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Abstract

In this paper, we consider the Markov-modulated insurance risk model

with tax. We assume that the claim inter-arrivers, claim sizes and premium

process are influenced by an external Markovian environment process. The

considered tax rule, which is the same with the one considered by Albrecher

and Hipp [Albrecher, H., Hipp, C., 2007. Lundberg’s risk process with tax.

Blätter der DGVFM 28(1), 13-28], is to pay a certain proportion of the

premium income, whenever the insurer is in a profitable situation. A sys-

tem of differential equations of the non-ruin probabilities, given the initial

environment state, are established in terms of the ruin probabilities under

the Markov-modulated insurance risk model without tax. Furthermore,

given the initial state, the differential equations satisfied by the expected

accumulated discounted tax until ruin are also derived. We also give the

analytical expressions for them by iteration methods.
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1 Introduction

Ruin theory has been one of the main research topics in actuarial science since

the publications of Lundberg (1909) and Cramér (1930). There is a huge amount

of literature on ruin theory. The classical Lundberg problem has been extended

in various ways. In recent years, one interesting development is to consider more

general ruin functions rather than the ruin probability. In a seminal paper (see

Gerber and Shiu (1998)), Gerber and Shiu introduced the expected discounted

penalty function to provide a unified treatment of the time of ruin, the surplus

before ruin and the deficit at ruin. The expected discounted penalty function is

also called Gerber-Shiu function in the literature.

Another extension of the classical Lundberg problem is to consider more gen-

eral and reasonable models. Recently, the Markov-modulated insurance risk model

becomes popular. This model was proposed by Asmussen (1989) in which the

claim inter-arrivers and claim sizes are influenced by an external environment

process {J(t)}t≥0. This model can capture the feature that insurance policies

may need to change if economical or political environment changes (see Zhu and

Yang (2007)). There has been considerable interest in this model. Lu and Li

(2005) study ruin probabilities under this model. Ng and Yang (2006) presents

some explicit results for the joint distribution of surplus before ruin and at ruin. Li

and Lu (2007), Zhu and Yang (2007) and Lu and Li (2008) consider the Markov-

modulated risk model with a dividend strategy. Li and Lu (2008) study the

expected discounted penalty functions (Gerber-Shiu function) and their decom-

positions and the dividends-penalty identity under this model.

Suppose that {J(t)}t≥0 is a homogenous continuous-time Markov chain taking

values in a finite set J = {1, 2, ⋅ ⋅ ⋅ , d} with generator Q = (qij)d×d. We further

assume that {J(t)}t≥0 is irreducible and recurrent with the stationary distribution

� = (�1, �2, ⋅ ⋅ ⋅ , �d).
At time t, given J(t) = i, the premium rate is ci, claims arrive according to

Poisson process with rate �i, and the size of the claim which arrives at time t

follows the distribution Fi with density fi and mean �i. We denote by Xn and

Sn, respectively, the size the arrival time of the nth claim. Given {J(Sn)}n∈ℕ,

the sequence of claim sizes {X1, X2, ⋅ ⋅ ⋅ } are assumed to be mutually independent

and independent of {Sn}n∈ℕ and {J(t)}t≥0. Define N(t) = max{n ∈ ℕ : Sn ≤ t}
as the number of claims up to time t. The counting process {N(t)}t≥0 is called a
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Markov-modulated Poisson process, which is a special case of the Cox process.

Suppose the initial surplus is u ≥ 0, the corresponding surplus process {R(t)}t≥0
is given by

R(t) = u+ C(t)−
N(t)∑
n=1

Xn, t ≥ 0, (1.1)

where C(t) denotes the aggregate premium received during interval (0, t]. Let

Tn be the time at which the nth transition of the environment process {J(t)}t≥0
occurs and Jn be the state of the environment after its nth transition. Reinhard

(1984) shows that

C(t) =

M(t)∑
k=1

cJk−1
(Tk − Tk−1) + cJM(t)

(
t− TM(t)

)
, t ≥ 0,

where M(t) = max{n ∈ ℕ : Tn ≤ t}. From Reinhard (1984) ( see also Ng and

Yang (2006)), the condition of having a positive expected profit is

d∑
i=1

�i(ci − �i�i) > 0. (1.2)

Let � = inf{t > 0 : R(t) < 0} be the time of ruin (� = ∞, if ruin does not

happen). Now define the ultimate ruin probabilities, given the initial environment

state is i, i.e. J(0) = i, by

Ψi(u) = P{� <∞∣R(0) = u, J(0) = i}, i ∈ J, u ≥ 0.

