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Asymptotic Mean and Variance of Gini Correlation
for Bivariate Normal Samples
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Abstract—This paper derives the asymptotic analytical forms of
the mean and variance of the Gini correlation (GC) with respect
to samples drawn from bivariate normal populations. The asymp-
totic relative efficiency (ARE) of the Gini correlation to Pearson’s
product moment correlation coefficient (PPMCC) is investigated
under the normal assumptions. To gain further insight into GC,
we also compare the Gini correlation to other two closely related
correlation coefficients, namely, the order statistics correlation co-
efficient (OSCC) and Spearman’s rho (SR). Theoretical and sim-
ulation results suggest that the performance of GC lies in between
those of OSCC and SR when estimating the correlation coefficient
of the bivariate normal population. The newly found theoretical re-
sults along with other desirable properties enable GC to be a useful
alternative to the existing coefficients, especially when one wants to
make a trade-off between the efficiency and robustness to mono-
tone nonlinearity.

Index Terms—Asymptotic relative efficiency (ARE), bivariate
normal, correlation theory, concomitant, delta method, Gini
correlation (GC), order statistics correlation coefficient (OSCC),
Pearson’s product moment correlation coefficient (PPMCC),
quadrivariate normal, ranks, Spearman’s rho (SR), symmetric
Gini correlation (SGC), trivariate normal.

I. INTRODUCTION

C ORRELATION analysis is an important and active
theme of research prevailing in many scientific and

engineering areas, including nearly all branches of modern
signal processing [1]–[11]. Correlation is often interpreted as
the strength of statistical relationship between two random
variables obeying a joint probability distribution [12]. As a
measure of such strength, correlation should be large and
positive if there is a high probability that large (small) values of
one variable occur in conjunction with large (small) values of
another. And it should be large and negative if the direction is
reversed [13]. There is plenty of methods proposed and applied
in the literature to quantify the correlation between two random
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variables. Among these methods the Pearson’s product moment
correlation coefficient (PPMCC) [14], [15], Spearman’s rho
(SR) [12] and Kendall’s tau [12] are perhaps the most widely
used [16]. Besides these three classical correlation coefficients,
various estimators based on M-estimation [17] and order
statistics [18]–[20] among others, have been proposed in the
literature.

There are many strengths and weaknesses of the correlation
coefficients mentioned above. The PPMCC, which utilizes
the whole information contained in the variates, is optimal
when measuring the correlation between bivariate normal
variables (binormal model) [21]. However, it might performs
poorly when the data is attenuated by nonlinear transforma-
tions. On the other hand, the two rank correlation coefficients,
Spearman’s rho and Kendall’s tau, are not as efficient as the
PPMCC under the binormal model; nevertheless they are in-
variant under increasing monotone transformations, thus often
considered as robust alternatives to the PPMCC when the data
deviates from binormal model. Despite their robustness and
stability in non-normal cases, the M-estimator-based correla-
tion coefficients suffer great losses (up to 63%) of asymptotic
relative efficiency (ARE) to the PPMCC for normal samples
[17]. Such heavy loss of efficiency might not be compensated
by their robustness in practice [17]. Recently, Xu et al. proposed
a new estimator, called order statistics correlation coefficient
(OSCC), which bridges the gap between the PPMCC and SR
[18]–[20]. While possessing certain extent of robustness, the
OSCC might perform worse than SR for data strongly distorted
by increasing nonlinearity [19].

In addition to the limitations just mentioned, nearly all the
above methods fail to handle satisfactorily the two special
cases: 1) the data is only half complete, that is, one variable is
ordinal while the other is cardinal and 2) the data is complete,
but the distribution of one variable is highly skewed compared
to the other. The conventional strategy with such kinds of data
would be to rank the cardinal variable(s) and use SR, but while
doing this we unavoidably lose information [22]. To deal with
these two special cases, an interesting correlation coefficient
called Gini correlation (GC) has been proposed [22]. Because
of its desirable properties, GC has been widely used in the
field of economic data analysis since late 1980s. However, the
understanding of GC is far from complete due to the lack of
knowledge on its distribution for data coming from bivariate
normal distributions. Such knowledge is essential when ana-
lyzing the performance of GC under the binormal model, which
is the benchmark model in the literature of signal processing
[23]–[25]. Aiming at exploring the potential feasibility of GC
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in the context of signal processing, we derive in this paper the
asymptotic analytic expressions of the mean and variance of
GC when samples are drawn from a bivariate normal population
with correlation . We will also compare GC to three closely
related coefficients, namely, the classical PPMCC and SR, and
the OSCC recently proposed [18]–[20].

