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Abstract

In many practical scenarios, wireless devices are autonomous and
thus, may exhibit non-cooperative behaviors due to self-interests. For
instance, a wireless cellular device may be programmed to report bo-
gus channel information to gain resource allocation advantages. Such
non-cooperative behaviors are highly probable as the device’s soft-
ware can be modified by the user. In this paper, we first analyze
the impact of these rationally selfish behaviors on the performance of
packet scheduling algorithms in time-slotted wireless networks. Using
a mixed strategy game model, we show that the traditional maximum
rate packet scheduling algorithm can cause non-cooperative devices
to converge to highly inefficient Nash equilibria, in which the wireless
channel resources are significantly wasted. By using a repeated game
to enforce cooperation, we further propose a novel game theoretic al-
gorithm that can lead to an efficient equilibrium.
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1 Introduction

In a centralized infrastructure based wireless network, packet scheduling is

a very important issue to manage the precious radio resource while satis-

fying users’ Quality-of-Service (QoS) requirements. Specifically, in a tradi-

tional downlink packet scheduling protocol, wireless users are required to

report their channel conditions, such as signal-to-noise-ratio (SNR) or max-

imal achievable data rate, to the scheduler located at the base station (BS)

or access point (AP). Then the scheduler can select some users’ packets and

allocate radio resources, such as power and frequency bandwidth, to these

users for transmission according to some scheduling policies, such as maxi-

mum rate (MR) [17] and proportional fairness (PF) [6].

Usually, these scheduling algorithms are based on the assumption that the

wireless users in the system will cooperate with each other, comply with the

predefined scheduling algorithm, and honestly report their real channel con-

ditions to the scheduler [7]. Then the wireless user will accept the scheduling

results passively, and it will not affect the scheduling policy employed by the

scheduler at all. However, in many practical scenarios, the wireless users are

autonomous and thus, may exhibit non-cooperative behaviors due to self-

interests. For instance, in a public WLAN hot spot, individual users may

attempt to deviate from the standard protocols or algorithms and behave

in a rational but selfish manner so as to gain advantages in radio resource

allocation, without regard to the overall system performance [16].
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Indeed, the main reason that some wireless users exhibit selfish misbe-

havior is to gain extra benefit in terms of performance. Consequently, such

selfish behaviors are usually highly related with its objective or utility. Cur-

rently, most wireless applications require a higher data rate (e.g., wireless

video streaming). Thus, it is reasonable to assume that a selfish user’s main

interest is to increase its data rate as much as possible regardless of the whole

system’s performance.

In a wireless environment, a user’s rate-based utility is influenced by

many factors, such as the maximal achieved data rate determined by the

modulation and coding schemes, and the bit error rate (BER) occurred at

the physical layer during wireless transmission. In particular, in a typical

wireless packet scheduling process, the scheduling policy is one of the major

factors governing a user’s data rate because the scheduler determines which

user can be selected for transmission. Therefore, in a non-cooperative envi-

ronment, a wireless user experiencing a bad channel condition might find out

that if it honestly reports its channel condition to the scheduler, it may not

be scheduled or just be assigned with a low data rate. Consequently, with a

rationally selfish motivation, such user might report a bogus channel condi-

tion so as to get a higher probability to be scheduled for transmission or get

a higher data rate. Though this non-cooperative behavior could increase the

data rate for this selfish user, it may lead to inefficient resource utilization

for the whole system.

Currently with the increased computing capability of smart phones and
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the proliferation of open-source technologies, wireless devices can be easily

programmed by users to behave in a selfish manner [1, 14]. On the other

hand, with the popularity of wireless Internet services and availability of

system virtualization on mobile devices [10], e.g., Xen on ARM architecture

based mobile phones, unauthorized software downloaded from the Internet

also has the potential to be malicious or selfish and consume more than

enough radio resource at the expense of others. Thus, selfish misbehavior is

truly a critical problem in wireless environment and whether the traditional

packet scheduling algorithms are still effective in allocating resource in non-

cooperative environment is in doubt and needs to be scrutinized carefully.

In this paper, we focus on the issue of downlink packet scheduling for self-

ish and rational wireless users in a non-cooperative TDMA wireless network,

in which each user attempts to locally and selfishly choose its transmission

rate so as to maximize its utility. By selfish, we mean the wireless users

care essentially about their own benefits, without any consideration about

the overall system data rate. By rational, we mean a user may not report

its SNR or maximal achievable data rate solely based on its real channel

condition. Instead, such a rationally selfish user will choose the strategy

to maximize its own benefit. However, the strategy chosen by a user may

also affect the performances of other users in the network through the re-

lated packet scheduling algorithm. Therefore, in practice, a rational user

will evaluate its achieved data rate, average packet transmission success rate

(PTSR), the probability of being scheduled for transmitting to determine the
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best strategy for reporting a ”best” channel condition to the scheduler, as so

to improve its gain.