The corresponding ultimate survival probabilities is defined by Φi(u) = 1−Ψi(u).

Reinhard (1984) derives a system of integro-differential equations for the non-

ruin probabilities, Φi(u), for i = 1, 2, ⋅ ⋅ ⋅ , d:

ciΦ
′
i(u) = �iΦi(u)− �i

∫ u

0

Φi(u− x)dFi(x)−
d∑
j=1

qijΦj(u), u ≥ 0, (1.3)

where qi = −qii. The equation (1.3) has a unique solution such that Φi(∞) = 1,

for i ∈ J. For more about the solution, see Lu and Li (2005).

Albrecher and Hipp (2007) investigated how tax influences the behavior of

the ultimate ruin probability under the classical Lundberg’s risk model. They

assume that the tax is paid at a fixed rate  ∈ (0, 1) of the insurer’s income

(premia) whenever he is in a profitable situation, defined as being at a running
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maximum of the surplus process. In this paper, we extend their results to the

Markov-modulated risk model which has been specified previously.

We denote by  the vector of tax rates, i.e.  = (1, 2, ⋅ ⋅ ⋅ , d)T , and by

R(t; ) the Markov-modulated risk process with tax rate . At time t, given

J(t) = i, we assume that the tax is paid at rate i ∈ (0, 1) of the insurer’s income

(i.e. the premium ci), if the insurer is in the profitable situation at time t, i.e.,

R(t; ) = max{R(u, ) : u ≤ t}. Let �() = inf{t > 0 : R(t; ) < 0} be the time

of ruin. Then the the ultimate ruin probabilities, given the initial environment

state i, can be defined by

Ψi(u; ) = P{�() <∞∣R(0; ) = u, J(0) = i}, i ∈ J, u ≥ 0.

Similarly, the corresponding survival probabilities is defined by Φi(u; ) = 1 −
Ψi(u; ).

This paper is organized as follows. The non-ruin probabilities are studied

in the next section. A system of differential equations satisfied by the non-ruin

probabilities, given the initial environment state, are established in terms of the

ruin probabilities under the Markov-modulated risk model without tax. In Section

3, the expected accumulated discounted tax until ruin is considered, a system of

differential equation is derived. Finally, we give the analytical expressions by

iteration methods.

2 Ruin probability

Let us begin this section by showing how the risk process R(t; ) evolves. If

R(0; ) = u, then there is a period with profit in which tax must be paid until the

first claim arrives at time W1 and has size Y1. Obviously, W1 = S1 and Y1 = X1.

Then the gains level is set to

L1 = u+

M(W1)∑
k=1

cJk−1

(
1− Jk−1

)
(Tk − Tk−1)+cJM(W1)

(
1− JM(W1)

) (
W1 − TM(W1)

)
.

Then there is a period in which the insurer does not pay the tax until the risk

process reaches L1 again, say at time �1. We have a period with profit until the

first claim after time �1, which happens at �1 + W2 and has size Y2. Note that

there is some n ∈ ℕ such that �1 +W2 = Sn and Y2 = Xn. The new gains level is
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set to

L2 = L1 + cJM(�1)

(
1− JM(�1)

) (
TM(�1)+1 − �1

)
+

M(�1+W2)∑
k=M(�1)+2

cJk−1

(
1− Jk−1

)
(Tk − Tk−1)

+cJM(�1+W2)

(
1− JM(�1+W2)

) (
�1 +W2 − TM(�1+W2)

)
,

and so on. Let �0 = 0 and L0 = u, then for n ≥ 1, we have

�n = inf{t > �n−1 +Wn : R(t; ) = Ln},

Wn = inf{t > 0 : N(�n−1 + t) > N(�n−1)},

Yn = R(�n−1 +Wn−; )−R(�n−1 +Wn; ),

Ln = Ln−1 + cJM(�n−1)