Our theoretical contribution in this paper is threefold. First,
we find the closed form expression of the mean and variance of
GC with respect to , the population correlation of the parent bi-
variate normal distribution. This makes GC more mathematical
tractable than SR, whose variance contains elliptic integrals that
cannot be expressed in elementary functions. Second, we obtain
the ARE of GC to PPMCC, ranging from 95.5% to 88.7% with
increase of from 0 to 1. Third, we derive the exact ARE of SR
to PPMCC when tends to 1, being 69.5%. As indicated by
these theoretical results, GC is not optimal when estimating the
population correlation . However, its minor loss of efficiency

% is well offset by the advantageous properties de-
picted in the next section.

The remainder of this paper is organized as follows. Section II
gives some basic definitions and the general properties con-
cerning GC. In Section III, we derive the asymptotic expres-
sions of the mean and variance of GC for samples drawn from
bivariate Gaussian populations. In Section IV, we analyze the
ARE of GC as well as those of OSCC and SR to PPMCC.
Section V verifies the analytical results with Monte Carlo simu-
lations. Finally, in Section VI we summarize our main findings
and our conclusion on the Gini correlation.

II. GINI CORRELATION AND ITS GENERAL PROPERTIES

A. Definition and General Properties

Let denote independent and iden-
tically distributed (i.i.d.) data pairs drawn from a bivariate
population with continuous joint cumulative distribution func-
tion. Rearranging the data pairs in ascending order with respect
to the magnitudes of , we get a new sequence of data pairs

, where are termed the order
statistics of and the associated concomitants
[26]–[28]. Reversing the roles of and , we can also obtain

and the associated . As proposed
in [22], two Gini correlations with respect to are
defined as

(1)

and

(2)

It can be shown that GC possesses the following general prop-
erties [22]:

1) for all ;
2) if is a monotone in-

creasing (decreasing) function of ;
3) the expectations of and equal zero if

and are independent;

4) for
both and ;

5) is invariant under all strictly monotone transfor-
mations of ;

6) is scale and shift invariant with respect to both
and ;

7) converges to normal distribution when the
sample size is sufficiently large.

Note that in general is not symmetric, that is,
. Such asymmetry violates the axioms of correlation

measurement [13], [16]. However, this problem can be easily
solved with a revised version

(3)

if symmetry is a critical feature in practice. Here and elsewhere,
is termed as symmetric Gini correlation (SGC). For

simplicity, the arguments of and will be
omitted in the following discussion unless ambiguity occurs.

B. Relations With Other Correlation Coefficients

It can be shown that GC is closely related to two other coef-
ficients, namely, OSCC and SR. As demonstrated below, these
three coefficients can be linked together within a general frame-
work.

Let be defined as before. Suppose that is at the
th position in the sorted sequence , the

number is termed the rank of and is denoted
by . Similarly we can get the rank of which is denoted by

[12]. Write and .
Denote as suitable quantities associated with .
These values may be variates or ranks. A generalized coefficient

of can be defined by

(4)

This general definition of (4) covers OSCC, GC and SR as par-
ticular cases when variates and/or ranks are substituted suitably.

1) OSCC as a Particular Case: Replacing with and
with yields

(5)

which is the order statistics correlation coefficient
defined in [18]–[20].

2) GC as a Particular Case: By the definition of order sta-
tistics and ranks, it is obvious that . Replacing with

and with in (4) yields

(6)

which is the Gini correlation defined in (1).
3) SR as a Particular Case: Replacing and with and
respectively in (4) gives

(7)
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which has been shown to be the Spearman’s rho [20] that con-
ventionally expressed as [12]

(8)

The general coefficient thus embraces , and as
special cases under different combinations of variates and ranks
in (4). From (5)–(8) we have

(9)

which means that GC can be interpreted as a particular case of
OSCC and SR a particular case of GC. In other words, GC lies
halfway from variate-variate to rank-rank arrangement in (4)
and thus plays an intermediate role between OSCC and SR.