In the competitive resource allocation scenario considered in our study,

there are several research questions need to be answered. First of all, what

kind of strategy should a user choose in order to maximize its utility? Sec-

ondly, what is the consequential impact of this kind of selfish behavior on

the system performance and its own benefit? Thirdly, if every user in the

network selfishly and locally picks its utility-maximizing strategy, will there

be a stable state at which no user can unilaterally improve its utility, e.g., a

Nash equilibrium? Fourthly, if this NE leads to an inefficient radio resource

utilization, are there any other methods that can be proposed to improve the

performance?

Based on game theory [12], we formulate this competitive wireless re-

source allocation problem as a non-cooperative packet scheduling (NPS)

game, and then design a novel mixed strategy game model, in which each

player has a continuum of actions and seeks to choose its transmission rate to

maximize its utility, which is defined as the expected data rate of this user.

With our proposed utility function, we deduce the NE for this NPS game and

determine that the corresponding NE strategy leads to an allocation that is

Pareto inefficient, where the system average data rate is much lower than

that in normal cooperative situation. Motivated by this observation, we fur-

ther formulate a repeated game to enforce cooperation among wireless users,

and propose an efficient algorithm to increase the data rate performance in
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a non-cooperative environment.

The remainder of this paper is organized as follows. Section 2 discusses

related work. In Section 3, we describe the system model, and discuss the

impact of selfish behavior on system performance. The NPS game is analyzed

in Section 4, where the Nash equilibrium and its property are also discussed.

In Section 5, we show that the performance can be improved via a repeated

game strategy. We then describe our proposed repeated game theoretic algo-

rithm to optimize scheduling in Section 6. Finally, we give some concluding

remarks in Section 7.

2 Related Work

Due to the increasing interests and capabilities for wireless users to deviate

from legitimated protocols and algorithms so as to increase their own bene-

fits, the research for the impact of selfish behavior has received considerable

attention for various aspects of wireless networks in recent years [1], such

as power allocation [3, 11], wireless routing for selfish devices [15, 18], MAC

misbehavior in WLAN [2,9, 16].

In terms of selfish behaviors at the physical layer, Meshkati et al. [11] have

modeled power control for multicarrier CDMA systems as a non-cooperative

game in which each user tries to selfishly maximize its overall utility. They

have also proposed an iterative and distributed algorithm for reaching an

equilibrium with a significant improvement in the total network utility. Etkin

et al. [3] have studied a spectrum sharing problem in an unlicensed band with
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multiple wireless providers and proposed a self-enforcing power allocation

strategy to achieve efficient and fair spectrum sharing. As to routing at

the network layer, Stephen et al. [15] focus on designing a routing algorithm

with the feature of individually rationality, truthfulness and energy-efficiency

for selfish devices in ad hoc networks based on an auction model. Wang

and Li [18] have proposed a pricing mechanism to stimulate cooperation

among all rational wireless devices by paying them for relaying data to and

from the access point. Moreover, several approaches have been proposed

for addressing selfish misbehavior at the MAC layer in wireless networks.

For instance, Tan and Guttag [16] have examined a kind of selfish behavior

under the IEEE 802.11 distributed coordination function (DCF) mode, where

selfish devices intentionally transmit at a lower data rate so as to achieve a

higher channel share and a higher data rate. With the observation that the

resulting Nash equilibrium (NE) [12] is undesirable and the wireless channel is

inefficiently utilized, they have also shown that by guaranteeing the allocation

of long-term shares of channel time to competing devices, the MAC protocol

can enforce rational devices to efficiently use the shared medium, thereby

improving the achieved data rates of all competing devices.

Besides, various approaches have been proposed in literatures to en-

force cooperation or thwart selfish behaviors. For example, Kyasanur and

Vaidya [9] have proposed some modifications on IEEE 802.11 DCF protocol

to detect and penalize misbehaving devices, which purposely wait for smaller

backoff intervals than well-behaved devices so as to obtain an unfair advan-
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tage. By contrast, to avoid changing current protocols in tackling this kind of

backoff misbehavior, Cagalj et al. [2] apply a dynamic game model to derive

the Pareto-optimal NE point of operation of a network with multiple cheaters

and show that the smart selfish devices can collectively determine this point

so as to solve the selfish behavior problem in the system. Felegyhazi and

Hubaux [4] have theoretically analyzed iterative power control in a spectrum

sharing system based on repeated game theory; however, they didn’t discuss

how to detect selfish behavior in reality. In our previous work [7,8], we have

also proposed a repeated game theoretic algorithm to enforce cooperation

in non-cooperative scheduling system. However, the condition in the pro-

posed algorithm is too strong, where each user will punish the selfish user by

transmitting at the highest rate; thus, the whole system is also penalized too

much at the same time. In this paper, we let a user punish the selfish user

with a probability p when detecting the selfish behavior. In this situation,

the selfish user will also be punished while the whole system throughput will

be less affected.

