xA, xB, xC)xC

z3 =
ψ(xA, xB, xC)xC

z1

.

(4.13)

Similarly, the m experimental points {(z(i)
1 , z

(i)
2 , z

(i)
3 ), i = 1, . . . ,m} which maximize the

statistical power in detecting synergy should be uniformly scattered in the experimental
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domain S = {(z1, z2, z3) : ZL < z1 < ZH , (z2, z3) ∈ V2}, and the m combinations

{(x(i)
A , x

(i)
B , x

(i)
C ), i = 1, . . . , m} can be obtained by the inverse transformation of (4.13).

If we consider the combination experiments of only two drugs A and B, the additive

model at combination dose (xA, xB) is

y(xA, xB) = αA + βA log(xA + φ(xA, xB)xB) (4.14)

where φ(xA, xB) can be obtained by solving the following equation

φ(xA, xB) = ρ0

(
φ−1(xA, xB)xA + xB

)(βB−βA)/βA . (4.15)

Since

(
φ−1(xA, xB)xA + xB

)(βB−βA)/βA ≈ x
(βB−βA)/βA

B +
βB − βA

βA

x
(βB−2βA)/βA

B xAφ−1(xA, xB),

we have

φ(xA, xB) ≈ 1

2

{
ρ0x

(βB−βA)/βA

B +

(
ρ2

0x
2(βB−βA)/βA

B + 4ρ0xAx
(βB−2βA)/βA

B

(βB − βA)

βA

)1/2
}

and

y(xA, xB) ≈ g1(z1) + g2(z2), (4.16)

where g1(z1) = αA + βA log(z1), g2(z2) = βA log[(1− ρ0)z2 + ρ0] and





z1 = xA +
1

2
x

βB/βA

B



1 +

(
1 +

4(βB − βA)xA

βAx
βB/βA

B ρ0

)1/2




z2 =
xA

z1

.

(4.17)

According to Section 2, the m experimental points {(z(i)
1 , z

(i)
2 ), i = 1, . . . , m} which max-

imize the statistical power in detecting synergy should be uniformly scattered in the

experimental domain S = {(z1, z2) : ZL < z1 < ZH , 0 < z2 < 1}, and the m combinations
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{(x(i)
A , x

(i)
B ), i = 1, . . . , m} can be obtained by inverse transformation of (4.17),





xA = z1z2

xB =

[
ρ0(z1 − z1z2)

2

z1(1− z2)ρ0 + (βB/βA − 1)z1z2

]βA/βB

.

(4.18)

When βA = βB, the potency of drug B relative to drug A is ρ0 and the additive model

is

y = αA + βA log z + βA log[(1− ρ0)πA + ρ0], (4.19)

where z = xA + xB and πA = xA/z. This reduces to the special case discussed in Tan

et al. (2003) where the uniform measures design is obtained such that the total doses

and the mixing proportions are uniformly scattered on the two-dimensional experimental

domain S = {(z, πA) : ZL < z < ZH , 0 < πA < 1}.

5. Example: Vorinostat Combined with Ara-C and Etoposide against HL-60

To illustrate the methods of experimental design for combination studies, we consider the

experiments of Vorinostat (SAHA) combined with Ara-C and Etoposide against HL-60.

SAHA is a potent histone deacetylase inhibitor that induces cell growth arrest, differenti-

ation, and apoptosis in transformed cells in culture and inhibits tumor growth in animal

models. Ara-C is one of the most active agents available for treating acute leukemias.