III. ASYMPTOTIC PROPERTIES OF GINI CORRELATION IN

NORMAL SAMPLES

In this section we establish the analytical results concerning
the expectation and variance of GC and SGC for samples drawn
from binormal populations. For brevity we use symbols

, and in the sequel to denote the mean, variance and
covariance of (between) random variables, respectively. Sym-
bols of big oh and little oh are employed to compare the magni-
tudes of two functions and as the argument tends to
a limit (not necessarily finite). The notation

, denotes that remains bounded as ;
whereas the notation , denotes that

as [29].

A. Auxiliary Results

Lemma 1: Assume that follow a quadri-
variate normal distribution with zero mean, unity variance
and correlations for . Write

for and for . Then

(10)

Lemma 2: Assume that follow a trivariate
normal distribution with zero mean, unity variance and cor-
relations for . Let be
defined as in Lemma 1. Then

(11)

Lemma 3: Let be i.i.d. quadruples
drawn from a quadrivariate normal population with zero mean,

unity variance and correlations for
. Let denote respectively the ranks of for
. Put

and

Then

(12)

where

(13)

and

(14)

In order to avoid distraction, we relegate the proofs of these
lemmas in Appendices I to III, respectively.

B. Properties of GC and SGC in Normal Samples

Theorem 1: Let be i.i.d. sample
pairs drawn from a bivariate normal population with correlation
coefficient . Then

(15)

(16)

and

(17)
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Proof: From Property 6 and (3), both and are scale
and shift invariant. Therefore, without loss of any generality, we
assume in the sequel that are i.i.d. sample pairs drawn
from a standard bivariate normal population with zero mean,
unity variance and correlation coefficient .

The first identity in the statement (15) follows readily from (3)
and the assumption just made. Now we focus on the expressions
of , and . Let denote, respectively,
the numerator and denominator of (1); and , the numer-
ator and denominator of (2). Then, by the delta method [30], it
follows that

(18)

(19)

(20)

where

(21)

The terms , and are higher order infinites-
imals to be determined later on. To evaluate (18)–(20), it suf-
fices to find , and for

. From Nair’s formulas [31], we have

(22)

It follows that order statistics and their concomitants
satisfy the following relationship [32]:

(23)

where and are mutually independent, the latter being
i.i.d. normal with zero mean and variance . A substitution
of (23) into the expression of leads to

yielding

(24)

By an analogous argument we also find

(25)

Before evaluating their variances and covariances, we
first rewrite and , in other forms to facil-
itate the following derivations. Let

. Denote and , both of size ,
as the permutation matrices mapping to and to ,
respectively. That is, and . Then it fol-
lows directly that and .
As permutation matrices, and must satisfy and

, where is the identity matrix [33]. Thus,

Similarly we also have

and

These identities allow us to rewrite and , as

(26)

(27)

(28)

(29)

Having (26)–(29), we can carry out and
for , with the assistance of Lemma 3. Write

. Then
follow a quadrivariate normal distribution with zero mean, unity
variance and correlations

. Substituting these correlations into (12)–(14) along
with the identity , it follows that

(30)

In a similar way we obtain, for

(31)

(32)

(33)
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(34)

and

(35)

From (30)–(35), we can see that the variance and covariance
terms are all of order as . It then follows that

and as
large [30].

Now we are ready to write the complete forms of
and with all the necessary terms being known.

On substitution of (22), (24), (25), and (30)–(32) into (18) and
(19), respectively, we find that 1) is in the form to the right
side of the second equal sign in (15), 2) the second statement
(16) holds true concerning the expression of . Putting
(22), (24), (25), and (30)–(35) into (20) and (21) and tidying
up, we finally arrive at (17), the third theorem statement.

It is easy to verify that when is large, (15)–(17) simplify,
respectively, to

(36)

(37)

and

(38)

C. Asymptotic Distribution

It follows from Property 7 that and con-
verges in distribution to normality as . Therefore, ,
the linear combination of and , also con-
verges in distribution to normality as . Then, given the
results established in Theorem 1, we are able to assert that, for
samples drawn from normal populations and , both

and

converge in distribution to standard normal distribution.