3 Model

3.1 System Model

We consider a time-slotted system with one BS serving N wireless users. The

BS transmits in slots with fixed duration, and only one user can be scheduled

in one time slot. All users are assumed to be either static or moving slowly.

We assume users always have packets to transmit. At the beginning of time

8



slot t, each user i measures the downlink channel condition, and returns,

via a feedback channel, a measured data rate ri(t) to the BS. Based on this

information, the BS then determines which user to transmit its packet in this

time slot.

In our analysis, we assume adaptive modulation and ideal phase detection

are used in a Rayleigh fading channel with bandwidth W , and no retransmis-

sion is considered. Typically, at time slot t, the maximal achievable symbol

rate ca
i (t) (bit/symbol) for user i can be decided by its current channel SNR

γi(t) and the required BER Pber, then ca
i (t) can be expressed as [13]:

ca
i (t) = log2(1 +

−1.5

ln(5 · Pber)
· γi(t)) (1)

We assume that the symbol rate belongs to the symbol rate set C = {ci :

0 ≤ ci ≤ M}, i.e., ca
i (t) ∈ C , where M can be interpreted as the maximal

modulation mode. Then the corresponding maximal achievable data rate is

given by:

ra
i (t) = ca

i (t) ·W (2)

Correspondingly we define the set of data rate as R = {ri : 0 ≤ ri ≤
rmax}, where rmax = M ·W and ra

i (t) ∈ R.

We assume that each ri(t) is an independent and stationary random vari-

able, and let the reported ri(t) also belong to the set R, i.e., ri(t) ∈ R .

Within this framework, in the literature there are several well-known packet

scheduling algorithms, such as the MR algorithm [1], which is designed to
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maximize the data rate at each slot, as well as the system aggregate data

rate, by scheduling the user with the largest ri(t) for transmission, i.e.,

n∗(t) = arg max
i

(ri(t)) (3)

where n∗(t) is the user scheduled for transmission at time slot t.

In cooperative environments, these algorithms are optimal under their

respective objectives with the assumption that the wireless users will comply

with the algorithms and report their channel conditions to the BS honestly.

However, they do not have any consideration of the impact of selfish behav-

ior on their predefined performance and objectives. For example, if a user

knows it will not be scheduled for transmission if it reports its real channel

condition, it could tell a bogus ri(t) to the BS so as to increase its chance

for transmission. This is possible in wireless environments because a wire-

less user usually has the ability to overhear the packets of other users in the

vicinity of its radio transceiver, and then capture and sniff them [1]. In some

cases, it’s also not necessary for a selfish user to know the exact transmission

rate of others. It can just estimate the scope of transmission rate and then

choose to report the maximal possible rate rmax to maximize its scheduling

opportunity. Then the corresponding scheduling results may be totally differ-

ent with what will be realized in cooperative environment. In the following,

we focus on the performance of the MR algorithm under a non-cooperative

wireless environment.
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3.2 Selfish Behavior and its Impact

In a cooperative situation, the feedback rate ri(t) from user i is just the

maximum feasible rate ra
i (t) that the downlink can support under its current

SNR γi(t) to maintain a certain BER or PTSR requirement. On the other

hand, in a non-cooperative environment, a selfish but rational device may

report a bogus data rate ri(t) > ra
i (t), so as to enhance its opportunity to be

chosen for transmission as governed by the scheduling algorithm. Of course,

a higher assigned data rate ri(t) may result in a higher BER or lower PTSR

under the same SNR γi(t), making its actual achievable rate lower than the

intended value. Nevertheless, a rationally selfish consideration is that the

smaller realized rate may be compensated by the rate improvement induced

by the increased transmission probability. Consequently, a non-cooperative

user could still have the incentive to report a different data rate to the BS

so long as its own potential payoff can be increased.