Etoposide has been shown to be an effective anti-leukemia agent, particularly when given

in combination with other chemotherapeutic agents. Etoposide exerts its effects by in-

terfering with topoisomerase II activity, binding to and stabilizing the covalent linkage

between topoisomerase II and DNA, and inhibiting the re-ligation of the resultant DNA

double strand breaks. The goal of this experiment is to determine the effects of preadmin-

istration of SAHA on the pharmacokinetics of Ara-C and Etoposide against the leukemia

cell line HL-60 (Shiozawa et al., 2006). In the experiments for single agents, we have

56 observations with doses ranging from 0.1µM to 6µM for SAHA, 56 observations with

doses ranging from 0.003µM to 0.6µM of Ara-C, and 64 observations with doses ranging
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from 0.01µM to 10µM of Etoposide. Then, the single dose-response curves for Ara-C,

Etoposide and SAHA are, respectively,

y(XA) = 4.80− 12.76 log(XA)

y(XB) = 41.52− 13.02 log(XB)

y(XC) = 54.55− 23.98 log XC ,

(5.1)

where y is the 100×viability, and XA, XB and XC are the doses of Ara-C, Etoposide and

SAHA respectively. The potency of Etoposide relative to Ara-C is ρ0(XB) = 0.0563X0.0204
B

and the potency of SAHA relative to Ara-C is ρ1(XC) = 0.0203X0.8793
C , which are non-

constant and depend on dose. The predicted additive model at (xA, xB, xC) is

y(xA, xB, xC) = 4.80− 12.76 log(xA + 0.0551ψ0.0427xB + 0.0203ψxC), (5.2)

where ψ is determined by

ψ =
(
49.3483xA + 2.7204ψ0.0427xB + ψxC

)0.4679
.

An approximate additive model is given by

yappr(xA, xB, xC) = 4.80− 12.76 log(z1)− 12.76 log((1− 0.0563)z2 + 0.0563)

−12.76 log((1− 0.3601)z3 + 0.3601),
(5.3)

where




z1 = xA + 0.9798ψ0.0427(xA, xB, xC)xB + ψ(xA, xB, xC)xC

z2 =
xA

xA + 0.9798ψ0.0427(xA, xB, xC)xB + 0.3601ψ(xA, xB, xC)xC

z3 =
ψ(xA, xB, xC)xC

z1

,

(5.4)
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and

ψ(xA, xB, xC) =
4.0166h1(xA, xB)

h2
2(xB, xC)

{
0.4679h2(xB, xC)− h0.5321

1 (xA, xB)

+
[
(0.4679h2(xB, xC)− h0.5321

1 (xA, xB))
2
+ 0.4979h2

2(xB, xC)
]1/2

}
,

h1(xA, xB) = 49.3483xA + 2.6042xB,

h2(xB, xC) = 0.1164xB + xC ,

and this approximation is very well since max{|y(xA, xB, xC)−yappr(xA, xB, xC)| : 0.0005 ≤
xA ≤ 0.2, 0.05 ≤ xB ≤ 3.2, 0.3 ≤ xC ≤ 3.2} ≤ 0.26.

To obtain uniform design for testing the joint action of Ara-C, Etoposide and SAHA ,

the dose range is chosen such that the endpoint, 100×viability, is from 20 to 80 for Ara-C.

Then, the total dose ranges from 0.0028µm to 0.3038µm in Ara-C. The pooled variance

from the two single drug experiments is 988.422. For a meaningful difference η of 15

(100×viability) and 5 replications for each mixture, with type I error rate 0.05 and power

0.80, we need study 21 mixtures in the experiment in order to detect synergy/antagonism

in the combination of ara-C, Etoposide and SAHA (total 105 experiments). The U-type

matrix with 21 experiment units is given by

U21,3=




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

6 16 12 1 20 9 18 4 11 15 3 21 8 14 10 5 19 2 17 7 13

9 18 2 14 5 21 11 4 16 7 19 13 1 15 8 12 20 6 3 17 10




T

and its central L2-discrepancy is 0.001939 (see (A3) in Appendix). With the algo-

rithm given in Appendix, we get 21 points in domain {(z1, z2, z3)
T : 0.0028 < z1 <

0.3038, (z2, z3) ∈ V2}. According to (5.4), 21 mixtures of these three drugs for experi-

ments are given in Table 2, of which the doses of Etoposide and SAHA are 16.78149(x
(i)
B )0.98

and 7.961724(x
(i)
C )0.5321, respectively, because of the total dose range according to Ara-C.