(
1− JM(�n−1)

) (
TM(�n−1)+1 − �n−1

)
+

M(�n−1+Wn)∑
k=M(�n−1)+2

cJk−1

(
1− Jk−1

)
(Tk − Tk−1)

+cJM(�n−1+Wn)

(
1− JM(�n−1+Wn)

) (
�n−1 +Wn − TM(�n−1+Wn)

)
. (2.1)

The time intervals with profit are (�n−1, �n−1 +Wn), n ≥ 1. The intervals without

profit are

In = [�n−1 +Wn, �n), n ≥ 1.

It is easy to see that ruin happens for the process R(t; ) only if R(t; ) < 0 for

some t ∈ In, n ≥ 1. With the notation U(t) = sup{n ∈ ℕ : �n−1 + Wn ≤ t}, we

can rewrite the surplus as

R(t; ) =

⎧⎨⎩R1(t; ), �U(t)−1 +WU(t) ≤ t ≤ �U(t),

R2(t; ), �U(t) < t < �U(t) +WU(t)+1,
(2.2)

where

R1(t; ) = LU(t) + cJ
M(�U(t)−1+WU(t))

(
TM(�U(t)−1+WU(t))+1 − �U(t)−1 −WU(t)

)
+

M(t)∑
k=M(�U(t)−1+WU(t))+2

cJk−1
(Tk − Tk−1)

+cJM(t)

(
t− TM(t)

)
−

N(t)∑
i=N(�U(t)−1+WU(t))

Yi,
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and

R2(t; ) = LU(t) + cJ
M(�U(t))

(
1− J

M(�U(t))

)(
TM(�U(t))+1 − �U(t)

)
+

M(t)∑
k=M(�U(t))+2

cJk−1

(
1− Jk−1

)
(Tk − Tk−1)

+cJM(t)

(
1− JM(t)

) (
t− TM(t)

)
.

Lemma 2.1. For u ≥ 0 and i ∈ J, if the condition

d∑
i=1

�i(ci(1− i)− �i�i) > 0 (2.3)

holds, then Ψi(u; ) < 1.

Proof. Define a new risk process

R̃(t; ) = LU(t)

+cJ
M(�U(t)−1+WU(t))

(
1− J

M(�U(t)−1+WU(t))

)(
TM(�U(t)−1+WU(t))+1 − �U(t)−1 −WU(t)

)
+

M(t)∑
k=M(�U(t)−1+WU(t))+2

cJk−1

(
1− Jk−1

)
(Tk − Tk−1) + cJM(t)

(
1− JM(t)

) (
t− TM(t)

)

−
N(t)∑
i=1

Yi,

and let �̃() be the corresponding time to ruin. From (2.1), it is easy to see

R̃(t; ) = u+ C̃(t; )−
N(t)∑
i=1

Yi,

where

C̃(t; ) =

M(t)∑
k=1

cJk−1

(
1− Jk−1

)
(Tk − Tk−1) + cJM(t)

(
1− JM(t)

) (
t− TM(t)

)
.

Since R̃(t; ) ≤ R1(t; ) ≤ R2(t; ), we have

P{�() <∞} ≤ P{�̃() <∞} < 1.

Proof of the last inequality can be found in Reinhard (1984) (see also (1.2)).
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For 0 ≤ u ≤ l, let �l be the first time that the surplus R(t) reaches level l, and

define

pij(u, l) = P{�l < �, J(�l) = j∣R(0) = u, J(0) = i}, i, j ∈ J,

to be the probability that the surplus process R(t) attains level l at state j from

initial state i and initial surplus u without ruin.

Clearly, pij(l, l) = �(i = j) for i, j ∈ J, where �(⋅) is the indicator function.

And from Li and Lu (2007), we have

P(u, l) := (pij(u, l))d×d = v(u)[v(l)]−1 (2.4)

where v(u) = (vij(u))d×d is an matrix whose columns are particular solutions to

the following system of integro-differential equations:

civ
′
i(u) = �ivi(u)− �i

∫ u

0

vi(u− x)dFi(x)−
d∑
j=1

qijvj(u), (2.5)

with boundary conditions v(0) = I.