Let BER(ri, r
a
i ) and α(ri, r

a
i ) be the BER and PTSR respectively for

device i when its maximum feasible rate is ra
i and feedback data rate is ri,

where ra
i ∈ R and ri ∈ R . When there are L bits in one packet, we have:

BERi(ri, r
a
i ) = 0.2 · exp(log2(5 · Pber) · 2ra

i − 1

2ri − 1
) (4)

and

α(ri, r
a
i ) = (1−BER(ri, r

a
i ))

L (5)

Since the probability that user i can transmit at time slot t is Pr(ri(t) >
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rj(t),∀j 6= i), its expected rate Rcop
i (ri(t)) in cooperative situations and

Rncop
i (ri(t)) in non-cooperative situations can be expressed as the followings,

respectively,

Rcop
i (ri(t)) = ra

i · α(ra
i , r

a
i ) · Pr(ri(t) = ra

i > rj(t),∀j 6= i) (6)

Rncop
i (ri(t)) = ri · α(ri, r

a
i ) · Pr(ri(t) = ri > rj(t),∀j 6= i) (7)

Thus, provided that Rncop
i (ri(t)) is larger than Rcop

i (ri(t)), the selfish user

i will have the intention to report a bogus rate so as to increase its own

benefit.

To empirically quantify the performance impact of this kind of selfish be-

havior, we conduct simulations based on the above model. In the simulation,

the entire system bandwidth is 10 MHz and the wireless channel is mod-

eled as a frequency-flat Rayleigh fading channel with the maximum Doppler

frequency of 10 Hz. Moreover, the additive white Gaussian noise (AWGN)

power density is -80 dBW/Hz. All of N users are uniformly distributed in

the cell. We set the time slot duration as 100ms, and let ci ∈ [0, 10]. We

also assume the packet length is 100 bits/packet and the maximum BER

requirement is 10−5. In the simulation, each test case has been repeated for

100 trials and then we plot the figures with average value.

Fig.1 shows the impact of selfish behavior on the performance of tradi-

tional MR algorithm, where N = 8 and S = 1. In a cooperative environment,

all N users report their maximum feasible data rate to the BS. Whereas in
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non-cooperative situation, user 1 (U1) deliberately fails to adhere to the al-

gorithm and tries to misbehave by reporting bogus rate rmax to the BS, while

all other users still report their maximum feasible rates honestly. This is a

reasonable setting to simulate selfish behavior because rmax is larger than

U1’s true rate r1(t) such that U1 can get unfair share of the resource accord-

ing to (7)(??). In this simulation, we can see in Fig.1 that U1 can achieve

about 100% increase in average data rate by behaving selfishly. However, as a

result of U1 using this selfish strategy, the system average data rate decreases

by 30%. Therefore, the existence of selfish behavior in non-cooperative wire-

less networks could significantly degrade the data rate performance of packet

scheduling algorithm. Most importantly, this observation still holds in the

network with different sizes, such as those from N = 2 to N = 20 as shown

in Fig.2, where S is also set to be 1.

4 Static Game

4.1 Game Theoretic Model

The above preliminary analysis clearly shows that a selfish user has an in-

centive to act in a non-cooperative way so as to improve its own data rate.

Such selfish behavior can be modeled as a non-cooperative game in which

each player has a continuum of actions [12]. In this game, we denote wireless

users Ω = {1, · · · , N} as the set of players. When player i’s maximal feasible

rate is ra
i , its action is its reported rate ri and the set of its possible actions

is the interval from ra
i to rmax, i.e., Ai = {ri | ra

i ≤ ri ≤ rmax}. The action
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Figure 1: The impact of selfish behavior on the average date rate of packet
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combination is denoted as r = (r1, r2, · · · , rN) ∈ A, where A = ×i∈ΩAi is the

Cartesian product of the N players’ action profile. We identify each player’s

mixed strategy with a cumulative distribution function (CDF) Fi(ri) on this

interval, for which 0 ≤ Fi(ri) ≤ 1 for every action ri, and thus, the number

Fi(ri) is the probability that player i’s data rate is at most ri. Each player

i’s preference is represented by the expected value of the data rate:

ui(r) =





ri · α(ri, r
a
i ) ri > rj

1
N
· ri · α(ri, r

a
i ) ri = rj

0 ri < rj

(8)

where the parameter 1
N

captures the situation that when these players

have the same data rate, they will be chosen with the equal probability. We

assume all user rates ri’s are independent and identically distributed with

the same CDF, and then the expected payoff can be expressed as:

Ui(r, F ) = ri · α(ri, r
a
i ) · Pr(ri > rj) +

1

N
· ri · α(ri, r

a
i ) · Pr(ri = rj)

+ 0 · Pr(ri < rj)

= ri · α(ri, r
a
i ) · Pr(ri > rj,∀j 6= i)

= ri · (Fj(ri))
N−1

(9)

The second term in the first line of (9) equals to zero because ri is a

continuous random variable, then Pr(ri = rj) is 0. Within the above model,

a NE can be defined as follows.