[insert Table 2 here]

6. Discussion

Utilizing information on the single dose-response curves, we have proposed a maximum
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power statistical design for testing drug synergism based on a general model for joint

action of drugs where no-specific parametric form of the synergistic/antagonistic effect

is assumed. An F -test is proposed for detecting synergism/antagonism of drugs in the

experimental domain. Selecting doses that comprise the combinations uniformly scattered

in the experimental domain maximizes the minimum power of the F -test for detecting

departure from additivity. The power optimality is derived from the properties of uniform

measures and by minimizing the variability in modeling the dose-effect while allocating

the combinations reasonably to obtain best possible estimate of the dose response surface

of the joint action. In fact, the uniform design for generating experimental combinations

(the doses of each drug) using the quasi-Monte Carlo methods is an optimal fractional

factorial design under a general majorization framework with exponential kernels (Zhang,

2005; Zhang et al., 2005). Hickernell et al. (2005) showed using quasi-Monte Carlo

methods instead of the Monte Carlo method usually improves accuracy of computing the

integral of a function.

In drug combination studies, the fixed ratio or ray design chooses total doses based

on an assumed dose-effect while fixing the ratio of doses of the two compounds. When

the individual dose-response curves are linear in log dose, the proposed design extends the

optimal design by Abdelbasit and Plackett (1982) and the uniform design (see Tan et al.,

2003). In general, the (especially, non-constant) relative potency of drugs is ignored in

the fixed ratio design, which results in a non-uniformly scattered of combinations and the

power to detect synergism is undermined. In addition, the fixed ratio design may miss an

apparent interaction at a particular combination and is inadequate for the combination

studies of three or more drugs.

More importantly, the number of experimental units and replicates (sample size) in the

proposed design is feasible for both in vitro and/or in vivo experiments. Table 1 shows that

the sample sizes for detecting departures for additivity of three drugs are not greater than

those of two drugs. However, if the F-test shows that there is a synergism/antagonism

of the three drugs, the regression analysis for fitting the response surface to find the best
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synergistic mixture of drugs may need more experimental combinations because there are

more variables in the model. Hence, the precision of the estimated dose-response may

need to be factored in determining the number of experimental mixtures and the number

of replications at each combination should be considered.

However, despite of the general framework for the design of combination studies, it is

critical that we can identify k linear independent functions g1(z1), . . . , gk(zk) that achieve

good approximation in (2.8) and obtain uniformed scattered points in the experimental

domain. As shown in the SAHA combined with Ara-C and Etoposide example, indi-

vidual dose-response curves and relative potency should be incorporated in each specific

experiment to maximize the efficiency of the design. Finally, more efficient experimental

design may be derived by using results from previous experiments on similar compounds,

where the assumption of certain specific dose-response relationships may become plausi-

ble in light of prior data. Therefore, a more traditional (such as D-) optimal design or a

Bayesian design may be utilized in this case.
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APPENDIX: Uniform Design

The uniform design is proposed by Fang and Wang (see, Fang and Wang, 1994; Fang et

al., 2000) and has been widely used in industrial experiments. The uniform design points

are a class of uniformly scattered points in the experimental domain. Suppose that there

are m points in the k-dimensional unit cube Ck = (0, 1)k, i.e. Pm = {w(1), . . . , w(m)} ⊂
Ck. Let Fm(w) be the empirical distribution function of Pm,

Fm(w) =
1

m

m∑
i=1

I{w(i) ≤ w}, (A1)

where I{·} is the indicator function and all inequalities are componentwise. The discrep-

ancy of Pm can be defined by

D(Pm) = sup
w∈Ck

|Fm(w)− F (w)|, (A2)

where F (w) is the uniform distribution function on Ck. This discrepancy is the Smirno-

Kolmogorov statistic for goodness-of-fit tests and has been universally accepted in quasi-