Theorem 2.1. For each fixed i ∈ J and u ≥ 0, Φi(u; ) satisfies the following

integro-differential equation:

ci(1− i)Φ′i(u; ) = �iΦi(u; )− �i
∫ u

0

d∑
j=1

pij(u− x, u)Φj(u; )dFi(x)

−
d∑
j=1

qijΦj(u; ). (2.6)

Proof. Distinguish the following cases: (i) the first transition of the environment

state occurs at time t and the first claim arrives at time s before time t; (ii) the

first transition of the environment state occurs at time t before the arrival of the

first claim. By conditioning accordingly,

Φi(u; ) =

∫ ∞
0

qie
−qit

∫ t

0

�ie
−�is

∫ u+ci(1−i)s

0

d∑
j=1

pij(u+ ci(1− i)s− x, u+ ci(1− i)s)Φj(u+ ci(1− i)s; )dFi(x)dsdt

+

∫ ∞
0

�ie
−�is

∫ t

0

qie
−qit

∑
j ∕=i

qij
qi

Φj(u+ ci(1− i)t; )dtds

=

∫ ∞
0

�ie
−(�i+qi)s

∫ u+ci(1−i)s

0

d∑
j=1

pij(u+ ci(1− i)s− x, u+ ci(1− i)s)

Φj(u+ ci(1− i)s; )dFi(x)ds+

∫ ∞
0

e−(�i+qi)t
∑
j ∕=i

qijΦj(u+ ci(1− i)t; )dt.

7



Changing variables w = u+ ci(1− i)t (or w = u+ ci(1− i)s) gives

Φi(u; ) =

∫ ∞
u

�i
ci(1− i)

e
−(�i+qi) w−u

ci(1−i)

∫ w

0

d∑
j=1

pij(w − x,w)Φj(w; )dFi(x)dw

+

∫ ∞
u

1

ci(1− i)
e
−(�i+qi) w−u

ci(1−i)
∑
j ∕=i

qijΦj(w; )dw.

Differentiating the above equation with respect to u leads to (2.6).

With the notations

C() := diag(c1(1− 1), c2(1− 2), ⋅ ⋅ ⋅ , cd(1− d)),

Λ := diag(�1, �2, ⋅ ⋅ ⋅ , �d),

Λ̃(x) := diag(�1f1(x), �2f2(x), ⋅ ⋅ ⋅ , �dfd(x)),

(2.6) can be represented in matrix notation,

C()Φ′(u; ) = (Λ−Q)Φ(u; )−
∫ u

0

Λ̃(x)P(u− x, u)dxΦ(u; ), (2.7)

where Φ(u; ) = (Φ1(u; ),Φ2(u; ), ⋅ ⋅ ⋅ ,Φd(u; ))T .

Let

Ψij(u) = P{� <∞, J(�) = j∣R(0) = u, J(0) = i}

be the ruin probability of the surplus R(t) if the ruin is caused by a claim in state

j given that the initial state is i and we have for i, j ∈ J,

Ψi(u) =
d∑
j=1

Ψij(u).

From Li and Lu (2008), we have for i ∈ J,

ciΨ
′
ii(u) = �iΨii(u)− �i

[∫ u

0

Ψii(u− x)dFi(x) +

∫ ∞
u

dFi(x)

]
−

d∑
k=1

qikΨki(u),

and for i ∕= j,

ciΨ
′
ij(u) = �iΨij(u)− �i

∫ u

0

Ψij(u− x)dFi(x)−
d∑

k=1

qikΨkj(u),

or in matrix form

CΨ′(u) = (Λ−Q) Ψ(u)−
∫ u

0

Λ̃(x)Ψ(u− x)dx−
∫ ∞
u

Λ̃(x)dx, (2.8)
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where Ψ(u) = (Ψij(u))d×d and C = diag(c1, c2, ⋅ ⋅ ⋅ , cd).
Next we are going to express (2.7) in terms of Ψ(u). Let Ψ̃(u) = (Ψ̃ij(u))d×d =