Definition 1. An action combination r∗ ∈ A and the corresponding mixed

strategy F ∗ ∈ [0, 1] are said to achieve the state of Nash equilibrium if for
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every player i ∈ Ω, we have:

Ui(r
∗
i , r

∗
−i; F

∗
i , F ∗

−i) ≥ Ui(r
′
i, r

∗
−i; F

∗
i , F ∗

−i) ∀r′i ∈ Ai, F
′
i ∈ [0, 1] (10)

where r−i and F−i denote the actions and the corresponding mixed strate-

gies chosen by everyone else other than i, r′i is a reported rate other than

Nash equilibrium rate r∗i , Ui(ri, r−i; Fi, F−i) is user i’s utility under rate ri, r−i

and CDF Fi, F−i.

4.2 Nash Equilibrium

It is known that for a game in which each player has finitely many actions,

when a mixed strategy profile is a mixed strategy NE, the expected payoff to

every action assigned with positive probability is the same. Correspondingly,

as described in the Proposition 142.2 in [12], for the game in which each

user has infinitely many actions Ai = {ri | ra
i ≤ ri ≤ rmax}, the mixed

strategy is determined by the probabilities assigned to sets of actions; and

the expected payoff should be constant from ra
i to rmax in NE. Moreover,

because Fj(ri = rmax) = Pr(ri(t) ≤ ri = rmax) = 1, we have:

Ui(r, F ) =

{
ri · α(ri, r

a
i ) · (Fj(ri))

N−1 = C ra
i ≤ ri ≤ rmax

rmax · α(rmax, ra
i ) · (Fj(ri))

N−1 = C ri = rmax (11)

where C is a constant. Thus, for 0 ≤ ra
i ≤ ri ≤ rmax, we get:

Fj(ri) = (
rmax · α(rmax, ra

i )

ri · α(ri, ra
i )

)
1

N−1 (12)

When the maximum achievable rate for player i is ra
i , it will choose its

feedback rate ri according to the above NE strategy. Because in practice ri is
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a discrete random variable, then if ra
i ≤ rA ≤ ri ≤ rB ≤ rmax, the probability

that it reports ri to BS is expressed as:

Pr(ri) =
1

2
· (Fi(r

A) + Fi(r
B)) (13)

where rA = bric and rB = drie, bxc express the largest integer smaller

than x, dxe express the least integer larger than x.

4.3 Performance Analysis

In a cooperative environment, the average data rate of the system is max-

imized by the MR algorithm. Furthermore, it is also Pareto efficient [12]

because it is impossible to make one user get a higher rate without adversely

affecting other users. While in a non-cooperative environment, selfish behav-

ior breaks this property. With the same simulation environment in Section

II, the system average data rate is plotted for a network with 8 users in

Fig.3. We can see that in this 8-player game, the system average data rate

in NE state is much smaller than that in a cooperative environment. This

phenomenon follows readily from Fig.4, where the network size varies from 2

users to 20 users. Thus, the achieved NE data rate is Pareto inefficient [12],

which is a common characteristic for a non-cooperative game.

5 Repeated Game

The main reason for the data rate decrease in a non-cooperative environment

is that a selfish user intends to report a higher data rate. Thus, if the user
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Figure 4: System average data rate comparison with different users.

in a bad channel condition gives up the competition and lets the others

to transmit, the average data rate may be increased. However, in a non-
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cooperative environment, a rational user has little incentive to give up its

channel if there is no mechanism to enforce cooperation.

In this section, we propose a repeated game to enforce cooperation. We

assume that the wireless users do not know the end of the game; hence we

study the problem in an infinite repeated game model with discounting [12].

We show that cooperation (i.e., all users will report real ra
i instead of others)

can be enforced so as to improve the performance.

5.1 Repeated Game Model

We extend the NPS game as follows: we assume that the game is split up

steps denoted by h. In each step, user i ∈ Ω adjusts the rate according

to its strategy. Furthermore, let us define the discounted average utility in

Hi < +∞ time steps as:

Ui(Hi) = (1− ω) ·
Hi∑

h=0

Ui(h) · ωh (14)

where 0 < omega < 1 is the discounting factor, which can be interpreted

as the probability that the game ends in the next step. We assume ω is

identical for all users in our model.