IV. ASYMPTOTIC RELATIVE EFFICIENCY

It follows from Theorem 1 that for normal samples

and

This means that and are unbiased estimators of when
the sample size is large. On the other hand, it is well known
that Pearson’s product moment correlation coefficient [14]

(39)

is another asymptotic unbiased estimator of . Moreover, it has
been shown that OSCC and SR can also serve as estimators of

. Hence, we have five asymptotic unbiased estimators of , as

(40)

(41)

(42)

(43)

(44)

where comes from [20] and from [12].
Given (40)–(44), we can compare their performances by

means of the asymptotic relative efficiency, which is defined
by [21]

(45)

where denotes one of the four estimators defined in
(41)–(44). Note that here we employ as a benchmark,
since, for binormal samples with large, approaches the
Cramér–Rao lower bound (CRLB), that is [21]

(46)

Substituting (46) and (16) into (45) and letting , we
have

(47)
It follows readily by substituting to (47) that

(48)

An extra effort should be made when , since (47) be-
comes an indeterminate form of “0/0” in this case. Applying
L’Hôpital’s rule twice along with some simplifications yields

(49)

Combining (48) and (49), it follows that looses an efficiency
of

%

and

%

for and , respectively.
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Through similar steps, we find that, for ,

(50)

(51)

and

(52)

It has been shown [20] that for normal samples

which means

(53)

Now we proceed to evaluate . It follows that asymp-
totically [12]

(54)

and [34]

(55)

where

(56)

(57)

(58)

(59)

Applying the delta method to (44) yields [12]

(60)

as being sufficiently large. Substituting (46), (54) and (60) into
(45) yields

(61)

Due to the elliptic integrals involved in (56)–(59), cannot
be expressed into elementary functions. That is, in general we
have to conduct numerical integrations so as to calculate
and hence . Nevertheless, exact results can be obtained
for some special cases. Substituting into (61) yields

(62)

which is a well known result (see [12] and references therein).
However, the property of for approaching unity re-
mains to be addressed. With some tedious calculations, we find
the following new result (Appendix IV)

(63)

By (62) and (63), it follows that looses an efficiency of

%

and

%

for and , respectively.

V. NUMERICAL RESULTS

This section purports to 1) verify the theoretical results es-
tablished in previous sections, 2) compare the performance of
the five estimators defined in (40)–(44) by means of the root
mean-square error (RMSE) [7], [8], and 3) reveal the advantage
of Gini correlation in non-Gaussian case. Throughout this sec-
tion, Monte Carlo experiments are undertaken for

with respect to the means and variances of . A sample
size of is employed when we verify and compare

, and . The number of trials is set
to for reason of accuracy. All the bivariate normal samples
are generated by Matlab function .

A. Verification of and

Table I lists, for each of the three sample sizes corresponding
to 20, 50, and 100, 1) the theoretical expectation and

from (15), 2) the asymptotic version (36), and 3) the
observed mean from the Monte Carlo simulations. It is easily
seen that the large sample approximation (15) is almost accurate
to three figures for as small as 20. Therefore, it would be safe
to use (15) for in practice.

On the other hand, as shown in Table II, the convergence
speeds of the theoretical variance formulas (16) and (37) of
are rather slow. It appears that (37) gives values consistently
smaller than those of (16) as well as the observed values. How-
ever, the difference between (16), (37) and the simulation results
are less noticeable for and ignorable for . These
similar phenomena of with respect to (17) and (38) can
also be observed in Table III. Therefore, it is accurate enough to
approximate and respectively by (37) and (38)
for . A sample size of can be considered large
in practice.

B. Verification of ARE

Fig. 1 depicts the theoretical curves of and
superimposed with corresponding simulation results for

. Owing to the property of even symmetry, we only
plot the results with respect to positive . The simulation results
are generated over ; whereas the theoretical curves
are plotted over with an increment . Re-
sults of (49) and (63) are employed to plot the theoretical curves
for . It can be observed that 1) the simulations agree well
with our theoretical findings in (47), (53), and (61), respectively,
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TABLE I
THEORETICAL AND OBSERVED ��� � AND ��� � FOR � � ��� ������

TABLE II
THEORETICAL AND OBSERVED ��� � FOR � � ���������

TABLE III
THEORETICAL AND OBSERVED ��� � FOR � � ���������

2) the efficiencies of and decrease monotonically with
increase of , 3) the performance of deteriorates severely as

approaching unity, although it performs relatively well when
is small, and 4) lies in between and ,

indicating its intermediate role as remarked before. Moreover,
for . That means, equivalently,

looses an efficiency of less than for a wide range of .
Fig. 2 contrasts the difference between and .