I−Ψ(u) with I being the d× d identity matrix. From Li and Lu (2008), we have

for i; j ∈ J,

ciΨ̃
′
ij(u) = �iΨ̃ij(u)− �i

∫ u

0

Ψ̃ij(u− x)fi(x)dx−
d∑

k=1

qikΨ̃kj(u) + qij,

or in matrix notation

CΨ̃′(u) = (Λ−Q)Ψ̃(u)−
∫ u

0

Λ̃(x)Ψ̃(u− x)dx+ Q. (2.9)

Further more, using the same method of Li and Lu (2008), we also have

v(u) = Ψ̃(u)
[
Ψ̃(0)

]−1
−
∫ u

0

Ψ̃(x)
[
Ψ̃(0)

]−1
Δe−Δ(u−x)dx, (2.10)

where Δ = C−1Q
[
Ψ̃(0)

]−1
.

With (2.4) and (2.10), (2.7) can be written as

C()Φ′(u; ) = (Λ−Q)Φ(u; )−
{∫ u

0

Λ̃(x)Ψ̃(u− x)
[
Ψ̃(0)

]−1
dx

−
∫ u

0

∫ u−t

0

Λ̃(x)Ψ̃(u− t− x)
[
Ψ̃(0)

]−1
dxΔe−Δtdt

}
[v(u)]−1 Φ(u; ).

From (2.9) we have

C()Φ′(u; ) = (Λ−Q−A(u)) Φ(u; ), (2.11)

where

A(u) =

{[
(Λ−Q)Ψ̃(u)−CΨ̃′(u) + Q

] [
Ψ̃(0)

]−1
−
∫ u

0

[
(Λ−Q)Ψ̃(u− t)−CΨ̃′(u− t) + Q

] [
Ψ̃(0)

]−1
Δe−Δtdt

}
×
{

Ψ̃(u)
[
Ψ̃(0)

]−1
−
∫ u

0

Ψ̃(x)
[
Ψ̃(0)

]−1
Δe−Δ(u−x)dx

}−1
.

Obviously, Φ(u; ) satisfies the boundary condition Φ(∞; ) = 1, where 1 =

(1, 1, ⋅ ⋅ ⋅ , 1)T is a d× 1 column vector.

Remark 2.1. When d = 1 the model reduces to the model considered in Albrecher

and Hipp (2007); Q = 0, and then A(u) = Λ − CΨ̃′(u)
[
Ψ̃(u)

]−1
. In this case,

(2.11) simplifies to

C()Φ′(u; ) = CΨ̃′(u)
[
Ψ̃(u)

]−1
Φ(u; ),

which can be found in Albrecher and Hipp (2007).
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3 The expected discounted total tax payment

For 0 ≤ u ≤ l and i, j ∈ J, define

Lij(u, l) = E
[
e−��l�(�l < �, J(�l) = j)∣R(0) = u, J(0) = i

]
,

where � > 0 is the discount factor. Lij(u, l) can be interpreted as the expected

present value of one dollar payable at time of reaching the level l in state j without

ruin, given that the initial state is i and initial surplus is u. Alternatively, it can

be viewed as the Laplace transform of the time to reach the level l without ruin,

with respect to the parameter �. Let L(u, l) = (Lij(u, l))d×d be a matrix, from Li

and Lu (2008) we have L(l, l) = I and

L(u, l) = v�(u) [v�(l)]
−1 , (3.1)

where v�(u) = (vij(u; �))d×d is an matrix whose columns satisfy the system of

integro-differential equations

civ
′
i(u; �) = (�i + �)vi(u; �)− �i

∫ u

0

vi(u− x; �)dFi(x)−
d∑

k=1

qikvk(u; �),

with boundary conditions vij(0; �) = �(i = j) for i, j ∈ J.