We have found that the selfish users are in an inefficient equilibrium when

they all play NE strategy, whereas the maximal data rate can be achieved by

using a cooperative strategy. From Folk Theorem [12], we know that in an

infinitely repeated game, any feasible outcome that gives each player better

payoff than the NE can be obtained. We can now determine the conditions
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that enable the users to enforce cooperation, and prove that they can do

better by applying a strategy called Striker, as detailed below.

5.2 Striker Strategy

Definition 2. A wireless user i is said to employ the Striker strategy if it

plays ra
i in the first time step, and for any subsequent time steps, it plays:

• ra
i in the next time step if the other player j played ra

j in the previous

time step, or

• rmax with probability pi for the next Hi time steps, if the other played

anything else.

The punishment interval Hi defines the number of time steps for which a

player punishes the selfish player [4]. To simplify our analysis, we assume that

the overall channel conditions remain relatively unchanged. Then, ra
i over

each step in the repeated game is similar. However, our simulation results

show that our analysis still holds in wireless fading situations. Consequently,

cooperation can be enforced using the Striker strategy as formalized in the

following proposition.

Proposition 1. An efficient Nash equilibrium can be enforced by the Striker

strategy.

Proof. We set user i’s utility in terms of cooperative and non-cooperative

situations as UCOP
i and UNCOP

i , respectively. We consider the Striker strat-

egy, and suppose user i adhere to it and choose ra
i . If user j 6= i uses
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the same strategy, then the outcome is (UCOP
i , UCOP

j ) in every step, so

that it obtains the stream of payoffs, which gives a discounted average of

(1− ω) ·∑Hi

h=0 Ui(h) · ωh = (1− ωHi+1) · UCOP
i .

If user j adopts a rate rX
j so as to get a larger utility UNCOP

j > UNCOP
i

in all subsequent steps, user i will chooses rmax with probability pi since user

j’s choice of rX
j triggers the punishment. Then, in an attempt to maintain its

own benefit, the selfish user j will have to choose rmax in every subsequent

step with payoff UM
j . Consequently, it obtains the stream of payoffs with

discounted average utility:

(1− ω) · (UNCOP
j + UM

j + ω · (UM
j ) + · · ·+ ωH

i · (UM
j ))

=(1− ω) · UNCOP
j + (1− ωHi+1 · UM

j )
(15)

Thus, user j can not increase its utility by deviating if and only if:

(1− ω) · UNCOP
j + (1− ωHi+1 · UM

j ) < (1− ωHi+1) · UCOP
j (16)

Thus,

ωHi+1 < 1− (1− ω) · UNCOP
j

UCOP
j − UM

j

(17)

The inequality cannot be fulfilled if the right side is negative, and there-

fore:

(1− ω) · UNCOP
j

UCOP
j − UM

j

< 1 (18)

21



When this condition holds, since ω < 1, we have:

Hi ≥ logω((1− ω) · UNCOP
j

UCOP
j − UM

j

)− 1 (19)

Because the user’s utility is highly related to its average data rate, we

rewrite the above Hi as

Hi ≥ logω((1− ω) · RNCOP
j

RCOP
j −RM

j

)− 1 (20)

Because when the selfish behavior is detected, each user i other than j

will chooses rmax with probability pi to punish user j. We can derive RM
j as

RM
j =

1

1 +
∏

i6=j(pi)
·RM

0 (21)

Here RNCOP
j and RCOP

j are the average data rates in terms of non-

cooperative and cooperative situations, respectively. RM
0 is the average data

rate when all users in the network report rmax to BS, we simply estimated

it by RM
0 = 1

N

∑t=TH

t=1 rmax · α(rmax, ra
j (t)). Specifically, when all pi = 100%,

the scheduler is just Round-Robin, and RM
j = 1

N
· RM

0 . Thus when the dis-

counting factor is chosen as in (18) and punishment interval is set according

to (20), the selfish user j will be forced to cooperate with user i such as to

get higher payoff by Striker strategy. Correspondingly, an efficient NE is

achieved.
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6 Striker Algorithm

6.1 Implementation Issues

Proposition 1 indicates the feasibility of using a repeated game to enforce

cooperation among selfish users and achieve efficient performance. However,

to implement this Striker strategy in a practical wireless environment, there

are still some problems to be tackled. For one thing, the basic assumption

used in the game that a wireless user can know other users’ actions and

utilities instantaneously so as to detect the deviation, and decide its own

strategy is impractical in reality [5]. Secondly, in a wireless environment, a

user’s utility and data rate will be different at different time, which makes

the detection of selfish behavior and the decision of punishment interval

less efficient. Furthermore, in a practical network, the deviation of users

may be found by others with some different delays. Consequently, after the

punishment interval Hi of user i is over, user i will directly switch to detection

phase again. But if other users are still in punishment phase, it may lead

user i to misjudge the punishment behavior of others as selfish behavior and

punish them again, thereby making the network fluctuating and unstable.