For purpose of numerical verification, simulation results are su-
perimposed on corresponding theoretical curves. We can see
that lies consistently above , indicating the extra
gain of efficiency resulting from the symmetrization in (3). Such
gain of efficiency decreases gradually with increase of . When

Fig. 1. Asymptotic Relative Efficiencies of �	
 � �	
 and �	
 for
� � ����. Monte Carlo results are plotted over � � � � ���� with an incre-
ment �� � ����. The results with respect to � � � are not plotted due to the
property of even symmetry. Results of (49) and (63) are employed to plot the
theoretical curves for � � �. It can be seen that the simulations agree well with
our theoretical findings in (47), (53), and (61).

Fig. 2. Comparison of �	
 and �	
 for � � ����. Simulation results
are plotted over � � � � ���� with an increment �� � ����. The results
with respect to � � � are not plotted due to the property of even symmetry.
The results of (49) and (52) are utilized to plot the two theoretical curves for
� � �. Good agreements can be observed between the simulations and the
theoretical results (47) and (50). The curve of �	
 lies consistently above
the curve of �	
 , indicating the extra gain of efficiency resulting from the
symmetrization in (3).
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TABLE IV
RMSE FOR NORMAL SAMPLES WITH � � ��

, both and reach their lower bound of
0.8867, as indicated by (49) and (52).

C. Comparison of RMSE for Normal Samples

From their definitions in (47), (50), (53) and (61), respec-
tively, it is seen that the ARE of and to are
all independent of the sample size . While this is convenient
when measuring the performance of estimators, ARE does not
take into account the bias effect that may not be ignorable for
small sample size. Considering this shortcoming of ARE, we
employ RMSE [7], [8], defined by

as a complementary performance measurement. As customary
in statistical signal processing, the CRLB [21] is
also included in the comparative study. Due to the length con-
straint of the paper, we only show the results with respect to

here.
From Table IV we can see that, when the sample size is as

small as 30, 1) for normal samples, as expected, the best is by
its minimal RMSE (closest to the CRLB), 2) the rank-based esti-
mator , which has the maximal RMSE, performs the worst, 3)

and have comparatively moderate RMSE, indicating
their intermediate behavior among all the five estimators, 4) the
RMSE of is only slightly smaller than that of , and 5)
even outperforms when is small (less than 0.5).

D. Comparison of RMSE for Non-Normal Samples

Thus far we have focused on the properties of GC for samples
obeying bivariate normal distribution. Theoretical and simula-
tion results suggest that, although not optimal, GC performs rea-
sonably well not only for large sample size (in terms of ARE),
but also for small sample size (in terms of RMSE). To gain fur-
ther insight into the GC, now we investigate its performance
for non-normal data, which is generated by performing an in-
creasing nonlinear transformation on the -variable of the stan-
dard binormal samples. Specifically, we first construct

, with and in
this study. By doing so, the joint distribution of and be-
comes non-Gaussian. We then compute the five estimators be-
tween and and summarize the results of RMSE in Table V.
It is easily seen that, 1) the RMSE of increases drastically

TABLE V
RMSE FOR NON-NORMAL SAMPLES WITH � � ��

with the underlying , 2) except for the null case , the
RMSE of is the lowest, 3) like is invariant under the
monotone transformation of (Property 5), 4) the perfor-
mances of and are worsened due to the effect of mono-
tone transformation on the -variable, and 5) the performance
can be ordered as .

VI. CONCLUSION

In this paper we have investigated the asymptotic proper-
ties of the Gini correlation for samples drawn from bivariate
normal populations. Monte Carlo simulations verified that the
asymptotic results established in Theorem 1 are applicable for
data of relative small sample sizes. For a better understanding
of its behavior, we also compared GC with three other closely
related correlation coefficients, namely, the classical Pearson’s
product moment correlation coefficient [14], Spearman’s rho
[12], and the order statistics correlation coefficient recently
proposed [18]–[20]. Theoretical derivations and simulation
results suggest that Gini correlation bridges the gap between
the order statistics correlation coefficient and Spearman’s
rho. As an asymptotic unbiased estimator of the population
correlation , the variance of GC can be expressed in a closed
form expression with respect to . This makes GC more
mathematically tractable than Spearman’s rho, whose variance
involves complex elliptic integrals that cannot be expressed in
elementary functions. As indicated by the efficiency analysis,
GC is not optimal when estimating the population correlation

. However, its loss of efficiency is confined within 4.5% to
11.3%, much lighter than that of SR, ranging from 8.8% to
30.5%.