Now we modify the surplus process (1.1) by the payment of dividends according

to a constant barrier strategy: when the surplus exceeds a constant barrier l(≥ u),

dividends are paid continuously so the surplus stays at level l until a new claim

occurs. Under such a modified model, let Vij(u, l) be the expected present value

of dividend payment before ruin if ruin is caused by a claim in state j given the

initial state i and initial surplus u. Let V(u, l) = (Vij(u, l))d×d be a matrix. It

follows from Li and Lu (2008) that

V(u, l) = v�(u) [v′�(l)]
−1
. (3.2)

From (3.1) and (3.2), we have

L(u, l) = V(u, l) [V(l, l)]−1 . (3.3)

Let Di(u) be the expected accumulated discounted tax until ruin for given

initial state i ∈ J and initial surplus u ≥ 0. Similar to Albrecher and Hipp (2007),

we want to express the results for D(u) := (D1(u), D2(u), ⋅ ⋅ ⋅ , Dd(u))T in terms

of V. Next we will show a differential equation satisfied by D(u).
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Theorem 3.1. For u ≥ 0, D(u) satisfies the following differential equation:

C()D′(u) = C [V(u, u)]−1 D(u)−C, (3.4)

with boundary condition

D(∞) = V(∞,∞). (3.5)

Proof. First, for each i ∈ J, we derive the integro-differential equation satisfied by

Di(u). Similar to the proof of Theorem 2.1, we have

Di(u) =

∫ ∞
0

qie
−qitdt

∫ t

0

�ie
−�isds

[∫ s

0

ciie
−�xdx+ e−�s

×
∫ u+ci(1−i)s

0

Lij(u+ ci(1− i)s− x, u+ ci(1− i)s)Dj(u+ ci(1− i)s)dFi(x)

]

+

∫ ∞
0

�ie
−�is

∫ s

0

qie
−qit

[∫ t

0

ciie
−�xdx+ e−�t

∑
k ∕=i

qik
qi
Dk(u+ ci(1− i)t)

]
dtds

=

∫ ∞
0

�ie
−(�i+qi+�)s

∫ u+ci(1−i)s

0

Lij(u+ ci(1− i)s− x, u+ ci(1− i)s)

×Dj(u+ ci(1− i)s)dFi(x)ds+

∫ ∞
0

e−(�i+qi+�)t
∑
k ∕=i

qikDk(u+ ci(1− i)t)dt

+
cii

�i + qi + �
.

Changing variables w = u+ ci(1− i)t (or w = u+ ci(1− i)s) leads to

Di(u) =

∫ ∞
u

�i
ci(1− i)

e
−(�i+qi+�) w−u

ci(1−i)

∫ w

0

Lij(w − x,w)Dj(w)dFi(x)dw

+

∫ ∞
u

1

ci(1− i)
e
−(�i+qi+�) w−u

ci(1−i)
∑
k ∕=i

qikDk(w)dw +
cii

�i + qi + �
.(3.6)

Differentiating the above equation with respect to u gives

ci(1− i)D′i(u) = (�i + �)Di(u)− �i
∫ u

0

Lij(u− x, u)Dj(u)dFi(x)

−
d∑

k=1

qikDk(u)− cii.

In matrix form, we have

C()D′(u) = (Λ + �I−Q)D(u)−
∫ u

0

Λ̃(x)L(u− x, u)dxD(u)−C.

Then from (3.3) we have

C()D′(u) = (Λ + �I−Q)D(u)−
∫ u

0

Λ̃(x)V(u− x, u)dx [V(u, u)]−1 D(u)−C.

(3.7)

11



From Li and Lu (2007) and (2008), we have∫ u

0

Λ̃(x)V(u− x, u)dx = (Λ + �I−Q)V(u, u)−C. (3.8)

Then (3.4) follows from the equations (3.7) and (3.8).

Using the same techniques of Albrecher and Hipp (2007), we know Di(u) is

bounded for all u ≥ 0 and i ∈ J. Taking limit u → ∞ in (3.6) yields (using de’l

Hopital’s rule),

(�i + �)Di(∞)−
d∑

k=1

qikDk(∞)− �i
∫ ∞
0

Lij(∞− x,∞)fi(x)dxDj(∞) = cii,

or in the matrix notation

(Λ + �I−Q)D(∞)−
∫ ∞
0

Λ̃(x)L(∞− x,∞)dxD(∞) = C. (3.9)

Then the boundary condition (3.5) follows from equations (3.3), (3.8) and (3.9).