To tackle the first two issues, we propose to detect the deviation by mea-

suring wireless user’s average data rate instead of its utility function because

data rate is relatively easier to monitor and is highly related to our proposed

utility function. The basic idea is that each user i sees whether its own av-

erage data rate Ri is satisfied with a threshold condition, which is defined
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as:

|Vi −Ri|
Vi

> β (22)

where β is a predefined threshold coefficient and Vi is the threshold. If

the threshold condition is satisfied, there may have some selfish behaviors in

the network, and then this user will also play non-cooperatively to punish

the deviation. To overcome the problems of misjudging the punishment be-

havior as selfish behavior and therefore making network unstable, we can let

each user broadcast its punishment interval in the network. Thus, with such

a broadcast message, it appears that all users can synchronize their punish-

ment processes and the mentioned problem is solved in a practical manner

efficiently.

However, the broadcasted messages also introduce additional overhead to

the network. Furthermore, this method implies that there could have coor-

dination or cooperation among users, which may be an invalid assumption

in such a non-cooperative environment. Thus, we propose to use another

method described below to solve it. Generally, after the punishment interval

is over, the user i will directly switch to detection phase again. But if other

users are still in punishment phase, this process may lead to misdetection of

selfish behavior. Thus, we can change the Striker strategy slightly. When

a user leaves the punishment phase and behaves cooperatively again, it will

wait for extra steps H ′
i and then enter detection phase so as to let other users

have enough time to finish punishment and return to cooperation.
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Figure 5: The block diagram of Striker algorithm.

6.2 Algorithm Design

Based on the above consideration, we design and develop a distributed Striker

algorithm to implement the Striker strategy in practice so as to enforce

cooperation among distributed non-cooperative users efficiently. As shown

in the algorithm block diagram in Fig.5, this algorithm mainly consists of

four parts: initialization, detection, punishment and update. The algorithm

is explained in detail as follows.

• Initialization

In this stage, all users enter the network and begin to play the game.

We initialize the deviation threshold Vi as the average data rate Ri in the

first step, i.e. Vi = Ri. Let each step consist of TH time slots, then Ri =
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1
TH
· ∑t=TH

t=1 ri(t). We also set step counter k = 0, which will be used for

threshold updating later.

• Detection

In this stage, each user measures its average data rate and tests the

threshold condition according to (22). The main reason we do not directly

use the simple rule that whether Ri is smaller than Vi to judge the deviation is

that the wireless environment is dynamic, then Ri may be varied at different

steps. If the initialized or currently used Vi is not accurate, the misjudgement

of deviation may occur.

Then in any following step, if a user finds its condition (22) is satisfied,

it will begin to perform punishment action according to Striker strategy. By

doing this, the short-term benefit of deviation will be eliminated by long-term

punishment gradually.

• Punishment

When selfish deviation is detected by one user i, it will decide the punish-

ment interval according to the expression (19). Because the average data rate

is used instead of user’s utility to detect deviation and determine punishment

interval as analyzed above, we will rewrite Hi as:

Hi = dlogω(1− (1− ω) · RNCOP
j

RCOP
j −RM

j

)− 1e (23)
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Here RM
j is the average data rate when all users in the network report rmax

to BS and can be estimated as (21). RNCOP
j is the selfish user’s average data

rates in non-cooperative situation. Because in non-cooperative situation, the

selfish user may get all transmission opportunities by reporting its rate as

rmax, we can get RNCOP
j ≤ rmax. While in cooperative situation, a user’s

average rate is at most rmax

N
. Thus, we can simply estimate Hi as

Hi = dlogω(1− (1− ω) · rmax

rmax

N
−RM

j

)− 1e (24)

With these parameters, a wireless user can locally decide its punishment

interval. Then it can play rmax for next Hi + H ′
i time steps, where H ′

i < Hi

is used to overcome the problem of misjudging as mentioned before.