Monte Carlo methods. However, the discrepancy defined in (A2) is hard to computation.
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In practice, an equivalent form, the central L2-discrepancy proposed by Hickernell (1998),

(CL2(Pm))2 =

(
13

12

)k

− 2

m

m∑
i=1

k∏
j=1

(
1 +

1

2
|wij − 0.5| − 1

2
|wij − 0.5|2

)

+
1

m

m∑
i=1

m∑

l=1

k∏
j=1

[
1 +

1

2
|wij − 0.5|+ 1

2
|wlj − 0.5| − 1

2
|wij − wlj|

]
,

(A3)

is used, where w(i) = (wi1, . . . , wik)
T (see, e.g. Fang et al., 2000).

Obviously, the smaller the discrepancy, the more uniformly scattered on Ck the set of

points Pm is. Kiefer (1961) proved that if w(1), . . . , w(m) are i.i.d according to the uniform

distribution on Ck, then

D(Pm) = O(m−1/2(log log m)1/2)), (A4)

with probability one. However, Korobov (1959) and Hlawka (1962) pointed out inde-

pendently that for a given prime number m, using the number-theoretic method (the

good-lattice-point method), we can choose m points Pm = {w(1), . . . , w(m)} ⊂ Ck such

that its discrepancy

D(Pm) < c(k)m−1(log m)k, (A5)

where the constant c(k) depends on k only. This fact indicates that Pm generated by the

Monte Carlo method is not uniformly scattered on Ck with probability one.

The aim of the uniform design is to choose a set of m points Pm in Ck with small-

est discrepancy value D(Pm). If we can find a sequence Pm with D(Pm) having order

O(m−1(log m)k−1) as m → ∞, we can consider Pm to be uniformly scattered over Ck at

least for large m. According to the good-lattice-point method, Fang and Wang (1994)

proposed a method for generating uniform design points in Ck using the U-type matri-

ces and the corresponding discrepancy has order O(m−1(log m)k−1) based on numerical

comparisons for k ≤ 12.

Let Um,k = (uij) be an m × k matrix, where each column is a permutation of

{1, 2, . . . ,m}. Its induced matrix, Vm,k = (vij), is defined in (3.2). The matrix Vm,k
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can be considered as m points on Ck. Then the uniform design is to choose the m points

so that the discrepancy of Vm,k is the smallest over all of possible Vm,k and the corre-

sponding Um,k is called a U-type design matrix. Most of U-type design matrices can be

found in Fang (1994) or at http://www.math.hkbu.edu.hk/UniformDesign/.

With uniform design points in Ck, we can generate uniformly scattered points in some

convex polyhedrons using transformations. The following theorem is used to generate

uniformly scattered points in a k-dimensional triangular prism (k ≥ 3).

Theorem. Let S(a1, . . . , a6) denote a triangular prism in Rk (k ≥ 3) with six vertices:

aj = (a1j, . . . , akj)
T , j = 1, . . . , 6. Assume that the random vector x = (x1, . . . , xk)

T has

the following stochastic representation

x = (a1, . . . , a6)




(1− y1 − y2)(1− y3)

y1(1− y3)

y2(1− y3)

(1− y1 − y2)y3

y1y3

y2y3




. (A.6)

If (i) (y1, y2)
T ∼ g12(y1, y2), (y1, y2)

T ∈ V2; (ii) y3 ∼ g3(y3), 0 < y3 < 1; (iii) (y1, y2)
T

is independent of y3; (iv) the Jacobian J(x → y1, y2, y3) = |HHT |1/2 can be decomposed

as c · g12(y1, y2)g3(y3), where c is a constant and H =
(

∂xj

∂yi

)
3×k

; then x is uniformly

distibuted in S(a1, . . . , a6).