4 Analytical expressions for Φ(u; ) and D(u)

For u > 0, we derive the analytical expressions for non-ruin probabilities Φ(u; )

and the expected accumulated discounted tax until ruin D(u) by iteration.

From (2.5) we can write

Cv′(u) = (Λ−Q) v(u)−
∫ u

0

Λ̃(x)v(u− x)dx. (4.1)

Together with (2.4) and (2.7), we have

ΓΦ′(u; ) = v′(u)[v(u)]−1Φ(u; ), (4.2)

where Γ = diag(1 − 1, ⋅ ⋅ ⋅ , 1 − d). Let Φ̂(u; ) := Φ( 1
u
; ) and v̂(u) := v( 1

u
),

then (4.2) yields

ΓΦ̂′(u; ) = v̂′(u)[v̂(u)]−1Φ̂(u; ) (4.3)

and Φ̂(0; ) = Φ(∞; ) = 1. We replace u by x in (4.3) and then integrate both

sides of the equation from 0 to u with respect to x. Thus, we obtain

Φ̂(u; ) = 1 +

∫ u

0

Γ−1v̂′(x)[v̂(x)]−1Φ̂(x; )dx. (4.4)
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Let

Φ̂n(u; ) = 1 +

∫ u

0

Γ−1v̂′(x)[v̂(x)]−1Φ̂n−1(x; )dx, n = 1, 2, ⋅ ⋅ ⋅ ,

with

Φ̂0(u; ) = 1,

and

�̂n(u; ) = Φ̂n(u; )− Φ̂n−1(u; ), n = 1, 2, ⋅ ⋅ ⋅ ,

with

�̂0(u; ) = 1.

Assume that v̂′(x)[v̂(x)]−1 is continuous in 0 ≤ x ≤ u ≤ K < ∞, where K is a

constant that can be chosen arbitrary large. By Theorem 3.11 of Linz (1985), we

know that the unique solution of Φ̂(u; ) is given by

Φ̂(u; ) =
∞∑
n=0

�̂n(u; ).

Thus for u > 0, we have

Φ(u; ) = Φ̂(
1

u
; ) =

∞∑
n=0

�̂n(
1

u
; ). (4.5)

From (3.2) and (3.4) we have

ΓD′(u) = v′�(u)[v�(u)]−1D(u)− . (4.6)

Let Z(u) = (zij(u))d×d is an matrix whose columns Zj = (z1j, ⋅ ⋅ ⋅ , zdj)T , j =

1, ⋅ ⋅ ⋅ , d, are particular solutions to the following system of integro-differential

equations:

ΓZ′j(u) = v′�(u)[v�(u)]−1Zj(u)

with boundary condition Z(∞) = I. It easy to verify that

D(u) = Z(u)D(∞) +

∫ ∞
u

Z(
1

x− u
)dx. (4.7)

Let Ẑ(u) := Z( 1
u
) and v̂�(u) := v�(

1
u
), then Ẑ(0) = I. Let

Ẑn(u) = I +

∫ u

0

Γ−1v̂′�(x)[v̂�(x)]−1Ẑn−1(x)dx, n = 1, 2, ⋅ ⋅ ⋅ ,

with

Ẑ0(u) = I,
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and

 ̂n(u) = Ẑn(u)− Ẑn−1(u), n = 1, 2, ⋅ ⋅ ⋅ ,

with

 ̂0(u) = I.

Similarly, for u > 0, Z(u) can be written as

Z(u) = Ẑ(
1

u
) =

∞∑
n=0

 ̂n(
1

u
). (4.8)

Note that v(u) = v0(u) and form Li and Lu(2007) and Lu and Li (2008) we

know that

v�(z) = ℒ−1
{[
sI−C−1(Λ + �I−Q) + C−1Λ̂(s)

]−1}
, z ≥ 0, (4.9)

where Λ̂(s) = diag(�1f̂1(y), �2f̂2(y), ⋅ ⋅ ⋅ , �nf̂n(y)) is the Laplace transform of Λ̃

and ℒ−1{⋅} is the Laplace inversion.
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