Possessing the desirable properties summarized in Section II,
Gini correlation has found wide applications in the literature of
statistics and econometrics. With the mathematical tractability
and high efficiency revealed in this paper, Gini correlation can
play a complementary role as a measure of statistical relation-
ship in many other research areas including statistical signal
processing.

APPENDIX I
PROOF OF LEMMA 1

Proof: Let be the probability density func-
tion (pdf) of the quadrivariate normal random variables
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. Define the associated characteristic function
as [35]

where denotes the imaginary unit . Write

Then

Write . An application of Taylor
expansion yields [35]

We can then write

(64)

where

(65)

and

(66)

It has been shown in [35] that

(67)

Now we evaluate . From [35] it follows that

(68)

Substituting (68) into (66) and integrating by part yield

(69)

It can be seen that and are suffixes of the
-terms in (65). From (69) it follows that only is non-null,

hence is non-null subject to the following conditions:

(70)

It is easy to verify that there are only five solutions to system
(70), as follows:

1) ;
2) ;
3) ;
4) ;
5) .

Substituting these identities into (64) yields, respectively

(71)

(72)

(73)



XU et al.: ASYMPTOTIC MEAN AND VARIANCE OF GINI CORRELATION FOR BIVARIATE NORMAL SAMPLES 531

(74)

and

(75)

Now we evaluate , and , which are
key terms to find . Substituting (67)
and (69) into the expressions of and
and by some simplifications, we find

(76)

(77)

and

(78)

A summation of (71)–(75) along with the results of (76)–(78)
gives

thus completing the proof.

APPENDIX II
PROOF OF LEMMA 2

Proof: By similar procedures employed in the Proof of
Lemma 1, we arrive at

where

Recall that and . It follows that
is non-null only when . Thus,

hence the result.

APPENDIX III
PROOF OF LEMMA 3

Proof: From [35] it follows that the ranks of and
can be expanded as

(79)

and

(80)

Then

(81)

where

(82)

(83)

(84)

and

(85)

Write ,
and . Then and obey
respectively trivariate normal distribution with zero mean and
unity variance when and . According to the defi-
nition of , it is obvious that and

. Then by Lemma 2 and the i.i.d. as-
sumption, it follows that

(86)
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TABLE VI
QUANTITIES FOR EVALUATION OF � � ����� � � ���� � � �� � � IN LEMMA 3

Now we deal with . Since , the terms in (82)
vanish when or . Hence, there are
nontrivial terms left to be determined. It follows that the do-
main of the quadruple can be partitioned into seven
disjoint and exhaustive subsets, as shown in Table VI. For com-
pactness, the symbol in Table VI and below denotes

, with being a positive integer. Then (82)
can be rewritten as

(87)

where

with being defined in Table VI. Write

and

Due to the i.i.d. assumption, it follows that

(88)

Write ,
and . Then follow a quadrivariate
normal distribution with zero mean, unity variance and corre-
lation coefficients ,

, and (Table VI). Sub-
stituting (10), the result of Lemma 1, and the associated into
(88) yields

(89)

Similarly we can obtain

(90)

(91)

(92)

(93)

(94)

(95)

Summing up (89)–(95) and tidying up, we arrive at

(96)

where and are defined in (13) and (14), respectively. A
substitution of (96), (84)–(86) into (81) along with some sim-
plifications yields (12), thus completing the proof.

APPENDIX IV
DERIVATION OF FOR

Proof: Write

Let and be the numer-
ator and denominator of (55), respectively. Because of the even
symmetry of and , it is sufficient for us to deal with the

case only in the following. From (8) we have for
sure when . That is, vanishes when reaches unity.
Then from (55) we have . Therefore, (61) becomes an
indeterminate form of 0/0 when . It is easy to verify that
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the first derivative of vanishes at . Differentiating
with respect to and substituting thereafter produce

(97)

It follows that

(98)

From (56)–(59) we have

(99)

(100)

(101)

(102)

and hence

(103)

Now we prove that by showing , as

Then, for , (98) turns out to be

(104)

Because both and vanish at , we have to check their
second derivatives. It follows that

(105)

and

(106)

where

(107)

A series of tedious but straightforward derivations leads to

(108)

(109)

(110)

(111)

Summing up (108)–(111) gives

(112)

Applying L’Hôpital’s rule along with (105)–(107) and (112), we
finally arrive at

which also holds for due to the property of even
symmetry.
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