Specially,

S(a1, . . . , a6) = {(x1, x2, x3)
T : (x1, x2)

T ∈ V2, a < x3 < b}, (A.7)

with six vertices a1 = (0, 0, a)T , a2 = (1, 0, a)T , a3 = (0, 1, a)T , a4 = (0, 0, b)T , a5 =

(1, 0, b)T , and a6 = (0, 1, b)T . From (A.6), we have x1 = y1, x2 = y2 and x3 = a(1− y3) +

by3. Thus, the Jacobian J(x → y1, y2, y3) = |H| = b− a. According to above theorem, if

(y1, y2)
T ∼ U(V2) and y3 ∼ U(0, 1), then x ∼ U(S). We have the following algorithm to

generate m points which are uniformly scattered in the domain S.
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Algorithm:

1) Generate m points scattered uniformly in C3 using the U-type design (Fang and

Wang, 1994). Let Um,2 = (uij) be an m×2 U-type design matrix, where each column

is a permutation of {1, 2, . . . , m}. Then, {(v(j)
1 , v

(j)
2 , v

(j)
3 )T : v

(j)
i = (uij − 0.5)/m, i =

1, 2, 3; j = 1, . . . , m} are the m points scattered uniformly in C3.

2) Obtain m points in (y1, y2, y3)
T -scale



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y
(j)
1 = v

(j)
1

√
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(j)
2 ,

y
(j)
2 = (1− v

(j)
1 )

√
v

(j)
2 ,

y
(j)
3 = v

(j)
3 ,

j = 1, . . . , m.

3) Obtain m points in (x1, x2, x3)
T -scale




x
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1

x
(j)
2

x
(j)
3


 =




0 1 0 0 1 0

0 0 1 0 0 1

a a a b b b
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
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1 − y

(j)
2 )(1− y

(j)
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(j)
1 (1− y

(j)
3 )
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2 (1− y
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(1− y
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1 − y

(j)
2 )y

(j)
3

y
(j)
1 y

(j)
3

y
(j)
2 y

(j)
3




, j = 1, . . . , m.
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Table 1

Numbers of mixtures∗

Meaningful difference η2 # of Replications n0

(d = η2/σ2) 1 2 3 4 5 6

for the combination experiments of two drugs

d = 0.3 107(214) 40(120) 21(84) 14(70) 10(60) 7(49)

d = 0.4 68(136) 25(75) 14(56) 9(45) 3(18) 3 (21)

d = 0.5 48(96) 18(54) 10(40) 6(30) 3(18) 3(21)

d = 0.8 24(48) 9(27) 4(16) 3(15) 3(18) 3(21)

for the combination experiments of three drugs

d = 0.3 105(210) 39(117) 21(84) 13(65) 9(54) 6(42)

d = 0.4 66(132) 24(72) 13(52) 8(40) 4(24) 4(28)

d = 0.5 47(94) 17(51) 9(36) 4(20) 4(24) 4(28)

d = 0.8 23(46) 7(21) 4(16) 4(20) 4(24) 4(28)

∗: Numbers in the parentheses are the total experimental units (n = m(n0 + 1)).
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Table 2

21 mixtures of Ara-C, Etoposide and SAHA for combination experiment

Exper. Ara-C Etoposide SAHA Exper. Ara-C Etoposide SAHA

# (µM) (µM) (µM) # (µM) (µM) (µM)

1 0.0012 0.0933 0.4749 12 0.1248 0.6983 0.3619

2 0.0059 1.2214 1.4168 13 0.0094 2.7681 0.9663

3 0.1883 0.4162 1.1650 14 0.0850 0.9432 1.7338

4 0.0005 0.2020 1.4923 15 0.0450 1.7054 1.8895

5 0.0283 0.6632 0.3619 16 0.0224 1.2908 2.6776

6 0.0204 0.2379 1.5646 17 0.0052 0.5223 0.4749

7 0.0523 0.5928 0.7225 18 0.0065 2.2552 2.5879

8 0.0138 0.0933 0.4749 19 0.0692 3.0748 0.9663

9 0.0388 0.5928 1.6679 20 0.0471 1.1172 3.0914

10 0.0475 1.1867 1.0697 21 0.0981 2.0494 2.0626

11 0.0081 0.3451 2.6776
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