• Update

The threshold Vi is initialized to be the average data rate at first step. If

condition (22) is not satisfied, we can assume there is no deviation and the

step counter k is increased by one. When there is no deviation detected for

a period of continuous K steps, where K is a predefined constant, this may

mean that cooperation is enforced so that we can update the threshold to

improve current performance, or the current used threshold Vi is too small

to check the deviation correctly. Thus, in any case, the process of updating

threshold Vi is important and essential. Here, we use the average data rate

in the previous K steps as the new threshold, i.e., Vi = 1
TH ·K

∑TH ·K
t=1 ri(t).
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6.3 Performance Analysis

To demonstrate the effect of Striker algorithm, we set up simulations with

the same configuration as in Section 3. We first analyze the data rate perfor-

mance under Striker strategies with different Striker probability p. In this

test, N = 20 and S = 1. We also let β = 20%, K = 10 and TH = 25 here. In

the beginning, all wireless users perform honestly, and the individual average

data rate is about 8Mbps, which is also used as a threshold to detect devia-

tion. At time slot 100, U1 begins to deviate from the cooperative action by

reporting a bogus rate rmax. As shown in Fig. 6, its average rate increases

up to 14.8Mbps dramatically. This abnormal deviation is soon detected by

others when they notice the threshold condition (22) is satisfied, and then

punished by other users, which then make the data rate of this selfish user

decrease dramatically. Then the data rate returns to the cooperative state.

Thus, a more efficient equilibrium is achieved as well as the scheduling per-

formance is optimized in a non-cooperative wireless network.

In the mean time, we notice that the punishment interval decreases with

the Striker probability p. For example, when p = 40%, the punishment

interval is about 90 slots; while it becomes 60 slots when p = 100%. This

can be explained by the fact that when p is larger, more users would likely

use Striker strategy to punish the selfish user, which then could more quickly

realize that it has been penalized. As a result, the selfish user will return

to the cooperation state soon. This observation is also consistent with our

analysis in Proposition 1.
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Another important observation is that a lower Striker probability p will

make less decrease of system rate during the period of punishment, as shown

in Fig.7. This is because the system aggregate rate will suffer more loss

when there are more users who increase their rate to penalize the selfish user.

However, when p is larger, the punishment becomes much severer and the

system will return to cooperative situation more quickly. Thus, the Striker

probability p can be used to strike a balance between punishment interval

and system rate. If we want to punish the selfish behavior more greatly and

force the selfish user to behave cooperatively soon, a higher p is preferable.

We further show the average individual throughput over the whole 500

time slots for 4 users to investigate the long-term fairness in Fig. 9, where

only user 1 is selfish and p = 70%. The results illustrate that the fairness

performance is much worse in a non-cooperative situation because selfish

user 1 consumes large part of radio resources by lying to the BS. With the

introduction of Striker algorithm, the impact of selfish behavior is restricted

and then the users are more likely to report their channel conditions honestly.

Consequently, the users are scheduled in a fairer manner.

Besides throughput and fairness, we are also interested to see if the honest

wireless users who experience dynamic channel changes may be misjudged

as selfish users and be wrongly punished. To this end, we assume all N = 20

users are honest and measure the misjudging probability, which is defined

as the relative frequency of occurrence of misjudgments in a long run of

simulation trials with the same configuration as above. As shown in Fig. 9,
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Figure 6: U1 date rate under Striker strategies with different Striker proba-
bility p. (a) p = 100%; (b) p = 70%; (c) p = 40%; (d) p = 10%;

the misjudging probability decreases with TH , the time slots in one step; and

when TH is larger than 20, the misjudging probability is smaller than 1%.

This is because TH is related to the average window size to calculate average

data rate Ri and threshold Vi, then with a higher TH , they can average out

at more stable values, which are less affected by the dynamic changes in

data rate. Thus, the misbehavior can be detected more accurately based
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Figure 7: System date rate under Striker strategies with different Striker
probability p. (a) p = 100%; (b) p = 70%; (c) p = 40%; (d) p = 10%;

on (22) and the misjudging probability decreases accordingly. Besides, the

effect of β upon misjudging probability is not as distinct as TH , whereas the

misjudging probability is usually higher in the case of a smaller β because

in this situation (22) is relatively more sensitive to temporal fluctuation of

data rate, therefore it is prone to bring about misjudgment.
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7 Conclusions

In this paper we investigate the impact of rationally selfish behaviors on

wireless packet scheduling algorithm in a non-cooperative wireless network.
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We find that the existence of selfish behavior indeed makes the data rate

performance of MR packet scheduling algorithm decrease greatly. Based

on this observation, we further set up a novel mixed strategy NPS (non-

cooperative packet scheduling) game to analyze this problem and derive a

corresponding Nash equilibrium, in which the system average data rate is

found to be significantly reduced. Then we further propose a distributed

Striker algorithm based on a repeated game to enforce cooperation among

users and achieve a more desirable Nash equilibrium, in which the data rate

performance can be increased efficiently. Furthermore, users can be scheduled

in a fairer manner with our proposed Striker algorithm. As part of our

on-going work, we are now analyzing the impact of selfishness on fairness-

oriented packet scheduling algorithms in a non-cooperative environment.
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